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The revised graph unification algorithms presented 
here are more efficient because they reduce the 
amount of copying that was necessary because of the 
assumption that data-structure sharing in inputs oc- 
curs only when feature-structure sharing occurs. 

1 I N T R O D U C T I O N  

Constraint-based linguistic frameworks use logical 
systems called feature logics (Kasper & Rounds, 1986; 
Shieber, 1989; Srnolka, 1988), which describe linguis- 
tic objects by using logical formulas called feature de- 
scriptions that have as their models feature structures 
or typed feature structures. Shieber (1989) argued 
that if the canonical models of finite formulas of a fea- 
ture logic were themselves finite, we could use them to 
compute over instead of theorem-proving over the for- 
nmlas themselves. This would be advantageous if we 
had efficient algorithms for manipulating the canoni- 
cal models. 

The most important operation on models- feature 
structures or typed feature structures is combining 
the information two models contain. This opera- 
tion is traditionally called unification, although re- 
cently it has come to be more suitably called infor- 
mational union. This unification operation is signif- 
icant not only theoretically but also practically be- 
cause the efficiency of systems based on constraint- 
based formalisms depends on the (typed) feature 
structure unification and/or  feature description uni- 
fication algorithms they use. 1 This dependency is 
especially crucial for monostratal formalisms - tha t  
is, formalisms which use only (typed) feature struc- 
tures such as HPSG (Pollard & Sag, 1987) and JPSG 
(Gunji, 1987)? 

The efficiency of (typed) feature structure unifica- 
tion has been improved by developing algorithms that 
take as their inputs two directed graphs representing 
(typed) feature structures, copy all or part of them, 
and give a directed graph representing the unification 
result. These algorithms are thus called graph unifi- 
cation. Previous researeh has identified graph copying 
as a significant overhead and has at tempted to reduce 
this overhead by lazy copying and structure sharing. 

Unification algorithms developed so far, however, 
including those allowing structure sharing seem to 

1For example, the TASL1NK natural language system 
uses 80% of the processing time for feature structure uni- 
fication and other computations required by unification, 
i.e., feature structure pre-copying (Godden, 1990). 

2For example, a spoken-style .Japanese sentence analy- 
sis system based on HPSG (Kogure, 1989) uses 90%-98% 
of the processing time for feature structure unification. 

syn | 

Fig. 1: Matrix notation for a typed feature structure. 

contradict structure sharing because they assmne the 
two input graphs never share their parts with each 
other. This "structure sharing" assumption prevents 
the initial data structures fl'om sharing structures for 
representing linguistic principles and lexical informa- 
tion even though many lexical items share common 
information and such initial data structure sharing 
could significantly reduce the amount of data struc- 
tures required, thus making natural language systems 
much more efficient. Furthermore, even if the struc- 
ture sharing assumption holds initially, unification al- 
gorithms allowing structure sharing can yield situa- 
tions that violate the assumption. The ways in which 
such unification algorithms are used are therefore re- 
stricted and this restriction reduces their efficiency. 

This paper proposes a solution to this "structure 
sharing problem" and provides three algorithms. Sec- 
tion 2 briefly explains typed feature structures, Sec- 
tion 3 defines the structure sharing problem, and Sec- 
tion 4 presents key ideas used in solving this problem 
and provides three graph unification algorithms that 
increase the efficiency of feature structure unification 
in constraint-based natural language processing. 

2 T Y P E D  F E A T U R E  S T R U C T U R E S  

The concept of typed feature structures attgments the 
concept of feature structures. A typed feature struc- 
ture consists of a set of feature-value pairs in which 
each value is a typed feature structure. The set of type 
symbols is partially ordered by subsumption ordering 
_<7 and constitutes a lattice in which the greatest ele- 
ment T corresponds to 'no information' and the least 
element J_ corresponds to 'over-defined' or 'inconsis- 
tency.' For any two type symbols a, b in this lattice, 
their least npper bound and greatest lower bound are 
respectively denoted a VT b and a AT- It). 

