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Abstract

Probabilistic Recursive Transition Network(PRIN) is
an elevated version of WI'N to model aud process lan-
guages in stochastic paramecters. The representation
18 a direct derivation from the RI'N and keeps much
the spirit of Hidden Markov Model at the same time.
‘We present a reestimation algorithm for PRI'N that is
a variation of Inside-Qutside algorithm that computes
the values of the probabilistic paramneters from sample

sentences (parsed or unparsed).

1. Introduction

In this paper, we introduce a network represen-
tation, Probabilistic Recursive Transition Network
that is directly derived from REN and HMM, and
present an estimation algorithm for the proba-
bilistic parameters. PRIN is a RTN augmented
with probabilitics in the transitions and states
and with the lexical distributions in the transi-
tions, or is the Ilidden Markov Model augmented
with a stack that makes some transitions deter-
ninistic.

The parameter estimation of PRIN is devel
oped as a variation of Inside-Outside algorithm.
The Tuside-Outside algorithm has been applied
to SCIG recently by Jelinek (1990) and Lari
(1991). The algorithn was first introduced by
Baker in 1979 and is the context frec language
version of Forward-Backward algorithm in Hid-
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based Systemns” from 1991 through 1994,

den Markov Modecls. Its theoretical foundation is
laid by Baum and Welch in the late 607s, which
in turn is a type of the EM algorithm in statistics
(Rabincr, 1989).

Kupice (1991) introduced a trellis based es-
timation algorithin of Hidden SCFG that ac
commodates both Iuside-Outside algorithm and
lorward-Backward algorithm. ‘The meaning of
our work can be sought from the use of more
plain topology of RI'N, whereas Kupiec’s work is
a unified version of forward-backword and Inside
Qutside algorithms. Nonetheless, the implemen:
tation of reestimation algorithmm carries no more
theoretical significance than the applicative effi-
ciernicy and variation for differing representations
since Baker first applied it to CI'Gs.

2. Probabilistic Recursive Tran-
sition Network

A probabilistic REYN (PRIN, hereafter) denoted
by Ais a 4 tuple.

A= (AB,T,E).

A is a tramsition matrix containing transition
probabilities, and B is an observation matrix con-
taining probability distribution of the words ob
servable at each terminal transition where row
and column correspond to terminal transitions
and a list of words respectively. 1 specifies the
types of transitions, and = denotes a stack. 'L'he
first two model parameters are the same as that of
MM, thus typed transitions and the existence of
a stack are what distinguishes PRIN from MM,
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The stack operations are associated with tran-
sitions. According to the stack operation, tran-
sitions are classified into three types. The first
type is push transition in which state identifica-
tion is pushed into the stack. The second type is
pop transition which is selected by the content of
stack. Transitions of the third type are not com-
mitted to stack operation. The three types are
also accompanied by different grammatical impli-
cation, hence grammatical categories are assigned
to transitions except pop transitions. Push transi-
tions are associated with nonterminal categories,
and will be called nonterminal transition when it
is more transparent in later discussions. In gen-
eral, the grammar expressed in PRTN consists
of layers. A layer is a fragment of network that
corresponds to a nonterminal. The third type of
transition is linked to the category of terminals
(words), thus is named terminal transition. Also
a table of probability distribution of words is de-
fined on each terminal transition. In the context
of HMMs, the words in the terminal transition
are observations to be generated. Pop transitions
represent returning of a layer to one of its possibly
multiple higher layers.

The network topology of PRTN is not differ-
ent from that of RTN. In a conceptual drawing
of a grammar, each layer looks like an indepen-
dent network. Compared with conceptual draw-
ing of the network, an operational view provides
more vivid representation in which actual paths
or parses are composed. The only difference be-
tween the two is that in operational view a nonter-
minal transition is connected directly to the first
state of the corresponding layer. In this paper,
the parses or paths are assumed to be sequences
of dark-headed transitions {see Fig. 1 for exam-
ple).

Before we start explaining the algorithms let us
define some notations. There is one start state
denoted by &, and one final state denoted by
F. Also let us call states immediately following
a terminal transition terminal state, and states at
which pop transitions are defined pop state. Some
more notations are as follows.

o first(l) returns the first state of layer L.
o last(l) returns the last state of layer L
s layer(s) returns the layer state s belongs to.

o bout(l) returns the states from which layer !
branches out.

e bin(l) returns the states to which layer ! re-
turns.

