STRUCTURE SHARING PROBLEM AND ITS SOLUTION
IN GRAPH UNIFICATION

Kiyoshi KOGURE

NTT Basic Research Laboratories
3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa, 243-01 Japan
kogureQatom.ntt.jp

ABSTRACT

The revised graph unification algorithms presented
here are more efficient because they reduce the
amount of copying that was necessary because of the
assumption that data-structure sharing in inputs oc-
curs only when feature-structure sharing occurs.

1 INTRODUCTION

Constraint-based linguistic frameworks use logical
systems called feature logics (Kasper & Rounds, 1986,
Shieber, 1989; Smclka, 1988), which describe linguis-
tic objects by using logical formulas called feature de-
scriptions that have as their models feature structures
or typed featurc structures. Shieber (1989) argued
that if the canonical models of finite formulas of a fea-
ture logic were themselves finite, we could use them to
compute over instead of theorem-proving over the for-
mulas themselves. This would be advantageous if we
had efficient algorithms for manipulating the canoni-
cal models.

The most important operation on models—feature
structures or typed feature structures—is combining
the information two models contain. This opera-
tion is traditionally called unification, although re-
cently it has come to be more suitably called infor-
mational union. This unification operation is signif-
icant not only theoretically but also practically be-
cause the cfficiency of systems based on constraint-
based formalisms depends on the (typed) feature
structure unification and/or feature description uni-
fication algorithms they use.! This dependency is
especially crucial for monostratal formalisms—that
is, formalisms which use only (typed) feature struc-
tures such as HPSG (Pollard & Sag, 1987) and JPSG
(Gunji, 1987).2

The efficiency of (typed) feature structure unifica-
tion has been improved by developing algorithms that
take as their inputs two directed graphs representing
(typed) feature structures, copy all or part of them,
and give a directed graph representing the unification
result. These algorithms are thus called graph unifi-
cation. Previous research has identified graph copying
as a significant overhead and has attempted to reduce
this overhead by lazy copying and structure sharing.

Unification algorithms developed so far, however,
including those allowing structure sharing scem to

'For example, the TASLINK natural language system
uses 80% of the processing time for feature structure uni-
fication and other computations required by unification,
i.e., feature structure pre-copying (Godden, 1990).

?For example, a spoken-stylc Japanese scntence analy-
sis system based on HPSG (Kogure, 1989) uscs 90%-98%
of the processing time for feature structure unification.

886

per: 3rd

num: 8g
syn

agree: X :1g1‘[
subj : syn[agrcc: X]

Fig. 1: Matrix notation for a typed feature structure.

contradict structure sharing because they assume the
two input graphs never share their parts with each
other. This “structure sharing” assumption prevents
the initial data structures from sharing structures for
representing linguistic principles and lexical informa-
tion even though many lexical items share common
information and such initial data structure sharing
could significantly reduce the amount of data struc-
tures required, thus making natural language systems
much more eflicient. Furthermore, even if the strue-
ture sharing assumption holds initially, unification al-
gorithms allowing structure sharing can yield situa-
tions that violate the assumption. The ways in which
such unification algorithms are used are therefore re-
stricted and this restriction reduces their efficiency.

This paper proposes a solution to this “structure
sharing problem” and provides three algorithms. Sec-
tion 2 briefly explains typed feature structures, Sec-
tion 3 defines the structure sharing problem, and Sec-
tion 4 presents key ideas used in solving this problem
and provides three graph unification algorithms that
increase the efliciency of feature structure unification
in constraint-based natural language processing.

2 TYPED FEATURE STRUCTURES

The concept of typed feature structures augments the
concept of feature structures, A typed feature struc-
ture consists of a set of feature-value pairs in which
each value is a typed featurc structure. The set of type
symbols is partially ordered by subsumption ordering
<7 and constitutes a lattice in which the greatest ele-
ment T corresponds to ‘no information’ and the least
element L corresponds to ‘over-defined’ or ‘inconsis-
tency.” For any two type symbols a, b in this lattice,
their least upper bound and greatest lower bound are
respectively denoted a Vg b and a AT b.