Typed feature strnctures are represented in matrix 
notation as shown in Fig. 1, where syn,  agr,  sg, and 
3rd  are type symbols; agree,  h u m ,  per ,  and s u b j  are 
feature symbols; and X is a tag symbol. A feature- 
address that is, a finite (possibly empty) string of 
feature symbols is used to specify a feature value of 
an embedded structure. In Fig. 1, for example, the 
structure at the feature-address agree . u u m ,  where 
'. '  is the concatenation operator, is said to have sg 
as its type symbol. The root feature-address is de- 
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Fig. 2: Graph representation of a typed feature struc- 
l, ure. 

noted by '( . '  To specify token-identity in matrix no- 
tation, a tag symbol is used: feature-address values 
with the same tag symbol arc token-identical, and 
those featm'e-addresses with the token-identical value 
are said to corefer. /n Fig. 1, the feature-addresses 
agree and subj • agree corefer. 

A typed feature, structure is also represented by a 
rooted, connected, directed graph within which each 
node corresponds to a typed feature structure and is 
labeled with a type symbol (and, optionally, a tag 
symbol) and each arc corresponds to a feature.-value 
pair and is labeled with a ti'~ature symbol. Fig. 2 illus- 
trates the graph representation of the typed feature 
structure whose matrix notation is shown in Fig. 1. 
In a graph representation, the values at corefcrent 
Ihature-addresscs that is, token-identical values 
are represented by the same node. 

'['he set of typed featm:e structures is also partially 
ordered by a subsumption ordering that is an exten-- 
siou of the subsnmptiol, ordering on the set of type 
symbols. A typed feature structure tl  is less than or 
equal to tu (written as tl  <, in) if and only if t t  is 
iuconsistent (that is, if it includes the type symbol ]_) 
or (i) t~ 's type symbol al is less than or equal to t~'s 
type symbol a2 (a~ _<7 ap.); (ii) each h'.atur(~ f of 12 
exists in ll and has a value 12, f such that its counter= 
part t t j  is less than or equal to t2,j'; m'/] (iii) each 
coreference relation holding in 12 also holds in 11. 

'.l'his subsumpl, ion ordering serves its the basis for 
(Mining two lattice operations: generalization (the 
least upper bound or join) and unitlcation (the great- 
est lower bound or meet). 

Typed feature structures have been formalized in 
several ways, such as by using .I/%types (Mt-Kaci,  
198~). 

3 T H E  S T R U C T U R E  S H A R I N G  
P R O I 1 L E M  

3.1 G r a p h  U n i f i c a t i o n  A l g o r i t h m s  

The destructive unitlcation algorithnl presenled by 
Aitq(aci  is the starting point in increasing the ef- 
liciency of graph unification. It is a node-merging 
process that uses the Unio>Find algorithm, which 
wits originally devek)t)ed for testing tinite automata 
equivalence (llopcroft & Karp, 1971), in a manner 
w.'ry similar to that of the unification algorithm for 
rational terms (llnet, 197(i). (',iveu two root nodes of 
graphs representing (typed) feature structures, this 
algorithm simultaneously traverses a pair of input 
nodes with the same feature-address, putting them 

node structure 
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copy 

{a type symbol) 
(a set of arc structures} 
{an integer) 
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arc s t ruc ture  
label (~ feature symbol} 
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Fig. 3: I)ata structures for nondestructive unification 
an<l LING unification. 

into a new and larger coreference class, and then re- 
turns the lnerged graph, 

Since the destructive unification process modifies 
its input graphs, they must first be copied if their 
contents are to bc preserved. Nondeterminism in 
parsing, for example, requires the preservation of 
graph structures not only for initial graphs repre- 
senting lcxical entries and phrase structure rules but 
also for those representing well-formed intermediate 
structures. Although the overhead for this copying 
is significant, it is impossible to represent a resul.- 
taut unitied graph without creating any new strut 
tures. Unnecessary copying, though, must be identi- 
fied and minimized. Wroblewski (1987) delined two 
kinds of unnecessary copying-  over-copying (copying 
structures not needed to represent resultant graphs) 
and early-copying (copying structures even though 
unitication fails) -but this account is flawed because 
the resultant graph is assumed to consist only of newly 
created structures even if parts of the inputs that are 
not changed during mtitication could be shared with 
the resultant graph. A more eNcient unification al- 
gorithm would avoid this redundant copying (copying 
structures that can be shared by the input and re- 
sultant graphs) (Kogure, 1990). To distinguish struc- 
ture sharing at the implementation level fl'om that at 
the logical lew'l (that is, coreference relations between 
feature-addresses), the lbrmer is called data-structure 
sharing and the latter is called feature-structure shar- 
ing (Tomabechi, 1992). 

