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Abstract

A new type of stochastic gramrars is introduced for inves-
tigation: weakly restricted stochastic grammars. In this
paper we will concentrate on the consistency problem. o
{ind conditions for stochastic grammars to be consistent,
the theory of multitype Galton-Watson branching pro-
cesses and generating functions is of central importance.
The unrestricted stochastic grammar formalism generates
the same class of languages as the weakly restricted for-
malism. The inside-outside algorithm 1s adapted for use

with weakly restricted grammanrs.

1 Introduction

If we consider a natural languages as a structure mod-
elled by a formal grammar we do not consider i any
more as a language that is used. Formal (context-
free) grammars are often advocated as a model for
the “linguistic competence” of an ideal natural lan-
guage user. It is also noticed that this mathematical
concept is far from a suflicient model for describing all
aspects of the language. What cannot be expressed by
this model is the fact that some sentences or phrases
are more likeley to oceur than others. I'his notion of
occurrence refers to the use of language and therefore
considering this kind of statistical knowledge about
language has to do with the pragmatics of language
laid down in a corpus of the language. With a partic-
ular context of usc in mind a syntactically ambiguous
sentence will often have a most likely meaning and
hence a most likely analysis. Some of the shortcom-
ings of the purc (context-free) grammar model can
maybe be solved by stochastic grammmars, a model
that makes it possible to incorporate certaln statisti-
cal facts about the language use into a model of the
possible structures of sentences as we conceive them
from a mathematical, formal, point of view. Natural
languages are now seen as stochastic; a user of a lan-
guage as a stochastic source producing sentences. A
stochastic language over some alphabet ¥ is simply a
formal language I over ¥ together with a probability
function ¢ assigning to each string @ in the language
a real number ¢(x) in [0, 1]. Since ¢(z) is interpreted

as the chance that the event z, or the event that a
language-source produces z, will occur, it will be clear
that the sum of ¢(z) where z ranges over all possible
sentences is equal to one. The stochastic language is
called context-free if the language L is context-free.

The usnal grammatical model for a stochastic
context-free language s a context-free grammar to-
gether with a probability function f that assigns a
real number in [0, 1] to cach of the productions of the
grammar. ‘The meaning of this function is the follow-
ing. A step in a derivation of a sentential form, in
which a nonterminal 4 is rewritten using production
p has chance f(p) to occur, independent of which A
is rewritten in the sentential form and independent
of the history of the proces that produced the sen-
tential form. The probability of a derivation(-tree) is
the product of the probabilities of the derivation steps
that produces the tree. The probability of a sentence
generated by the grammar is the sum of the probabili-
ties of all the trees of a sentence. So given a stochastic
grammar we can compute the probabilitics of all its
sentences. The distribution language generated by a
stochastic gramnmar G, DL(G), is defined as the sct
of all derivation trees with their probabilities. 'The
stochastic Janguage generated by a stochastic gram-
mar ¢, SL((), is defined as the set of all sentences
generated by the graminar with their probabilities.
A stochastic grammar ¢ is an adequate model of a
language L i on its basis we can correctly compute
the probabilities of the sentences in the language I,
Of course this assumes a statistical analysis of a lan-
guage corpus. A stochastic grammar that generates a
stochastic language is called consistent.

Definition 1.1 A stochastic grammar G is called
consistent, if for the probability measure p induced by
¢ onto the language generated by its underlying gram-

mar:
> pla)=1
2€L(G)
Otherwise the grammar is called inconsistent.

Not all stochastic grammars generate a stochastic lan-
guage. Even proper, and reduced grammars 1 do not

1A grammed is called proper if for all nonterminals A, the
sum of the probabilities assigned to the rules for 4 is 1. A
grammar is called reduced if all nonterminals are reachable and
can produce a terminal string.
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necessarily generate a stochastic language. This is
illustrated in the following example. ?