Typed feature structures are represented in matrix
notation as shown in I'ig. 1, where syn, agr, sg, and
3rd arc type symbols; egree, num, per, and subj are
feature symbols; and X is a tag symbol. A feature-
address—that is, a finite (possibly empty) string of
feature symbols—is used to specify a feature value of
an embedded structure. In Fig. 1, for example, the
structure at the feature-address agree - num, where
.’ is the concatenation operator, is said to have sg
as its type symbol. The root feature-address is de-

agree | /\syn
|
1 wgree

agr N
711:77" \Q
sg

3rd
I'ig. 2: Graph representation of a typed feature struc-
ture.

noted by ‘c.” To specify token-identity in ratrix no-
tation, a tag symbol is used: feature-address values
with the same tag symbol are token-identical, and
those feature-addresses with the token-identical value
are said to corefer. In ¥ig. 1, the feature-addresses
agree and subj - agree corcfer.

A typed feature structure is also represented by a
rooted, connected, directed graph within which each
node corresponds to a typed feature structure and is
labeled with a type symbol (and, optionally, a tag
symbol) and cach arc corresponds to a featurc-value
pair and is labeled with a feature symbol. Fig. 2 illus-
trates the graph representation of the typed feature
structure whose matrix uotation is shown in Fig. 1.
In a graph representation, the values at coreferent
featurc-addresses— that 1s, token-identical values -
are represented by the same node.

"The set of typed feature structures is also partially
ordered by a subsumption ordering that is an exten-
sion of the subsumption ordering on the set of type
symbols. A typed feature structure #; is less than or
equal to ty (written as ¢y <, 45) il and only if ¢, is
inconsistent (that is, if it includes the type symbol L)
or (1) ty’s type symbol a; is less than or equal to ¢y7s
type symbol ay (ay <7 ay); (i) each feature f of 14
exists in £y and has a value ¢5 ¢ such that its counter-
part £y,7 is less than or equal Lo &y 75 and (iii) ecach
coreference relation holding in ¢4 also holds in ;.

"This subsummption ordering serves as the basis for
defining two lattice operations: generalization (the
least upper bound or join) and unification (the great-
est lower bound or meet).

Typed leature structures have been formalized in
soveral ways, such as by using w-types (Ait-Kaci,

1986).

3 THE STRUCTURE SHARING
PROBLEM

3.1 Graph Unification Algorithims

The destructive unification algorithm presented by
Ait-Kaci i1s the starting point in increasing the ef-
ficiency of graph unification. Tt is a node-merging
process that uses the Union-Find algorithm, which
was originally developed for testing finite automata
equivalence (Itoperoft & Karp, 1971), in a manner
very similar to that of the unification algorithm for
rational terms (Huet, 1976). Given two root nodes of
graphs representing (typed) feature structures, this
algorithm simultaneounsly traverses a pair of input
nodes with the same featurc-address, putting them

node structure
tsymbol {a type symbol}
arcs {a set of arc structures)
generation {an integ(:r)
forward NIL| {a node structure)
copy NIL | {a node structure) T

| (a copydep structure)

arc structure
label {a feature symbol)
value {a node structurc)

copydep structure

generation {an integer)
deps {(a sct of node and arc pairs)

I"ig. 3: Data structures for nondestructive unification
and LING unification.

into a new and larger coreference class, and then re-
turns the merged graph.

Since the destructive unification process modifies
ils input graphs, they must first be copied if their
contents are to be preserved. Nondelerminism in
parsing, for example, requires the preservation of
graph structurcs not only for initial graphs repre-
senting lexical entries and phrase structure rules but
also for those representing well-formed intermediate
structures. Although the overhead for this copying
is significant, it is impossible to represent a resul-
tant unified graph without creating any new struc-
tures. Unnecessary copying, though, must be identi-
fied and minimized. Wroblewski (1987) defined two
kinds of unnecessary copying - over-copying (copying
structures not necded to represent resultant graphs)
and ecarly-copying (copying structures even though
unification fails)- -but this account is flawed because
the resultant graph is assumed to consist only of newly
created structures cven if parts of the inputs that are
not, changed during unification could be shared with
the resultant graph. A more cflicient unification al-
gorithm would avoid this redundant copying (copying
structures that can be shared by the input and re-
sultant graphs) (Kogure, 1890). To distinguish struc-
ture sharing at the implementation level from that at
the logical level (that is, coreference relations between
feature-addresses), the former is called data-structure
sharing and the latter is called feature-structure shar-
ing (‘lomabechi, 1992).