'['he key approaches to reducing the amount of 
structures copied are lazy copying and data-structure 
sharing. For lazy copying, Karttnnen (1986) proposed 
a reversible unification that saves the original con- 
tents of the. inputs into prealloeated areas immedi- 
ately before destructive modification, copies the resul- 
tant graph if necessary, and then restores the original 
contents by undoing all the changes made during mli- 
tication. Wroblewski (1987), on the other hand, pro- 
posed a uondestructiw~ unitication with incremental 
copying. Given two graphs, Wroblewski's algorithm 
simultaneously traverses each pair of input nodes with 
the same feature-address and creates a (:ommon copy 
of the input nodes. The nondestructive unification 
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algorithm for typed feature structures uses the data 
structures shown in Fig. 3. a The algorithm connects 
an input node and its copy node with a copy link 
that is, it sets the copy node as the input 's copy 
field value. The link is meaningflfl during only one 
unification process and thus enables nondestructive 
modification. 4 Using an idea similar to Karttunen's,  
Tomabechi (1991) proposed a quasi-destructive unifi- 
cation that uses node structures with fields for keep- 
ing update information that survives only during the 
unification process. 5 

Unification algorithms allowing data-structure 
sharing (DSS unification algorithms) are based on 
two approaches: the Boyer and Moore approach, 
which was originally developed for term unification 
in theorem-proving (Boyer & Moore, 1972) and was 
adopted by Pereira (1985); and the lazy copying 
suggested by Karttnnen ~nd Kay (1985). Recent 
lazy copying unification algorithms are based on 
Wroblewski's or Tomabeehi's schema: Godden (1990) 
proposed a unification algorithm that uses active 
data structures, Kogure (1990) proposed a lazy in- 
cremental copy graph (LING) unification that uses 
dependency-directed eol)yiug, and Emeie (1991) pro- 
posed a lazy-incremental copying (LIC) unification 
that uses chronological dereference. These algorithms 
are b0,sed on Wroblewski's algorithm, and Tomabechi 
(1992) has proposed a data-structure-sharing version 
of his quasi-destructive unification. 

3.2 The  Structure Sharing Problem 

The graph unification algorithms mentioned so fa r - -  
perhaps all those developed so far--assume that data- 
structure sharing between two input structures occurs 
only when feature-structure sharing occurs between 
feature-addresses they represent. This "structure 
sharing" assumption prevents data-structure sharing 
between initial data  structures for representing lin- 
guistic principles and lexical information even though 
many lexical items share common information. For 
example, many lexical items in a traditional syntactic 
categories such as noun, intransitive verb, transitive 
verb, and so on share most of their syntactic informa- 
tion and differ in their semantic aspects such as se- 
mantic sortal restriction. Such initial data-structure 
sharing could significantly reduce the amount of data 
structures required and could therefore reduce page- 
swapping and garbage-collection and make natural 
language processing systems much more efficient. 

Furthermore, even if the structure sharing assump- 
tion holds initially, applying a DSS unification algo- 
rithm in natural language processing such as parsing 
and generation can give rise to situations that vio- 
late the assumption. Consider, for example, JPSG- 

aFor the nondestructive unification algorithm, the node 
structure takes as its copy field value either NJ L or a node 
structure only. 

4In this algorithm each unification process has an in- 
teger as its process identifier and each node created in a 
process has the identifier as its generation field vMue. A 
copy link is meaningful only if its destination node has the 
current process identifier. Such a node is called ~current.' 

~The technique used to control the lifetime of update 
data is the same as that of Wroblewski's algorithm. 

based parsing. There are only a few phrase structure 
rules in this fl'amework and the Complement-Head 
Construction rule of the form 'M --+ C It' is applied 
very frequently. For instance, consider constructing a 
structure of the form [vP~ NP2 [vP, NP1 VII. When 
the rule is applied, the typed feature structure for 
the rule is unified with the structure resulting from 
embedding the typed feature structure for NPl at 
the feature-address for the complement daughter in 
the rule (e.g., dtrs .  cdtr), and the unification re- 
sult is then unified with the structure resulting from 
embedding the typed feature structure for V at the 
feature-address for the head daughter. Because not 
every substructure of the structure for the rule al- 
ways changed during such a unification process, there 
may be some substructures shared by the strneture 
for the rule and the structure for VP1. Thus, when 
constructing VP2 there may be unexpected and unde- 
sired data-structure sharing between the structures. 