Example 1.1 Consider the stochastic grammar &
with nonterminal set Vy = {5}, terminal set Vp =
{a}. The productions with their probabilities are
given by:

s 4 58

s

Following the technique presented in [2] we find
that the production generating function is given by
g1(s1) = g8+ 1—¢, and that the first moment matrix
E is given by [2¢]. We can conclude that the gram-
mar is consistent if and only if ¢ < 1/2. For details we
refer to [5]. Notice that all the different trees of string
a™ have the same probability, Hence, they cannot be
distinguished according to their probabilities. O

1t has been noticed that the usual model of a stoch-
astic grammar as presented above, and which we
from now on call the unrestricted stochastic grammar
model, has some disadvantages for modelling “rcal”
languages. In this paper we present a more ade-
quate model, the weakly restricted stochastic gram-
mar model. We give nccessary and suflicient con-
ditions to test in an efficient way whether such a
grammar defines a stochastic language. Moreover, we
will show that these grammars can be transformed
into an equivalent model of the usual type. The nice
thing about the new model is that it models “context-
dependent” probabilities of production-rules directly
in terms of the grammar specification of the language
and not in terms of some particular implementation
of the grammar as a parser. The latter ts done by
Briscoe and Carroll [3] by assigning probabilitics to
the transitions of the LR-parser constructed for the
grammar, In section 2 weakly restricted grammars
are introduced, in section 3 conditions for their con-
sistency are investigated; in section 4 it is proven that
weakly restricted grammars and unrestricted gram-
mars generate the same class of stochastic languages
and section 5 presents the inside-outside algorithm for
weakly restricted grammars.

2  Weakly Restricted Stochastic
Grammars

To add context-sensitivity to the assignment of proba-
bilities to the application of production rules, we take
into account (and distinguish) the occurrences of the
nonterminals. Then, for each nonterminal occurrence
distinct probabilities can be given for the production
rules that can be used to rewrite the nonterminal.
This way of assigning probabilities to the application

2 Although we found in [7] by Jelinek and Lafferty the (falsc)
statement that a stochastic grammar is consistent if and only
if it is proper, given that the underlying grammar is reduced.
The example gives a clear counter example of their statement.
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of production rules scems unknown in literature, al-
though we found some other formalisms that were de-
signed to add context-sensitivity to the assignment of
probabilities. For instance, the definition of stoch-
astic grammars by Salomaa in [8] is somewhat differ-
ent from the definition we gave in our introduction:
the probability of a production to be applied 1s here
dependent on the production that was last applied.

To escape the bootstrap problem (when a deriva-
tions is started, there is no last applied production)
an initial stochastic vector is added to the grammar.
Weakly restricted stochastic grammars are introduced
in [1]. In the following definition €y, denotes the set
of productions for A; and R(A4;) denotes the number
of right-hand side occurrences of nonterminal A;.

Definition 2.1 A weakly restricted stochastic gram-
mar Gy 15 a pair (G, A), where G, = (Vn, Vo, P, S)

s a context-free grammar and A is a sel of funclions
A= {pifAi € Viv}

where, if j € 1. R(A) and k€ 1. |Ca|, p:i(j. k) =
pijk € [0,1] The set of productions P conlains exaclly
one production for start symbol S.

In words, p;;i stands for the probability that the k-th
production with left-hand side A; is used for rewrit-
ing the j-th right-hand side-occurrence of nonterminal
Ai. The usefullness of this context-dependency can
be seen immediately from the following unrestricted
stochastic grammar, which is taken (in part) from the
example grammar in [3] (p. 29):

=

s X wNpvp
ve ¥ owowp
ve 2oy

NP Y ponp
NP % e N
Np 2 NP pp

Unrestricted stochastic grammars cannot model con-
text dependent use of productions. For example, an
N P is more likely to be expanded as a pronoun in sub-
ject position than elsewhere. Exactly this dependence
on where a nonterminal was introduced can be mod-
eled by using a weakly restricted stochastic grammar.
Since in a weakly restricted stochastic grammar the
probabilities of applying a production are dependent
on the particular occurrence of a nonterminal in the
right-hand side of a production, it is useful to require
that there is only one start production.

The characteristic grammar of a weakly restricted
grammar is the underlying context free grammar.
The next step is to compute probabilities for strings
with respect to weakly restricted stochastic gram-
mars. For this purpose a tree is written in terms
of its subtrees (trees with a nonterminal as root) as
qtisgy s tisgay -+ s Bingyinge )y I Whiclt ¢ is a production,
n(g) is the number of nonterminals in the right-hand
side of ¢ and t;; denotes a (sub)trec with the j-th



occurrence of nonterminal A; at its root. A trec for
which n(g) = 0 is written as [].