The key approaches to redncing the amount of
structures copied are lazy copying and data-structure
sharing. Yor lazy copying, Karttunen (1986) proposed
a reversible unification that saves the original con-
tents of the inputs into preallocated areas immedi-
ately before destructive modification, copies the resul-
tant graph if necessary, and then restores the original
contents by undoing all the changes made during uni-
fication. Wroblewski (1987), on the other hand, pro-
posed a nondestructive unification with incremental
copying. Given two graphs, Wroblewski’s algorithm
simultancously traverses each pair of input nodes with
the same feature-address and creates a common copy
of the input nodes. ‘T'he nondestructive unification

887

888

algorithm for typed feature structures uses the data
structures shown in Fig. 3. The algorithm connects
an input node and its copy node with a copy link—
that is, it sets the copy node as the input’s copy
field value. The link is meaningful during only one
unification process and thus enables nondestructive
modification.? Using an idea similar to Karttunen’s,
Tomabechi (1991) proposed a quasi-destructive unifi-
cation that uses node structures with fields for keep-
ing update information that survives only during the
unification process.®

Unification algorithms allowing data-structure
sharing (DSS unification algorithms) are based on
two approaches: the Boyer and Moore approach,
which was originally developed for term unification
in theorem-proving (Boyer & Moore, 1972) and was
adopted by Pereira (1985); and the lazy copying
suggested by Karttunen and Kay (1985). Recent
lazy copying unification algorithms are based on
Wroblewski’s or Tomabechi’s schema: Godden (1990)
proposed a unification algorithm that uses active
data structures, Kogure (1990) proposed a lazy in-
cremental copy graph (LING) unification that uses
dependency-directed copying, and Emele (1991) pro-
posed a lazy-incremental copying (LIC) unification
that uses chronological dereference. These algorithms
are based on Wroblewski’s algorithm, and Tomabechi
(1992) has proposed a data-structure-sharing version
of his quasi-destructive unification.

3.2 The Structure Sharing Problem

The graph unification algorithms mentioned so far—-
perhaps all those developed so far—assume that data-
structure sharing between two input structures occurs
only when feature-structure sharing occurs between
feature-addresses they represent. This “structure
sharing” assumption prevents data-structure sharing
between initial data structures for representing lin-
guistic principles and lexical information even though
many lexical items share common information. For
example, many lexical items in a traditional syntactic
categories such as noun, intransitive verb, transitive
verb, and so on share most of their syntactic informa-
tion and differ in their semantic aspects such as se-
mantic sortal restriction. Such initial data-structure
sharing could significantly reduce the amount of data
structures required and could therefore reduce page-
swapping and garbage-collection and make natural
language processing systems much more cfficient.
Furthermore, even if the structure sharing assump-
tion holds initially, applying a DSS unification algo-
rithm in natural language processing such as parsing
and generation can give rise to situations that vio-
late the assumption. Consider, for example, JPSG-

®For the nondestructive unification algorithm, the node
structure takes as its copy field value either N1 L or a node
structure only.

Tn this algorithm each unification process has an in-
teger as its process identifier and each node created in a
process has the identifier as its generation field value. A
copy link is meaningful only if its destination node has the
current process identifier. Such a node is called ‘current.’

*The technique used to control the lifetime of update
data is the same as that of Wroblewski’s algorithm.

based parsing. Therc are only a few phrasc structure
rules in this framework and the Complement-Head
Construction rule of the form ‘M — C H’ is applied
very frequently. For instance, consider constructing a
structure of the form [vp, NPy [vp, NP1 V]]. When
the rule is applied, the typed feature structure for
the rule i1s unified with the structure resulting from
embedding the typed feature structure for NPy at
the feature-address for the complement daughter in
the rule (e.g., dirs - cdir), and the unification re-
sult is then unified with the structure resulting from
embedding the typed feature structurc for V at the
feature-address for the head daughter. Because not
every substructure of the structure for the rule al-
ways changed during such a unification process, there
may be some substructures shared by the structure
for the rule and the structure for VP;. Thus, when
constructing VP, there may be unexpected and unde-
sired data-structure sharing between the structures.