Let me illustrate what happens in such eases by us- 
ing a simple example. Suppose that we use the non- 
destructive unification algorithm or one of its data- 
structure sharing versions, the LING or I,IC algo- 
rithm. The nondestructive and LING unification al- 
gorithms use the data structures shown in Fig. 3, 
and the LIC algorithm uses the same data struc- 
tures except that its ~zode structure has no forward 
field. Consider unification of the typed feature struc- 
tures tl and t2 shown in Fig. 4(a). Suppose that t ,  
and t2 are respectively represented by the directed 
graphs in Fig. 4(b) whose root nodes are labeled by 
tag symbols X0 and X4. That  is, t j ' s  substructure 
at feature-address f2 and t2'S substructure at ]'1 are 
represented by the same data structure while feature- 
structure sharing does not hold between them, and 
t l ' s  substructure at ]3 and t2's substructure at; f4 are 
represented by the same data structure while feature- 
structure sharing does not hold between them. Each 
of the algorithms simultaneously traverses a pair of 
input nodes with the same feature-address both of 
the inputs have Dora the root feature-address to leaf 
feature-addresses, makes a common copy of them 
to represent the unification result of that feature- 
address, and connects the input and ontput nodes 
with copy links. For any feature-address that only 
one of the inputs has, the nondestructive unification 
algorithm copies the subgraph whose root is the node 
for that feature-address and adds the copied subgraph 
to the output structure, whereas the LING and LIC 
algorithms make the node shared by the input and 
outpnt structures. In the case shown in Fig. 4(b) the 
root nodes of the inputs nodes with the tag symbols 
Xo and X4 are first treated by creating a common 
copy of them (i.e., the output node with Yo), con- 
necting the input and output nodes with copy links, 
and setting bo = ao A:r a4 as the copy's lsymbol wdue. 
Then the input nodes' arc structures are treated. Snt> 
pose that the pair off1 arcs is treated first. After the 
input nodes at feature-address fl are treated in the 
same manner as the root nodes, the pair of fie arcs 
is treated. In this case, t l ' s  node at f2 (labeled X2) 
already has a copy link because the node is also used 
as t2's node at ]'1 so that the destination node of the 
link is used as this featnre-address's output node. Af- 
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(c) Wrong graph unili(:ation outl)ut (ta) and the cot-- 
rect unifi(-ation of the inputs (t~ A t  Zp,,). 

l"ig. 4: An examph; of incorrect graph unitication. 

ter the common label arcs are treated,  unique label 
arcs are treated. The nondestructive, unitication a l g o -  
r i thm copies t l ' s  Ca and t~'s f4 arcs and adds them go 
the ou tpu t  root node, whercas the LING and t I C  a.1- 
gori thms make the input  and output  s t ructures  share 
their dest inat ion nodes, t:'inally, the I,ING and MC 
algorithms obtain gr~l)h t: n represented in matr ix  no- 
tation ill Fig. 4(('i)just over the correct result. 

The nondestruct ive unification algorithni obtains 
the same typed feature structure.  The reversible and 
the quasi-destructiw', unification algoril, hms are also 
,mable to obtain the correct result for this example 
becatlS(; these Mgorithms cmmot represent two up- 
date nodes by using a single node. Thus, none of tile 
ctiicient unification algorithms developed re, ce, ntly ob- 
tains the correct results R)r such a case. Avoiding such 
wrong unification results requires undesirable copy- 

ing. We can, for example, avoid get t ing the wrong 
result by interleaving tile application of any non-DSS 
unilication algori thm between N)plications o f  a I)SS 
unitication algorithm, but  such bypassing requires two 
unilication programs and reduces the efficiency gain 
o f  I)SS unification. This prechlsion of useful data- 
s t ructure  sharing is referred to here as the 'structur~ 
sharing" problem. 

It has been shown tha t  all t h e / ) S S  mfiticat.ion nlgo 
ri thins lncntioned above are subject  to tMs problem 
even if the s t ructure  sharing assumption holds ini- 
tially. Non-I)SS unification Mgorithms are also sub- 
ject to the problem because their inputs  are created 
1)y applying not only the unitication operat ion but 
also operations such as embedding and extraction, in 
most implelnentat ions of which data-s t ructure  shar.  
hag occurs t)etween their input and ou tpu t  structures.  
1!3ven non-l)SS unification algorithms must  there, fore 
take such inputs  into act(mat,  and this requires un- 
desirable copying. 