Definition 2.2 The probability of a derivation irce t
with respect to « weakly resiricled stochastic grammar
s defined recurswvely a

Puo(l)) =1
Pw(q[?'njwtigjgy e
n{q)
H Dirimdiom Pro (i)

m=1

‘)lfn(qdu(q)]) =

U)h(?TC 1 S km S |C4‘1wm J

The probability of a string is defined as the sum of
the probabilities of all distinct derivation trees that
yield this string.

Definition 2.3 The probability of a string x n
L(G.) ts defined as

pule) = 3 (PulDl(x, Pult)) € DLIG))

The distribution language DL(G,,) and stochastic
language SL(Gy) of a weakly rvestricted grammar
(Ge, A) are defined analoguous to the distribution
language and stochastic language of an unrestricted
grammar,

3 Consistency

In this section consistency of weakly restricted stoch-
astic grammars will be considered. The theory of
multitype branching processes will be used to come
to a similar theorem as is given in [2] for unrestricted
stochastic grammars.

Definition 3.1 For the j-th occurrence of nontermi-

nal A; € Vi the production generating function for
weakly restricted stochastic grammars is defined as:

Gii (S1,0, -5 Sk gAy)) =
1Ca;l ko R(AR)
Sove IT 11 s
u=1 m=1 n=1

where oy, (k) s 1 if nonterminal-occurrence Amy, ap-
pears in the righi-hand side of the k-th production rule
with nonterminel A; as left-hand side and 0 otherwise.

Note that for each right-hand side nonterminal oc-
currence a dummy-variable is introduced: s;; corre-
sponds to the j-th occurrence of nonterminal 4;. A
special variable is s1,;: it corresponds to the start
symbol which is the right-hand side of the start pro-
duction s € P of the form Z — S. The genera-
ting function for nonterminal ocenrrence A;; entails
for each production for A; a term. If g;; has a term
of the form
CeS;, 85, .. 8,

then we know that it corresponds to a production for
A; of the form
Ai —vwp A mi Ay e Ay

where the 2. € ViU The production has, if it is used
for rewriting occurrence Ag;, probability « of being
applied. In Example 3 it will be illustrated how the
terms of the generating functions correspond to the
productions of the gramimar.

Theorem 3.1 Lel Agj = o) thus the j-th occurrence
of nonterminal A; ts rewritlen using cxactly one pro-
duction. The probability that o contains the n-th oc-
currence of nonterminal Ay, is given by

Cijmn =

81,008k, (A= L

Proof In gencral the generating function can be writ-
ten as
vy Sk,l((A;\)) - Ciy

f/zj(-‘ﬂ,l: - -;«"'k,]?(A;.f)J = .‘/:‘j(sl,l; -

where ggj(s]’],..,15;;,1;(!“:,) only contains terms de-
pendent on s11,.. ., 8 ra,) and where ¢;; is a con-
stant term. The terms dependent on sy,1, .. ., 8¢, ray)
come from productions for A; that contain nontermi-
nals in their right-hand sides and the constant terms
from productions for A; that only contain terminals
in their right-hand sides.  'When partial derivatives
arc taken from g;; we can just as well consider ;/gj,
since the constant term will become zero. We know
that the terms in gﬁj do not contain any powers higher
than 1 of the variables in it. This leads us to the in-
sight that taking the mn-th partial derivative of g;;
results in at most one term consisting of the form
Pigaf(810, .+, 8k r(a,)) where f does not depend on
Sma and pij. 1s one of the probabilities resulting from
applying p; to j and some kin 1...|Cy4,]. If we substi-
tute 1 for all remaining variables in the partial deriva-
tive we find as value for ¢;j,,n the probability that the
j-th occurrence of nonterminal 4; is rewritten by the
production that contains in its right-hand side non-
terminal occurrence A,,,. O

The first-moment matrix for weakly restricted gram-
mars is defined just like the first-moment matrix for
unrestricted grammars:

Definition 3.2 The first-moment matrix F essoci-
ated with the weakly restricted grammar G is

L= [%’jnm]
where 1 < 4,m < |Vy| and 1 < j,n < R(A;).

We order the set of cigenvalues of the first-moment
matrix from the largest one to the smallest, such that
p1 presents the maximum.

