
ACHIEVING FLEXIBILITY IN UNIFICATION FORMALISMS

Lena StrSmb~ick 1

Department of Computer and Information Science,
Link6ping University, S-58183 Link6ping, Sweden

A B S T R A C T

We argue that flexibility is an important property for
unification-based formalisms. By flexibility we mean
the ability for the user to modify and extend the for-
malism according to the needs of his problem. The
paper discusses some properties necessary to achieve
a flexible formalism and presents the FLUF formal-
ism as a realization of these ideas.

1 M O T I V A T I O N

Unification based-formalisms are in common use
within natural language processing and many differ-
ent formalisms have been defined. PATR-II (Shieber
et al., 1983) is the most basic and a kind of common
denominator which other formalisms are extensions
of. Other formalisms are STUF (Beierle et al., 1988),
TFS (Emele & Zajac, 1990), CUF (D6rre & Eisele,
1991) and, ALE (Carpenter, 1992). These formalisms
include, for example, disjunction, various variants of
negation and typing. When vaa'ious grammatical the-
ories, such as LFG (Kaplan & Bresnan, 1983) or
HPSG (Polku'd & Sag, 1987) are included, the range
of extensions suggested to unification-based gram-
mars becomes very wide. There are also many variant
proposals on how the same extension should be used
and interpreted.

When using these formalisms for a particular prob-
lem, it is oRen the case that the constructions pro-
vided do not con'espond to the needs of your
problem. It could either be the case that you want an
additional construction or that you need a slight mod-
ification of an existing one. Since the extensions are
nmnerous it seems hard to include everything in one
single formalism.

In some formalisms, especially TFS and CUF, the
user is allowed to define new constructions. This is an
interesting property that I will develop further to
achieve flexibility. In a flexible formalism, the user
can define all the constructions he needs or modify
definitions provided by the formalism. With this kind
of formalism problems such as those mentioned
above would not arise.

1. Email address: lestr@ida.liu.se

A flexible formalism would be a useful tool for
delining various kinds of knowledge needed at differ-
ent levels in a natural language system. It would be a
great advantage to be able to use the same system for
all levels, but adjusting it to suit the various structures
that are needed at each level since the relations
between the different levels would be clearer and it
would be easier to share structures between the levels
(cf. Seiffert (1992) for more motiwttion).

Another advantage with such a formalism is that it
can be used to define and test extensions and w~rious
grammatical formalisms for the purpose of compari-
son.

Flexible formalisms allow the user to defne an
expensive extension and use it for the cases where he
really needs it. Thus an extension that is considered
too expensive to be provided by a general formalism,
can be included as it can provide a more efficient rep-
resentation of some particular phenomenon. This is
particularly important since, in natural language
processing, it is common that expensive construc-
tions are required for few and limited cases.

However, if the user is allowed to define expensive
constructions, an additional goal, predictability, must
be considered. By this I mean that inefficient compu-
tations should be necessary only when the construc-
tion causing the inefficiency really participates in the
computation. This idea was discussed in StrOmb/ick
(1992) where I give a predictable algorithm for unifi-
cation of feature structures containing disjunction.
The goal of predictability is closely related to modu-
larity, since if it is possible to make different con-
structions independent of each other, it is easier to
find predictable algorithms for them. Since this paper
will discuss properties of a flexible formalism rather
than unification algorithms there, will be no further
discussion of predictability.

In the following I first discuss the most important
properties of a flexible formalism. I then present a
flexible formalism, FLUF, by using it to define
PATR-I[. The size of this paper does not admit a thor-
ough description of FLUF and its semantics. This is
given in StrOmbfick (l 994a, 1994b).

842

2 ACHIEVING FLEXIBILITY

in this section l state some necessary properties of a
flexible formalism.

It is essential that the formalism does not provide a
single basic construction in which all other structures
must be defined, as this often leads to clumsy repre-
sentations. Instead the user defines everything he
needs. Theretbrc a flexible formalism must provide
some way of defining structures and objects. These
can be divided into two groups; those that are used as
general elements in the t'ormalism, for example fea-
ture structures or the empty set; and those that m'e
specific for a particular problem, for example the
attribute number.

In addition to the elements defined in a fonnalism
the user needs other ways of describing his objects,
e.g logical operators, such as conjunction and dis-
junction, and functions, such as concatenation of
lists. Important to note here is that these constructs do
not add further elements to the defined language, they
just specify additional syntax for describing the
objects.