4 A S O L U T I O N  '1'O T H E  S T R U C T U R E  

S H A R I N G  P R O B L E M  

4 . 1  K e y  I d e a s  

The example ill Section 3 suggests tha t  the structlu'e 
sharing l)roblem has two sources, which concern not 
only the increnmntal  Col)ying al)proach but  also other 
al)proaches. The tirst source is the way of rec, ording 
ul)date inibrmation.  In the incremental  Col)ying at)- 
proach, this corresponds to the way of copying struc- 
tures. Tha t  is, while calculating t l A t t ,  2 the incr( :men 
tal copying process does not (lisl, inguish between the 
copies cremated tuq tim sul>strucl;ures of the left input 
l t and the copies created as tile subst ructures  of the 
right input  t2. As a result, a copy node oft1 's node at 
f~ature-address p can be used as a copy node of t~'s 
nod(', at a feature-address, and vice versa. In Fig. 4(10, 
fbr example, tile copy of t2's node al; f2 is wrongly 
used as the copy of t l ' s  node at fl. This causes 
unexpected and wrong data-s t ructure  sharing in the 
r(~sultant graph and this in turn catlses unexpect(~d 
and wrong feature-structure sharing in the resultant 
(typed) fc~t, ure s'[,rllcttlro. Ill other apl)roachcs , such 
as the quasi-destructiw~ apl/roach , the source of the 
s tructure sharing prol)lem is tha t  each node s t ructure  
has tMds for keeping information on only two typed 
feature s t ructures  one for the original and one R)r 
tilt: result wheretm fields for keeping information on 
three typed feature s tructures are needed one for t l> 
original and one for each of the two results, 

One way to solve this problem is therel'ore to nlake 
each node keep information on thre, c typed fe, ttturc 
structures: in the increnrental COl)ying apl)roach ca(;h 
nod(: must  have two c o p y  tields, and in the quasi- 
do, s t r u c t i v e  ; t [ ) t ) roach  e a c h  l l o d e  l) lUSt have two sets 
of llelds for updates. 

'Fhe second source of the s t ructure  sharing prob 
lem is the method of data-stru(:ture sharing between 
input and output  structures.  Unexpected and wrong 
data-s t ructure  sh~ring may result if a node shared by 
the leg and right inputs is used as part  of the left in- 
put, intended to be shared between the left input and 
output ,  at the same t ime it is used as part  of the right 
input,  intended to be shared between the right input 
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node structure 
tsymbol (a type symbol} 
arcs (a set of arc structures) 
generation {an integer) 
forward NIL [(a ,,ode structure) 
lcopy NIL [ (a node structure) 
rcopy NIL[ {a node structure) 

Fig. 5: The node s t ruc ture  lbr the revised nondestruc- 
tive unitication. 

and output .  In Fig. 4(b), for example, t l ' s  node at 
feature-address f~ is shared as t3's node at the same 
feature-address, and the same node as t2's node at f4 
is shared as ta 's  node at the same feature-address. 

This problem can be solved easily by keeping infor- 
mation on data-s t ructure  sharing status;  tha t  is, by 
adding to the node s t ructure  a new field for this pur- 
pose and using it thus: when a unification algori thm 
makes a node shared (for example, between the left 
inpnt  and output) ,  it records this information on the 
node; later when t i l t  a lgori thm a t tempts  to make the 
node shared, it does this only if this data-s t ructure  
sharing is between the left input and output .  

4.2 A lgor i thms  
This section first describes a non-DSS unification al- 
gor i thm tha t  discards the s t ructure  sharing assump- 
tion and thus permits  initial data-s t ructure  sharing, 
and then it describes two DSS unification algorithms. 

Revised  N o n d e s t r u c t i v e  Unifi(:ation 
This Mgorithm uses, instead of the node s t ructure  
shown in Fig. 3, the node structure in Fig. 5. Tha t  is, 
the algorithm uses two kinds of copy links: Icopy for 
the left input and rcopy for the right input.  