Theorem 3.2 A proper weakly restricied grammar s
consistent if py < 1 and is not consistent if p; > 1
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The proof of this theorem is analoguous to the proof
of the related theorem in [2} and we will not treat it
here (see [5] for a proof).

Example 3.1 Consider the weakly restricted stoch-
astic grammar (G, A) where G, = (Vn,Vp, P, 2) =
({#,5},{a}, P, Z) and P and A are as follows:

JAREIS (p,1—-p)
S—=55 (q,l-—q)(?’,]—r)
S —a

For a reason at the of the example to become clear,
we assume that p £ 0. The production generating
functions are given by

sips13+ 1—p
s12813 + 1 — ¢
Spas13 + 1 —71

911(511,812‘,813) =p
012(511,3129513) =q
¢13(511, 812, 813) = T

The first-moment matrix & is given by
p

0 P
0 ¢ ¢
0 r r

The characteristic equation is given by ¢(2) = z{(x —
¢)g—r)—qr)=z*(z~(g+7)) = 0. Thus, the cigen-
values of the matrix are 0 and @ = ¢ + r. According
to Theorem 3.2 the grammar 1s consistent if ¢-+7» < 1
and inconsistent if ¢+ > 1. If ¢ + 7 = 1 the theo-
rem does not decide the consistency of the grammar.
From the characteristic equation it follows that the
value of p does not influence the consistency of the
grammar. However, looking at the graminar we find
that it is consistent if p = 0, regardless of probabil-
ities ¢ and r. Therefore, before Theorem 3.2 can be
used for checking the consistency of the grammar, the
grammar must be stripped of productions having for
cach nonterminal occurrence probability zero of being
applied. O

Definition 3.3 A final class C' of nonterminal occur-
rences is a subset of the set of all nonterminal occur-
rences having the property thal any occurrence in C
has probability 1 of producing, when rewritten using
one production rule, exactly one occurrence also in

C.

Theorem 3.3 A weakly restricted stochastic gram-
mar is consistent if and only if py < 1 and there are
no final classes.

For the proof of Theorem 3.3 we refer to [b]. Ap-
plying this theorem to the example learns us that if
¢+ r = 1, the grammar is consistent if and only if
there is no final class of nonterminals. Looking at the
grammar we see that there is a final class of occur-
rences if ¢ = 1 or » = 1 (or both); the final classes then
are {92},{5s} and {Sy, Ss}, respectively; if in addi-
tion p = 1, then the final classes arc {Sy, Sa},{S1, 53}
and {51, 59, S3}, respectively. Hence, the grammar is
consistent if and only if ¢+ < 1Aqg# 1Ar £ 1.
Notice that if ¢ # r then all trees of ¢™ have difterent
probabilities.
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4 Equivalence

In this section we will show that a weakly restricted
stochastic grammar can be transformed into an equiv-
alent unrestricted grammar. We define two grammars
G and H to be equivalent if DL(G) = DL(H).

The transformation is performed as follows, With
each nonterminal occurrence Aj; in the right-hand
side of a production rule associate a new unique non-
terminal Aij; for each new nonterminal Azj copy the
set of production rules with nonterminal A; as left-
hand side, replace the left-hand sides with Aij and
replace in the right-hand sides each nonterminal with
its new (associated) nonterminal; assign probability
pijr to the k-th production rule with left-hand side
A;j. We formalized this in the following algorithm.

Algorithm 4.1

1 Associate with the j-th occurrence of nontermi-
nal A; in the right-hand sides of the production
rules a (new) unique nonterminal A;; (clearly
J € 1,...,R(A;)). The set of nonterminals for
the rewritten grammar G’ is denoted by Vg, and
is the set of associated nonterminals plus the
start symbol S from the weakly restricted gram-
mar G.

2 This step is given in pseudo-pascal:

for i := 1 to |[Vn| do
for j := 1 to R(A;) do
Pi=P'UCy4 (f)
od
od

where Cy,(7) is the set of productions C4, with
left-hand sides A; replaced by A;; and the nonter-
minals in the right-hand sides of the production
rules replaced by their associated nonterminals.

3 The probabilities to be assigned to the produc-
tion rules in Cy,(7) are deduced from the p;; =
(Pij1s - Pijica,): the k-th production rule in
C4,(J) is assigned probability pjjx.