» terminal({) returns a set of terminal edges in
layer L

e nonterminal(l) returns a set of nonterminal
edges in layer /.

e ij denotes the edge between states ¢ and j.

e [i,j] denotes the network segment between
states ¢ and j.

o Wy.p is an observation sequence covering
from ay, to by, observations.

3. Reestimation Algorithmn

PRTN is a RTN with probabilistic transitions
and words! that can be estimated from sample
sentences by means of statistical techniques. we
present a reestimation algorithimn for obtaining the
probabilities of transitions and the observation
symbaols (words) defined at each terminal transi-
tion. Inside-Outside algorithm provides a formal
basis for estimating parameters of context free
languages such that the probabilities of the ob-
servation sequences (sample sentences) are max-
imized. The reestimation algorithm iteratively
estimates the probabilistic parameters until the
probability of sample sentence(s) reaches a cer-
tain stability. The reestimation algorithm for
PRIN is a variation of Inside-Outside algorithm
customized for the representation. The algorithm
to be discussed is defined only for well formed ob-
servation sequences.

Definition 1 An observation sequence is well
formed if there exists at least a path that gen-
erates the sequence in the network and starts at
S and ends at F.

Let an observation sequence of length N denoted
by

W = WiW; - - Wx.

We start explaining the reestimation algorithm by
defining Inside-probability.

The Inside probability denoted by Pr()sn: of
state ¢ is the probability that a portion of layer(7)

1we do not consider probabilistic states in this paper.
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Figure 1: Hlustration of PRTN. A parse is composed of dard-headed transitions.

(from state ¢ to the last state of the layer) gen-
erates Wi.;. That is, it is the probability that
a certain fragment of a layer generates a certain
segment of an input sentence, and this can be
computed by summing the probabilities of all the
possible paths in the layer segment that generate
the given input segment.

I)I(i)swt - P(l@,@]—‘# . smtlA)
where ¢ = last(layer(d)) .

More constructive represcentation of Inside prob-
ability is then

P[(i)uwt = >_: a,-kb(ik, W.V)Pl(k).-ﬂ—lwi
k
t
L L “ija‘uu»PI(]')sNrPI ('U)H-]Nt-
j T
where ik € lerminal(layer(i)),

;5 ¢ nonterminal(layer(i)),
= last(layer(j)),

v € bin(layer()),

layer(i) = layer(v).
'I'he paths starting at state ¢ are classified into two
cases according to the type of immediate transi-
tion from i: it can be of terminal or nonterminal
type. In case of terminal, after the probability of

the terminal transition is taken into account, the
rest of the layer segment is responsible for the in-
put segment short of one word just generated by
the terminal transition. In case of nonterminal,
first the transition probabilities {push and respec-
tive pop transitions) are multiplied, then depend-
ing on the coverage of the nonterminal transition
(sublayer) the rest of the current layer is respousi-
ble for the remaining input sequence after done by
the sublayer. After the last observation is made,
the last state (pop state) of layer(z) should be
reached.

1l i = last(layer(i)),

5 [ - 1
~"I(Z)t+1~t = { 0

Iig. 2 is the pictorial view of the Inside prob-
ability. A well formed scquence can begin ouly
at state §, thus to be strict, Pr(S) has additional
product termn P(S) that can be computed also
Now define the

otherwise.

uging Inside-Outside algorithm.
Outside probability.

'I'he Outside probability denoted by Po (4, 7) st
is the probability that partial sequences, Wy,
and Wi, are generated provided that the par-
tial sequonce, Wsat, 1s generated by [4, 7] given
a model, A. This is a complementary point of
Iuside-probability. This time, we look at the out-
side of given layer segment and inputl segment.
Assaining a given layer segment generates a given
input segment, we want to compute the proba
bility that the surrounding portion of the whole
PRI'N generates the rest of the input sequence.
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Figure 2: Nlustration of Inside probability.

The Outside probability is computed first by
considering the current layer consisting of two
parts after excluding [¢, 7] that are captured in
Inside-probability. Beyond the current layer is
simply an Outside probability with respect to the
current layer.

And by definition,

P([sz] - WIN&—17 [.77]:] -
Wiinn | A)

3 N
C Y S

* a=1b=t+1

i

PO(iaj)swt

PR fy D) ams1 Pr() e Po (T, Y )ans -

bout(layer(i)),
bin(layer(i)),
first(layer(d)),
last(layer(i)),
layer(i) = layer(j),
layer(z) = layer(y).

where

N m M

1l

z
y
f
€

z represents a state from which layer()
branches out, and y represents a state to which
layer(j) returns to. Every time a different com-
bination of left and right sequences with respect
to W.; is tried in the layer states ¢ and j belong
to, the rest of remaining sequences is the Outside
probability at the layer above layer(i).