Ti l t  revised nondestruct ive unification procedure 
for typed feature s tructures is shown in Figs. 6 and 7. 
Given two root nodes of directed graphs, the top-level 
procedure Unify assigns a new unification process 
identifier, generation,  and invokes Unify_Aux. This 
procedure first dereferences both  input  nodes. This 
dereference process differs from the original one in 
tha t  it follows up for tvard and lcopy links for the left 
input node and f o rward  and rcopy links for the right 
input node. This revised dereference process elimi- 
nates the first source of the s t ructure-sharing prob- 
lena. Then Unify_A*tx calculates the meet of the type 
symbol. If the meet is ±, which means inconsistency, 
it finishes by returning _L Otherwise Unify_Auz  ob- 
tains t i l t  ou tput  node and sets the meet as its t symbol  
value. The output  node is created only when neither 
input nod t  is current;  otherwise the output  node is a 
current input  node. Then  Un*fy_Aux t reats  arcs. This 
procedure assmnes the existence of two procedures: 
Share&Arc_Pair,s  and Complement_Arcs .  The former 
gives two lists of arcs each of which contains ares 
whose labels exist in bo th  input  nodes with the same 
are label order; the lat ter  gives one list of arcs whose 
labels are unique to the first input node. For each arc 
pair obtained by Shared_A re_Pairs, Unify_A ux applies 
itself recursively to the value pair. And for each arc 
obtained by Complement_Ares ,  it copies its value. 

Let us compare the newly introduced cost and the 

P R O C E D U R E  Unify(nodcl,  node2) 
generation *-- generation + 1 ; 
return( Un@_A ux( node l , node2)) 

E N D P R O C E D U R E  

P R O C E D U R E  I/n(fy_Aux(nodel,  node2) 
node1 +-- Dereference_L(nodel); 
node2 +-- Dereference_R( node2 ) ; 
IF node1 = node2 A N D  Currcnt_p(nodel) T H E N  

return(node l) 
E N D I F  
newtsymbol ~- nodel. tsymbol A7 node2.tsymbol; 
IF newtsymbol = ± T H E N  

return(±) 
ENDIF;  
newnode ~-- Get_Out_Node(node1, node2, newtaymbol); 
( sares l , , , ' c s2}  ~ ,~'hared_A rc_Pai,'s( node l , node2); 
caresl ~ Complement_Arcs(nodel,  node2); 
cares2 *- Complement_Arcs(node2, node1); 
F O R  (sarel ,sarc2)  IN (sares l , sarcs2}  DO 

newvaluc ~- Unifg_Aux(sarcl,  value, sarc2,value); 
IF n c w v a l u e -  k T H E N  

return(±) 
ELSE 

new~)al~te 
*-- Add_Arc(newnode, sarcl.label, newvalue); 

IF newvalue = ± T H E N  
return(A_) 

E N D I F  
E N D I F  

E N D F O R ;  
IF newnode # node l T H E N  

F O R  care IN carcst DO 
newvalue *- Copy_Node_L( carc.vah~e ); 
newnode 

~- Add_Arc( ncwnodc, care.label, newvaluc) 
E N D F O R  

ELSE IF ncwnode ¢ node2 T H E N  
F O R  carc IN carcs2 DO 

newvahte +-- Copy_Nodc_l~(care.value); 
newnode 

Add_Arc( newnode, care.label, newvalue) 
E N D F O R  

ENDIF;  
rcturn(ncwnodc) 

E N D P R O C E D U R E  

P R O C E D U R E  Dereference_L( node) 
IF Node_p(node.forward) T H E N  

return(1)ereference_L( node.forward) ) 
ELSE IF Curret_Nade_p(node.lcopv ) "/['HEN 

return( Dereferenec_L( node.lcopy) ) 
ELSE 

return(node) 
E N D I F  

E N D P R O C E D U R E  

Fig. 6: The revised nondestruct ive unification proce- 
dure (1). 

effect of this revision. This revised version differs from 
the original in thai, it uses two dereference procedures 
tha t  are tile same as tim original dereference proce- 
dure except tha t  they use different fields. Thus, on 
the one hand,  the overhead introduced to this revi- 
sion is only the use of one additional field of the node 
structure.  On the other hand,  al though this revised 
version does not introduce new data-s t ructure  shar- 
ing, it can safely' t reat  data-s t ructure  sharing in ini- 
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P R O C E D U R E  (;ct_Out_Node( node l , node& tsymbol) 
IF  Current_p(nodel) A N D  Current_p(node2) T H E N  

nodc2.forward +-- nodel; 
nodel.tsyrnbol ~- tsymbol; 
return( nodc [ ) 

E L S E  IF Current_p(nodel)  T H E N  
node2.rcopy ~ nodeI ; 
node l, tsymbol ~- tsymbol; 
return( node l ) 

E L S E  IF Current_p(node2) T H E N  
nodel.h:opy ~- nodc2; 
node2.tsymbol ~-- tsymbol; 
return(node2) 

E L S E  
newnode ~- Creutc_NodeO; 
nodel. lcopy ~- newnode; 
nodel.rcopy ~ newnnde; 
newnode.tsymbol ~- tsgmbol; 
return( newnode ) 

E N D I F  
E N D P R O C E D U R . E  

Fig. 7: The  revised nondestruct iw' ,  unification proce- 
dure (2), 

tial da t a  s t ruc tures .  This  can significantly reduce the 
amount  of initial d a t a  s t ruc tu res  required for linguis- 
tic descript ions,  especiMly for lexical descr ipt ions,  and 
thus reduce garbage-col lect ion and page-sw~q)ping. 