Let me illustrate what happens in such cases by us-
ing a simple example. Suppose that we use the non-
destructive unification algorithm or one of its data-
structure sharing versions, the LING or LIC algo-
rithm. The nondestructive and LING unification al-
gorithms use the data structures shown in Fig. 3,
and the LIC algorithm uses the same data struc-
tures except that its node structure has no forward
field. Consider unification of the typed feature struc-
tures ¢, and ¢; shown in Fig. 4(a}). Suppose that t;
and ?, are respectively represented by the directed
graphs in Fig. 4(b) whose root nodes are labeled by
tag symbols Xy and X4. That is,) s substructure
at feature-address fo and ¢»’s substructure at f; are
represented by the same data structure while featurc-
structure sharing does not hold between them, and
t1’s substructure at f3 and ¢5’s substructure at f; are
represented by the same data structure while feature-
structure sharing does not hold between them. Fach
of the algorithms simultaneously traverses a pair of
input nodes with the same feature-address both of
the inputs have from the root featurc-address to leaf
feature-addresses, makes a common copy of them
to represent the unification result of that feature-
address, and connects the input and output nodes
with copy links. For any feature-address that only
one of the inputs has, the nondestructive unification
algorithm copies the subgraph whose root is the node
for that feature-address and adds the copied subgraph
to the output structure, whereas the LING and LIC
algorithms make the node shared by the input and
output structures. In the case shown in Tig. 4(b) the
root nodes of the inputs-—nodes with the tag symbols
Xo and X4—are first treated by creating a common
copy of them (i.c., the output node with Yy), con-
necting the input and output nodes with copy links,
and setting by = ag Ar as as the copy’s tsymbol value.
Then the input nodes’ arc structures are treated. Sup-
pose that the pair of f; arcs is treated first. After the
input nodes at feature-address f; are treated in the
same manner as the root nodes, the pair of fy arcs
is treated. In this case, {;’s node at fy (labeled X,)
already has a copy link because the node is also used
as t3’s node at fi so that the destination node of the
link is used as this feature-address’s output node. Af-

f11 ai

ty @ ag|far ax |,
fs: as
fir az

ta : ag|fer ap
fi: as

(a) Input typed feature structures.

Iuput #

Input ¢3
Xq:ag
TN
. f1 f4,// . \\fz
sty < : \\
- .{ 2ty \ Xg:ap
! \ \‘\\‘\\ ; :

\
| (Output 25 ¢ \\

/ \
~ .- Yoby

\\ :‘ “
J N B e
) \\‘ : Y

24

\?pbl_ ~ copy link

(b) Snapshot of incremental graph unification allow-
ing data-stricture sharing.

f11 Yll‘n
f2: Y1
ts ¢ 1} ,
3 % fa: Xs:'cla
fir Xa
f1: l)}
: bg
b Acte bl
1 Nt ta Jo fs: na
f4i N3
where
by =2 a9 Aq oayg,
b1 = a; Ay ag Ay oag,
ba = a; Ay as,
})3 = as A7 ag.

(c) Wrong graph unification output (t3) and the cor-
rect unification of the inputs (4 A, ty).

Pig. 4: An example of incorrect graph unification.

ter the common label arcs are treated, unique label
arcs are treated. 'The nondestructive unification algo-
rithm copies £1’s f3 and t3’s fy arcs and adds them to
the output root node, whereas the LING and LIC al-
gorithms make the input and output structures share
their destination nodes. Finally, the LING and LIC
algorithms obtain graph ¢y, represented in maérix no-
tation in 1'ig. 4(¢) just over the correct result.

The nondestructive unification algorithin obtains
the same typed feature structure. The reversible and
the gnasi-destructive unification algorithms are also
unable to obtain the correct result for this example
because these algorithms cannot represent two up-
date nodes by using a single node. Thus, noune of the
cfficient unification algorithms developed recently ob-
tains the correct results for such a case. Avolding such
wrong unification results requires undesirable copy-

ing. We can, for example, avoid getting the wrong
result by interleaving the application of any non-DSS
unification algorithm between applications of a DSS
unification algorithm, but such bypassing requires two
unification programs and reduces the efliciency gain
of DSS unification. 'This preclusion of useful data-
structure sharing is referred to here as the “structure
sharing” problem.

It has been shown that all the DSS untification algo-
rithms mentioned above are subject to this problem
even 1f the structure sharing assumption holds ni-
tially. Non-DSS unification algorithms are also sub-
Jject to the problem because their inputs are created
by applying not only the umification operation but
also operations such as embedding and extraction, in
most implementations of which data-structure shar-
ing oceurs between their input and output structures.
Iiven non-DSS wnification algorithms must therefore
take such inputs into account, and this requires un-
desirable copying,.