When there is no subsequence to the right of
Wea (i-e,b=N),

-PO(iyj)aNN = 1.

Fig. 3 shows the network configuration in com-
puting the Outside probability. P7(f,%)ansa is
the probability that sequence, W,..s1, is gener-
ated by layer(i) left to state . Pr(j)ua~p is the
probability that sequence Wyyyp is generated by
layer(7) right to state j. The portions of W not
covered by W, is then left to the parent layers
of layer(7).

PF(f,1) gt is a slight variation of Inside proba-
bility in which P1(f)a~s’s in the Inside probabil-
ity formula are replaced by Pf(f,%)e~s. Its actual
computation is done as follows:

Pr(f)sme s <4,
Pi(fii)ene = {1 if s >tand f =i,
0 ifs>tand f#zq.

It is basically the same as Inside probability ex-
cept that it carries a state identification ¢ to check
the validity of stop state. If therc are observations
left for generation (s < t), things are done just as
in computing Inside probability, ignoring ;. When
boundary point is reached (s>1), if the last state
is ¢, it returns 1, and 0, otherwise.

The probability of an observation sequence can
be computed using Inside probability as

l

P(W|A) P([8,F] - Wiy | A)

= PI(S)]_NN .

Now we can derive the reestimation algorithin for
A and B using the Inside and Outside probabili-
ties. As the result of constrained maximization of
Baum’s auxiliary function, we have the following
form of reestimation for each transition (Rabiner

1989).
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Figare 3: Hlustration of Outside probability.

_ expected no. of trausitions from i to j
U = e
“ cxpected no. of transitions from i
The expected frequency is defined for cach of
the threc types of traunsition. I'or a terminal tran-
sition,

S b1, W) Po(iy7)rer
EUARY

Eif) -

For a nonterminal transition,

S Ly(ij5)
aj; = = A=
Do Fa(ik) o+ 30y By (k)

For nonterminal transitions,

)
Yon (k) A 3Ty Ba(ik)

a‘t] =

And for pop tramsitions, notice that ouly pop
traunsitions are possible at a pop state,

lonif) = e Ea 6P (Dot Poli s G
PW A 35 Fhpop (1K)
where w = last(layer(§)), v € bin(layer(§)), Tor a terminal trausition ;_; and an observation
layer(i) = layer{v), layer(y) = layc’r(uﬁ?’mvbdl b
wo is a pop transition .
i Yot Wiz 45501, W) Lo (i it

Tor a pop transition,

BN L-{J\{:l Z;ﬁv @y Pr(v) sms i Po (12, 1) gmt
Epop(ig) = =55 - i Wr)\) AT et
where u € bout(layer(1)),

7 € bin(layer(i)),

v = first(layer(i)),
layer(u) = layer(j),
layer(v) = layer(i),

—F . . e
wv i$ a nonterminal trausition .

Considering that transitions of terminal and
nonterminal types can oceur together at a state,
the reestimation for terminal transitions is done
as follows:

big,w) = =
1?;1 aiib(ig, Wi) Po(i, 5 )t~

The reestimation process continues until the

- probability of the observation seyuences rcaches a

certain stability. It is not unusual to assume that
the training set can be very large, and even grow
indefinitely in non trivial applications in which
case additive training can be tried using a smooth-
ing technique as in (Jarre and Picraceini 1987).

The comnplexity of Inside-Outside algorithm is
O(N?) both in the number of states and input
length (Lari 1990). The efficiency comes from the
fact that the algorithm successfully exploits the
context-freeness. Yor instaunce, the gencration of
substrings by a nonterminal is independent of the
surroundings of the nonterminal, and this is how
the product of the Inside and Outside probabili
tics works and the complexity is derived.
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4. Conclusion

Recently several probabilistic parsing approaches
have been suggested such as SCFG, probabilis-
tic GLR, and probabilistic link grammar (Laf-
ferty, 1992). Kupiec extended the reestimation
algorithm for SCFG to cover non-Chomsky nor-
mal forms (Carroll, 1993). This paper further ad-
vances the trend by implanting the Inside-Outside
algorithm on the plain topology of RTN which
distinguishes itself from Kupiec’s work.
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