0

Theorem 4.1 For cvery weakly restricted stoch-
astic grammar there is an wunrestricled stochastic
grammar which is distributively equivalent.

Proof We can prove the theorem by proving that
the algorithm finds for every weakly restricted gram-
mar an unrestricted grammar that is distributively
equivalent. From the algorithm it immediately fol-
lows that the languages (without the probabilities)
generated by the weakly restricted grammar and the
unrestricted grammar generated by the algorithm are
equal. The production rules introduced by the al-
gorithm in the unrestricted grammar cannot gener-
ate any other strings than the string generated by



the weakly restricted granumar. Also it can be secn
from the algorithm that the unrestricted grammar as-
sociates the same probabilities with its strings as the
unrestricted grammar. Ience, the theorem holds. O

A corollary of this theorem is that for cach weakly
restricted grammar there exists an unrestricted gram-
mar that is stochastically equivalent.

The time-complexity of the algorithn can easily be
found. We obsecrve that, if we denote the number of
nonterminals in the weakly restricted grammar by &,
cach step can be done in in O(k) steps. Then the
total time complexity is O(k). We define the size of
a grammar to be the product of the number of non-
terminals and the number of productions. The size of
the newly created grammar can be found to be poly-
nomial in the size of the weakly restricted grammar,

5 Inference

The inside-outside algorithm is originally a reestima-
tion procedure for the rule probabilities of an un-
restricted stochastic grammar in Chomksy Normal
Forin (CNIY) [4]. 1t takes as input an initial unre-
stricted stochastic grammar (¢ in CNF and a sam-
ple set £ of strings and 1t iteratively recstimates rule
probabilities to maximize the probability that the
graminar would produce the sample set.

The basic idea of the inside-outside algorithm is to
usc the current rule probabilities to estirnate from the
sample set the expected frequencies of certain deriva-
tion steps, and then compute new rule probability
estimates as appropriate frequency rates. Therefore,
each iteration of the algorithm starts by calculating
the inside and outside probabilities for all strings in
the sample set. These probabilities are in fact prob-
ability functions which have as argnments a string
w from the sample set, indexes which indicate what
substring of w is to be cousidered, and an occurrence
of a nonterminal, say A. With these arguments, the
inside probability now is the probability that the oc-
currence of A derives the substring of w; the outside
probability is the probability that the occurrence of
nonterminal A appears in the intermediate string of
some derivation of string w.

In what follows, we will take Vi ,Vp as fixed n =
|Va|, t = |Vr|, and assume that Vy = {Z = Ay, 5 =
Ay, Ag, o Ant and Vp = {ay, ..., ay}. By definition
it is required that the grammar has one production for
start symbol Z/: 7 — S§. Parallel to the definition of
generating functions for weakly restricted grammars,
we have to distinguish all nonterminal oceurrences in
right-hand sides of productions; we remind that the
probability of each production depends on the par-
ticular nonterminal occurrence to be rewritten. The
inside and outside probabilities now have to be spec-
ified for cach nonterminal occurrence seperately. As
already stated in the introduction, the inside-outside
algorithm is designed only for context-free grammmars

in ONT'. Using this fact we can simnplify the way non-
terminal occurrences are indexed: Ayqry (Aypgy) de-
notes the occurrence of A, (A4,) in the production
Ap > AgA,; for this production also the notation
(pgr) is used and for the production A, - «, (pq).
Similarly the probability of occurrence Ay, .y to be
rewritten using rule (gst) is denotes by pe ry(get)-
For the start production a special provision has to be
taken: the nonterminal occurrence in its right-hand
side is denoted by Ajq.). A stochastic gramninar in
CNT over these sets can then be specified by

> R(A)|P

i

probabilities. Since we require stochastic grammars
to be proper, we know that for p,¢,r = 1,...,n

Pap.r)gsty T 2_, Pylpri(gs) = 1

8,1

If we want to use the inside-outside algorithin for
gramimar inference, then the grammar probabilities
have to meet the above condition in order for the rees-
timation to make seuse.