4 A SOLUTION TO THE STRUCTURE
SHARING PROBLEM

4.1 Key Ideas

The exaniple in Section 3 suggests that the structure
sharing problem has two sonrces, which concern not
only the incremental copying approach but also other
approaches. The first source is the way of recording
update information. In the incremental copying ap-
proach, this corresponds to the way of copying strue-
tures. ‘'hat is, while calculating &y A, ¢y the incremen-
tal copying process does not distinguish between the
copies created as the substructures of the left input
£, and the copies created as the substructures of the
right input £5. As a result, a copy node of ¢1’s node at
feature-address p can be used as a copy node of ty’s
node at a feature-address, and vice versa. In Fig. 4(h),
for example, the copy of ¢2’s node at f; is wrongly
used as the copy of ¢’s node at fi. 'This causes
unexpected and wrong data-structure sharing in the
resultant graph and this in turn canses unexpected
and wrong feature-structure sharing in the resultant
(typed) feature structure. In other approaches, such
as the quasi-destructive approach, the source of the
structure sharing problem is that cach node structure
has fields for keeping information on only two typed
feature structures —one for the original and one for
the result-—whercas fields for keeping information on
three typed feature structures are needed- -one for the
original and one for cach of the two results.

Oue way to solve this problem is therefore to make
cach node keep mformation on three typed feature
structures: in the incremental copying approach cach
node must have two copy fields, and in the quasi
destructive approach cach node must have two sets
of ficlds for updates.

The second source of the structure sharing prob-
lem is the method of data-structure sharing between
input, and output structures. Unexpected and wrong
data-structure sharing may result if a node shared by
the left and right inputs is used as part of the left in-
put, intended 1o be shared between the left input and
output, at the same time it is used as part of the right
input, intended to be shared between the right input

889

890

node structure
tsymbol {a type symbol)
arcs (a set of arc structures)
generation {an integer)
forward NIL| {a node structure)
lcopy NIL| {a node structure)
rcopy NIL | {a node structure)

I'ig. 5: The node structure for the revised nondestruc-
tive unification.

and output. In Fig. 4(b), for example, t,’s node at
feature-address f3 is shared as ¢3’s node at the same
feature-address, and the same node as t3’s node at fy
1s shared as t3’s node at the same feature-address.

'This problem can be solved easily by keeping infor-
mation on data-structure sharing status; that is, by
adding to the node structure a new field for this pur-
posc and using it thus: when a unification algorithm
makes a node shared (for example, between the left
input and output), it records this information on the
node; later when the algorithm attempts to make the
node shared, it does this only if this data-structure
sharing is between the left input and output.

4.2 Algorithms

This scction first describes a non-DSS unification al-
gorithm that discards the structure sharing assump-
tion and thus permits initial data-structure sharing,
and then it describes two DSS unification algorithms.
Revised Nondestructive Unification

This algorithm uses, instcad of the node structurc
shown in Fig. 3, the node structure in Fig. 5. That 1s,
the algorithm uses two kinds of copy links: lcopy for
the left input and rcopy for the right input.

The revised nondestructive unification procedure
for typed feature structures is shown in Figs. 6 and 7.
Given two root nodes of directed graphs, the top-level
procedure Unify assigns a new unification process
identifier, generation, and invokes Unify_Auz. This
procedure first dereferences both input nodes. This
dereference process differs from the original one in
that 1t follows up forward and lcopy links for the left
input node and forward and rcopy links for the right
input node. This revised dereference process elimi-
nates the first source of the structurc-sharing prob-
lem. Then Unify_Auz caleulates the meet of the type
symbol. If the meet is 1, which means inconsistency,
it finishes by returning L. Otherwise Unify_Auz ob-
tains the output node and sets the mect as its tsymbol
value. The output node is created only when neither
input node is current; otherwise the output node is a
current input node. Then Unify_Auz treats arcs. 'This
procedure assumes the existence of two procedures:
Shared_Arc.Pairs and Complement_Arcs. The former
gives two lists of arcs cach of which contains arcs
whose labels exist in both input nodes with the same
arc label order; the latter gives one list of arcs whose
labels are unique to the first input node. For each arc
pair obtained by Shared Arc_Pairs, Unify_Auz applies
itself recursively to the value pair. And for each arc
obtained by Complement_Arcs, it copies its value.