R e v i s e d  L I N G  U n i f i c a t i o n  
L[N(I uniliet~tion is based on nondes t ruc t ive  unifica- 
tion and uses copy-dependency  informat ion  to imple- 
men t  da t a - s t ruc tu r e  shar ing.  For a unique label arc, 
ins tead of  its vMue being copied, the  value itself is 
used as the ou tpu t  vMuc and copy-dependency  rela- 
t ions are recorded to provide R)r later modif icat ion 
of shared  s t ructures .  This  a lgor i thm uses a revised 
Copy~Node procedure  tha t  takes as its input  two node 
s t ruc tu res  ( n o d e l  and node2) and one arc s t ruc ture ,  
arc 1 where node.l is the  node  to be COl)ied. The  s t ruc-  
ture arel  is an arc to node J, and node t is an an- 
cestor node of node.l - t ha t  is, the  node fi'om which 
arel  depar t s  and the revised p rocedure  is as fol- 
lows: (i) if n o d e l '  (the dereference result  of node.t) 
is current ,  then  Copy_Node re tu rns  n o d e l '  to indi- 
cate tha t  l, he ances tor  node2 mus t  be copied imme-. 
diately; otherwise,  (ii) Copy_Arcs  is appl ied to node l '  
and if it re turns  several  arc copies, Copy_Node cre- 
ates a new copy node and then  adds  to the new 
node the  arc copies and arcs of node[ '  tha t  are not  
copied, and re turns  the ne.w node to indicate  the an- 
eestor node having  to be coiffed immedia te ly ;  o ther-  
wise, (iii) Copy_Node registors the  copy-dependency  
between the n o d e l '  and the  ances tor  node  node2 
tha t  is, it adds  the  pair consis t ing of the  ancestor  node 
node2 a.nd the arc arc I into the  copy field of node 1 '- 
and re turns  Nil ,  to indicate  t ha t  the  ancestor  mus t  
not  be copied immedia te lyf i  W h e n  a new copy of a 
node is needed later,  this a lgor i thm will copy struc- 

eIn tile ],IN(-; unlfica.iton Mgorithm, ~t node structure's 
copy field is used to keep either copy iuform~ttion or copy- 
dependency inform~ttion. When tile', field keeps copy- 
dependency inform;ttion, its v~hle is a copydep structure 
consisting of an integer generation field- and a set of 

P R O C E D U R E  Copy_Node_L(node, arc, ancestor) 
node ~- Derference_L( node); 
IF  Current_p(node) T H E N  

return( node); 
E L S E  IF node.reuse: - "  rused T H E N  

return( Simple_ Copy_Node_L( nodc ) ) 
E N D I F  
newarcs ~- Copy_A rcs_L( node); 
IF newarcs 5£ 0 T H E N  

newnodc ~- Create_No&O; 
uewnode.tsymbol ~ node.tsymbol; 
node.lcopy ~-- newnode; 
FOIl.  arc IN nodc.arcs D O  

newarc *-- Find_Are( arc.labcl, newarcs); 
IF Arc_p(newarc) T H E N  

newvalne 
~- A dd_A rc( newnodc, arc.label, n eware, vahte ) 

E L S E  
newv(thte 

~- A dd_Arc( ncwnode, arc.lab(l, are.value) 
E N D I F  

E N D F O R ;  
return( newnode) 

E L S E  IF Copydep_p(node.leopy) A N D  
node.lcopy.generation = generation T H E N  

n ode. Icopy. deps 
~- nod~2eopv.deps u {((,neestor, . r 4 } ;  

node , re t t sc  ~-- ltlsed; 
return(NIL) 

E L S E  
copydcp ~ Create_CopydePO; 
copydcp.gcneration ~ gcneration; 
,'.opydep.d,,ps ,-- ((rLncesto,', are)}; 
node.leopy ,-. eopydep; 
node. reuse ~- lused; 
return(NIL) 