If string w = wyws... Wy, then jw;, 0 < @ <
J < Jw| denotes the substring wiyq...w;. The in-
.1 w N net v o d e . :
side probability lp(w)(?,j) estimates the likelihood
that occurrence Ay, derives ;w;, while the outside
probability € ;)L(q 7.)(1‘, 7) estimates the likelthood of de-
riving Wi Ap(g.r)j Whe| from the start symbol S. The
inside-probability for string w and nonterminal occur-
rence Ay ry is defined by the recurrent relation

w M ; - - pu—
/p(q_r)(z = 1,1) == Pp(gry(ps), Where ag = w;
1w . . .

]7((/.7')(11 1‘) -

D 2 Pl G D ey

st A<k

Similarly, the outside . probabilities for shorter spans
of w can be computed from the inside probabilities
aud the outside probabilities for longer spans by the
following recurrence:

O;f(q_,,)((), [w])==1, il ¢ =1
Opte.ry (0, [w]) = 0, otherwise
();:/(q.r)(zl k) =

i—1

L L O:IU(H)(J» ’l‘)'lyuéqp)(]} i)Pq(x.t)(qpr)

&t =0

The second equation above is somewhat simpler
than the corresponding one for unrestricted stoch-
astic grammars, because the occurrence Ap(g.ry for
which the outside probability (“’w)(i,k) is com-
puted specifies the production use({’%or creating it and
consequently the probability for A, .y to generate
010; Ap(g.r)j We| 18 the sum of much less possibilities.

Once the inside and outside probabilities are com-
puted for each string in the sample set £ the reesti-
mated probability of binary rules, fip(g.ry(pse), and the
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reestimated probability of unary rules, g, .ryqr), are
computed using the following reestimation formulae:

Bp(g.r)(pst) =

ZL
wer T ogiiShgiol | I, (0, £)0%, 6 B)

Z I%q-r‘)/Pw

wer

pP(‘I~’")(P”)I;U(q4t)(i1j)
X

Pp(gr)(ps) =

IR

weE * 1<ig|z|wiza,

2 Pgn/P”

welR

Po(g.r)(ps) Optg.my (1= 1,1)

where P¥ is the probability assigned by the current
model to string w

PY = I (0, lw])

and P’ is the probability assigned by the current
model to the set of derivations involving some in-

stance of A,

p(a.r) = Z

0<i<i <]

EORICE)CPRICE)

The denominator of the estimates f,¢,.rypsr) and
Ppg.r)(ps) €Stimates the probability that a derivation
of a string w € E will involve at least one expansion
of the nonterminal occurrence Ap(,.»y. The numerator
of Py(q.r)(pst) estimates the probability that a deriva-
tion of a string w € E will involve rule A, — A 4,,
while the numerator of p,(s.ryps) estimates the prob-
ability that a derivation of a string w & E will rewrite
Ap to as. Thus Py(y.ry(psr) estimates the probability
that a rewrite of A,y in a string from £ will use
rule Ay — A A, and Pyg.r)(ps) estimates the proba-
bility that occurrence A, ) in a string from £ will
be rewritten to as;. Clearly, these are the best cur-
rent estimates for the binary and unary rule proba-
bilities. The process is then repeated with the reesti-
mated probabilities until the increase in the estimated
probability of the sample set given the model becomes
negligible. We presented the inside, outside and (esti-
mated) production probabilities only for the nonter-
minal occurrences of the form A,,.»); for occurrences
Ap(gry these can simply be found by adapting the
equations we have given for them.

The reestimation algorithm can be used both to
refine the current estimated probabilities of a stoch-
astic grammar and to infer a stochastic grammar from
scratch. The former application can be said to be
incremental. In the latter case, the initial weakly
restricted grammar for the inside-outside algorithm
consists of all possible CNF rules over the given sets
Vn of nonterminals and Vp of terminals, with suitable
nonzero probabilities assigned to the nonterminal oc-
currences.
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6 Conclusions

In this paper we have investigated consistency of
weakly restricted stochastic grammars and presented
an adapted version of the inside-outside algorithm.
Other issues concerning stochastic grammars and es-
pecially weakly restricted grammars that are being in-
vestigated at the moment are stochastic grammatical
inference and parsing using weakly restricted gram-
mars. By stochastic grammatical inference we mean
grammatical inference whereby the production prob-
abilities are computed simultancously. Consistency
of stochastic grammars and stochastic inference will
be treated in full in the master thesis of II.W.L. ter
Doest, which is to appear in 1994 [5].
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