Let us compare the newly introduced cost and the

PROCEDURE Unify(nodel, node2)
generation — generation + 1;
return(Unify_Auz(nodel, node2))

ENDPROCEDURE

PROCEDURE Unify.Auz(nodel, node?2)

nodel «— Dereference_L(nodel);

node2 « Dereference_I(node2);

IF nodel = node2 AND Current_p(nodel) THEN
return{nodel)

ENDIF

newtsymbol «— nodel .tsymbol A1 node2.tsymbol,;

IF newtsymbol = 1. THEN
return(1)

ENDIF,;

newnode « Get.Out_Node(nodel, node2, newtsymbol);

{sarcsi, sarcs2) « Shared_Arc.Pairs(nodel, node2);

carcsl « Complement_Arcs(nodel, node2);

carcs2 « Complement_Arcs(node2, nodel);

FOR (sarcl, sarc2) IN (sarcsl, sarcs2) DO
newvalue — Unify_Auz(sarcl, value, sarc2.value);
IF ncwvaluc = L THEN

return(L)
ELSE
newvalue
« Add_Arc(newnode, sarcl label, newvalue);
IF newvalve = | THEN
return(L)
ENDIF
ENDII

ENDFOR;

IF newnode # nodet THEN
FOR. carc IN carcsl DO

newvalue «— Copy_Node_L(carc.value);
newnode
« Add_Arc(newnode, carc.label, newvalue)
ENDFOR
ELSE IF newnode # node2 THEN
FOR carc IN carcs2 DO
newvalue «— Copy_Node_R(carc.value);
newnode
— Add_Arc(newnode, carc.label, newvalue)
ENDFOR
ENDIF,
return(newnode)
ENDPROCEDURE
PROCEDURE Dereference.L(node)

IF Node_p(node.forward) THEN
return(Dereference_L{node.forward))

ELSE IF Curret_Node_p(node.lcopy) THEN
return(Dereference_L(node.lcopy))

ELSE
return(node)

ENDIF

ENDPROCEDURE

Fig. 6: The revised nondestructive unification proce-

dure (1).

effect of this revision. This revised version differs from
the original in that it uses two dereference procedures
that are the same as the original dereference proce-
dure except that they use different fields. Thus, on
the one hand, the overhead introduced to this revi-
sion 1s only the use of one additional ficld of the node
structure. On the other hand, although this revised
version does not introduce new data-structure shar-
ing, it can safely treat data-structure sharing in ini-

PROCEDURE Get.Out_Node(nodel, node2, tsymbol)

IF Current_p(nodel) AND Current_p(node2) THEN
node?.forward « nodel;
nodel . tsymbol — tsymbol;
return(nodel)

ELSE IF Current_p(nodel) THEN
node2.rcopy «— nodel;
nodel . tsymbol - tsymbol,
return(nodel)

ELSE IF Current_p(node2) THEN
nodel lcopy — node2;
nodeZ.tsymbol — tsymbol;
return(node2)

ELSE
newnode «— Create_Node();
nodel . lcopy +— newnode;
nodel .rcopy — newnode;
newnode.tsymbol — tsymbol,
return(newnode)

ENDIF

ENDPROCEDURE

I'ig. 7: The revised nondestructive unification proce-

dure (2).

tial data structures. This can significantly reduce the
amount of initial data structures required for linguis-
tic deseriptions, especially for lexical deseriptions, and
thus reduce garbage-collection and page-swapping.
Revised LING Unification

LING unification is based on nondestructive unifica-
tion and uses copy-dependency information to imple-
ment data-structure sharing, For a unique label are,
istead of its value being copied, the value itself is
used as the output value and copy-dependency rela-
tions are recorded to provide for later modification
of shared structures. This algorithin uses a revised
Copy-Node procedure that takes as its input two node
structures (nodel and node2) and one arc structure,
arc! where nodel is the node to be copied. The struc-
ture arcl is an arc to nodel, and nodel is an an-
cestor node of nodel—that 1s, the node from which
arcl departs- —and the revised procedure is as fol-
lows: (1) if nodel’ (the dereference result of nodel)
is current, then Copy_Node returns nodel’ to indi-
cate that the ancestor node? must be copied imme-
diately; otherwise, (1) Copy-Arcs is applied to nodel’
and if it retarns several arc copies, Copy_Node cre-
ates a new copy node and then adds to the new
node the arc copies and arcs of nodel’ that are not
copied, and returns the new node to indicate the an-
cestor node having to be copied immediately; other-
wise, (iii) Copy.-Node registors the copy-dependency
between the nodel’ and the ancestor node node?-
that is, it adds the pair consisting of the ancestor node
node2 and the arc arci into the copy field of nodel * -
and returns NI/ to indicate that the ancestor must
not be copicd immediately.® When a new copy of a
node is needed later, this algorithm will copy struc-

®In the LING nnificaiton algorithm, a node structure’s
copy field is used to keep either copy information or copy-
dependency information. When the ficld keeps copy-
dependency information, its value is a copydep structure
consisting of an integer -generation ficld—-and a set of