E N D I F  
E N D P R O C E D U I 1 , E  

P R O C E D U R E  Copy_Ares_L(node) 
newarcs ~- 0; 
F O R  arc IN node.arcs DO 

newnode ~- Copg_Nodc( arc. v(due, are, node); 
IF  Nodc_p(newnode) T H E N  

newarc ~ Create_Are(arc.label, newnode ); 
newarcs +-- newarcs U {newarc} 

E N D I F  
E N D F O R ;  

E N D P R O C E D U R , E  

Fig. 8: The  new revised Copy_Node procedure.  

tures  by using the  copy-depe , ldency informat ion  in its 
copy field (in the  revised Get_Out_Node procedure  for 
the  13NG unification).  It subs t i tu t e s  arcs with newly 
copied nodes for exist ing arcs. Thus  the an teceden t  
nodes are also copied. 

T h e  revised L[NCI unificat ion is based on the re- 
vised nondes t ruc t ive  unificat ion and uses a node struc- 
ture consis t ing of the  fields in the node s t ruc tu re  
shown in Fig. 5 and a new field reuse [br indicat  

node and arc pMrs -deps field (see Fig. 3). The technique 
used to control tile lifetime of copy-dependency informa- 
tion is tile same as tha.t of copy information. That  is, the 
deps field value is meaningN1 only when the generation 
vadne is equM to the unification process identifier. 
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ing data-structure sharing status. When the top-level 
unification procedure is invoked, it sets two new sym- 
bols to the two variables lused and fused. That  a node 
structure has as its reuse field value the lused value 
means that it is used as part of the left input, and that 
it has as its reuse value the rused value means that it 
is used as part of the right input,. The revised LING 
unification uses two new revised Copy_Node proce- 
dures, Copy_Node_L (shown in Fig. 8) and the analo- 
gons preocedure Copy_Node_It These procedures are 
respectively used to treat the left and right inputs 
and they differ from the corresponding original pro- 
cedure in two places. First, instead of step (i) above, 
if ~odel '  (the dereference result of n o & l )  is current, 
Cop?l_Node_l, (or Copy_Node_R) returns 7~ode l '  to in- 
dicate that tire ancestor, node2, must be copied im- 
mediately. But if node1' has as its reuse field value 
the fused (or lused) value, it creates a copy of the 
whole subgraph whose root is n o d e l ' a n d  returns the 
eopied structure also to indica~,c that the ancestor 
node must be copied immediately. Second, in step 
(iii), they register data-structure sharing status that 
is, they set the lused (or fused) value to the reuse field 
of node l" as well as register copy-dependency infor- 
mation. This revised LING unification ensures safety 
in data-structure sharing. 

Again let us compare the newly introduced conr- 
putational costs and the effect of l, his revision. The 
newly introduced costs are the additional cost of the 
revised dereference procedures (which is the same as 
in the previous one) and the cost of checking reuse 
status. The former cost is small, as shown in the dis- 
cussion of the previous algorithm, ~nd the latter cost 
is also small. These costs are thus not significant rel- 
ative to the efficiency gain obtained by this revision. 

R e v i s e d  Q u a s i - D e s t r u c t i v e  U n i f i c a t i o n  
The strncture-sharillg version of quasi-destructive 
unification keeps update information in the field 
meaningful only during l, he unification. After a suc- 
eessful unification is obtained, this algorithm copies 
the unification result and attempts data-structure 
sharing. This algorithm can be revised to ensure 
safety in dal, a-structurc sharing hy using a node struc- 
ture including two sets of fields for update information 
and one reuse field and by checking node reuse status 
while eopying. 

5 C O N C L U S I O N  

The graph unification algorithms described ira this pa- 
per increase the efIiciency of feature structure unifica- 
tion by discarding tile assumption that data-structure 
sharing between two input structures nccurs only 
when the t~ature-structure sharing occurs lyetween the 
feature-addresses they represent. All graph unifica- 
tion algorithms proposed so far make this assumption 
and are therefore required to copy all or part of their 
input strucl, ures when there is a possibility of violat- 
ing it. '['his copying reduces their etIiciency. This 
pape.r analyzed this problem and points out key ideas 
for solving it. Revised procedures tbr nondestructive 
unification, LING unification, and quasi-destructive 
unification have been developed. These algorithms 
make the use of feature structures in constraint-based 
natural language processing mnch more elficient. The 

key ideas in this paper can also be used to make the 
incremental graph generalization algorithm (Kogure, 
1993) more efficient, 
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