PROCEDURE Copy_Node_L(node, arc, ancestor)
node «— Derference_L(node);
IF Current_p(node) THEN
return(node);
ELSE IF node.reuse = rused THEN
return(Simple_Copy_Node_L(nodc))
ENDIF
newarcs «— Copy._Arcs_l.(node);
IF newarcs # ¢ THEN
newnode — Create_Node();
newnode.tsymbol — node.tsymbol,
node.lcopy «— newnodce;
FOR. urc IN node.arcs DO
newarc — Find_Arc(arc.label, newarcs);
IF Arc_p(ncwarc) THEN
newvealue
— Add_Arc(newnode, arc.label, newarc.value)
ELSE
newvalue
— Add_Arc(newnode, arc.label, arc.value)
ENDIF
ENDFOR;
return(newnodce)
ELSE IF Copydep_p(node.lcopy) AND
node.lcopy.generation = generation THEN
node.lcopy.deps
— nodc.lcopy.deps U {{ancestor, arch};
node.reuse «— lused,
return(NIL)
ELSE
copydep — Create_Copydep();
copydep.generation «— generation;
copydep.deps « {{ancestor, arc)};
node.lcopy «— copydep;
node.reuse — lused,
return(NIL)
ENDIF
ENDPROCEDURE
PROCEDURE Copy_Arcs.L(node)
newarcs — ¥;
FOR arc IN node.arcs DO
newnode — Copy_Node(arc.value, arc, node);
IF Node_p(newnode) THEN
newarc — Create_Arc{arc.label, newnode);
newarcs + newarcs U {newarc}
ENDIF
ENDFOR,;
return{newarcs)

ENDPROCEDURE

I'ig. 8: The new revised Copy_Node procedure.

tures by using the copy-dependency information in its
copy field (in the revised Get_Qui_Node procedure for
the LING unification). Ii substitutes arcs with newly
copied nodes for existing arcs. Thus the antecedent
nodes are also copied.

The revised LING unification is based on the re-
vised nondestructive unification and uses a node struc-
ture consisting of the ficlds in the node structure
shown in Fig, 5 and a new field reuse for indicat-

node and arc pairs- -deps field (see Fig. 3). The technique
used to control the lifetime of copy-dependency informa-
tion is the same as that of copy information. That is, the
deps field value is mecaningfal only when the generation
value is equal to the unification process identifier.

891

ing data-structure sharing status. When the top-level
unification procedure is invoked, 1t sets two new sym-
bols to the two variables lused and rused. That a node
structure has as its reuse field value the lused value
means that it is used as part of the left input, and that
it has as its reuse value the rused value means that it
is used as part of the right input. The revised LING
unification uses two new rcvised Copy_Node proce-
dures, Copy.Node_I, (shown in Fig. 8) and the analo-
gous preocedure Copy_Node_R. These procedures are
respectively used to treat the left and right inputs
and they differ from the corresponding original pro-
cedure in two places. Ilirst, instead of step (1) above,
if nodel’ (the dereference result of nodel) is current,
Copy_Node_L (or Copy_Node_R) returns nodel’ to in-
dicate that the ancestor, node2, must be copied im-
mediately. But if nodel’ has as its reuse field value
the rused (or lused) value, it creates a copy of the
whole subgraph whose root is nodel’ and returns the
copied structure also to indicate that the ancestor
node must be copicd immediately. Second, in step
(iii), they register data-structure sharing status—that
is, they set the lused (or rused) value to the reuse field
of nodel™ —as well as register copy-dependency infor-
mation. This revised LING unification ensures safety
in data-structure sharing.

Again let us compare the newly introduced com-
putational costs and the cffect of this revision. ‘The
newly introduced costs are the additional cost of the
revised dereference procedures (which is the same as
in the previous one) and the cost of checking reuse
status. The former cost is small, as shown in the dis-
cussion of the previous algorithm, and the latter cost
is also small. These costs are thus not significant rel-
ative to the efliciency gain obtained by this revision.
Revised Quasi-Destructive Unification
The structure-sharing version of quasi-destructive
unification keeps update information in the {ficld
meaningful only during the unification. After a suc-
cessful unification is obtained, this algorithm copics
the unification result and attempts data-structure
sharing. This algorithm can be revised to cnsure
safety in data-structure sharing by using a node struc-
ture including two sets of fields for update information
and one reuse ficld and by checking node reuse status
while copying,.

5 CONCLUSION

The graph unification algorithms described in this pa-
per increase the efliciency of feature structure unifica-
tion by discarding the assumption that data-structure
sharing betwecen two iuput structures occurs only
when the feature-structure sharing occurs between the
feature-addresses they represent. All graph unifica-
tion algorithms proposed so far make this assurmption
and are therefore required to copy all or part of their
input structures when there is a possibility of violat-
g it. 'This copying reduces their efliciency. "This
paper analyzed this problem and points out key ideas
for solving it. Revised procedures for nondestructive
unification, LING unification, and quasi-destructive
unification have been developed. 'These algorithms
make the use of featurce structures in constraint-hased
natural language processing much more efficient. The

892

key ideas in this paper can also be used to make the
incremental graph generalization algorithm (Kogure,
1993) more eflicient.

ACKNOWLEDGMENTS

I thank Akira Shimazu, Mikioc Nakano, and other col-
leagues in the Dialogue Understanding Group at the
NTT Basic Research Laboratories for their encour-
agement and thought-provoking discussions.

REFERENCES

Ait-Kaci, H. (1986). An Algebraic Scmantics Approach to
the Fffective Resolution of Type Fquations. J. of
Theor. Comp. Sct., 45, 293--351.

Boyer, R. S., & Moore, J. S. (1972). The Sharing of Struc-
ture in Theorem-Proving Programs. In Meltzer, B.,
& Michie, D. (Eds.), Machine Intelligence Vol. 7,
chap. 6, pp. 101-116. Edinburgh University Press.

Emecle, M. (1991). Unification with Lazy Non-Redundant
Copying. In Proc. of the 29th ACL, pp. 325-330.

Godden, K. (1990). Lazy Unification. In Proc. of the 28th
ACL, pp. 180-187.

Gunji, T. (1987). Japanese Phrase Structure Grammar.
Reidel.

Hopcroft, J. E., & Karp, R. M. (1971). An Algorithm for
Testing the Equivalence of Finite Automata. Tech.
Rep. TR-71-114, Dept. of Comp. Sci., Cornell Uni-
versity.

Huet, G. (1976). Résolution d'lquations dans des Lan-
gages d’Ordre 1, 2, ..., w. Ph.D. thesis, Université
de Paris VII.

Karttunen, [.. (1986). D-PATR--A Development Iinviron-
ment for Unification-Based Grammars. ‘lech. Rep.
CSLI-86-61, CSLIL

Karttunen, I.., & Kay, M. (1985). Structure Sharing Rep-
resentation with Binary Trees. In Proc. of the 23rd
ACL, pp. 133-136.

Kasper, R. T., & Rounds, W. C. (1986). A Logical Sec-
mantics for Feature Structure. In Proc. of the 24th
ACL.

Kogure, K. (1989). Parsing Japancse Spoken Sentences
based on HPSG. In Proc. of the Int. Workshop on
Parsing Technologies, pp. 132-141.

Kogure, K. (1990). Strategic Lazy Incremental Copy
Graph Unification. In Proc. of the 13th COLING,
Vol. 2, pp. 223-228.

Kogure, K. (1993). Typed I'eaturc Structure Generaliza-
tion by Incremental Graph Copying. In Trost, H.
(Iid.), Feature Formalisms and Linguistic Ambigu-
ity, pp. 139-158. Kllis Horwood.

Pereira, I'. C. N. (1985). Structure Sharing Representation
for Unification-Based Formalisms. I[n Proc. of the
23rd ACL, pp. 137--144.

Pollard, C., & Sag, [. (1987). An Information-Based
Syntaz and Semantics-— Volume 1: Fundamentals.
CSLI Lecture Notes No. 13. CSII.

Shieber, 8. M. (1989). Constraint-Based Grammar
Formalisms—-Parsing and Type Inference for Natu-
ral and Computer Languages. Ph.D. thesis, Stanford
University.

Smolka, G. (1988). A T'cature Logic with Subsorts.
LILOG 33, IBM Decutschland.

Tomabechi, H. (1991). Quasi-Destructive Graph Unifica-
tion. In Proc. of the 29th ACL, pp. 315--322.
"Tomabechi, 1. (1992). Quasi-Destructive Graph Unifica-
tion with Structure-Sharing. In Proc. of the Lith

COLING, pp. 440-446.

Wroblewskt, D. A. (1987). Nondestructive Graph Unifica-

tion. In Proc. of the 6th AAAL pp. 582-587.