Another requirement tor a flexible formalism is that
the user nmst define the behaviour of his elements,
that is, how they unify with each otheL Similarly,
when defining some additional syntax, he nmst spec-
ify the meaning of it. I have chosen to do this by stat-
ing constraint relations, which means that results
from term rewriting systems (Middeltorp & Halnoen,
1992) and algebraic specification (Ehrig & Mahr,
1985) can be applied. Using constraint relations it can
be specified that two defined objects should be inter-
preted as the same, or that one object should subsume
some other object.

The last property I want to mention is the use of an
inheritance hierarchy fur the delinitions. This is a
good way of taking advantage of similarities between
different extensions and also a suitable way of defin-
ing linguistic knowledge (see, fi)r example, the arti-
cles in Computational Linguistics 18(2,3)).

By using an inheritance net for defining new con-
structions in the formalism several other benefits arc
obtained. One is that if the mathematical properties of
a construction are known, this knowledge can be used
instead of defining the construction with constraint
relations. The inheritance net allows us to replace the
construction defined with constraint relations with a
predefined mathematical domain provided that both
the properties of this domain and how objects unifies
are known.

The inheritance net also provides ways to iinprove
the efficiency in in~plementations of the system.
Since a defined construction corresponds to a node in

~ c e p t noun;]

Fig. 1: A FLUF definition

the net (together with inherited information), known
unification algorithms tbr objects corresponding to
this node can be used. This gives the design of a full-
scale implementation as a library of the most com-
mon extensions, where the user can choose which he
wants and define new ones or change existing defini-
tions only when necessary.

3 T H E F L U F F O R M A L I S M

In this section I show how the FLUF formalism
works by defining feature structures as they are used
in PATR-ll. I have defined conjunction and disjunc-
tion and some minimal linguistic knowledge. The
inheritance hierarchy expressing the definition is
shown in Fig. 1.

First the objects needed to build feature structures
are defined. This is done using classes. The objects
needed are attributes and values. These are the two
subclasses of top. Values are divided into atomic and
complex values, corresponding to the two classes
atom 'and fs'.

The two chtsses top and value are used to build up
the hierarchy and contain no object definitions of
their own, all objects are defined in atom, attribute
andf~, l show the definitions of Is' and attribute
below. The definition of atom is very similar to the
definition of attribute.

chtss Is;
isa value;
consmtctor empty;
constructor add_pair: attribute,value,Is;
constraint empty>add pair(A,V, FS);
constraint add_pair(A,U,add pair(A,V, FS))=

add pair(A,and(U,V),FS);
constraint add pair(A,U,add pair(B,V, FS))=

add pair(B ,V, add pair(A ,U ,FS)).

class attribute;
isa top;
constructor instances.

843

A class definition contains the name of the class and
the parent in the hierarchy. Furthermore, classes can
contain constructor and constraint definitions. The
constructor definitions state what elements the class
contains. In the definition offs above, the class con-
tains one element empty, and one element
add_pair(A,V, FS) for each possible instantiation of A
as an attribute, V as a value and FS as afs. In the def-
inition of add~pair the symbols after : refer to the
type of the arguments to addpair. Here it can be
noted that FLUF makes use of typed terms. In the
examples i omit the types when writing terms since
they are clear from the context.

The definition of attribute makes use of a special
constructor instances. This constructor means that the
elements in the class are defined as objects below it.

In the definition offs constraint relations are used.
In FLUF ' = ' is used to specify that two terms should
be interpreted as equal and ' < ' o r ' > ' to specify the
subsumption order between the defined elements.
The reason for having both >- and <-relations is that
the left hand side of a relation is seen as the expres-
sion being defined and the right hand side as what it
is defined as.

In the example above the first constraint tells us
that empty should subsume every constructor starting
with add pair. 2 The second relation states thatfs 's
containing the same attribute more than once should
have the same interpretation as the structure contain-
ing the attribute only once with the conjunction of the
two values as its value. The third equation says that
the attribute order in afs is irrelevant.

Next conjunction and disjunction are added. They
do not add any new elements to our language and are
defined as functions. For a function the name of the
function, the type of the result and the number and
type of arguments to the function are specified. To
give the meaning of function expression constraints
are specified as relations in the same way as for
classes. The definitions of and and or are given
below.

function and;
result value;
arguments value,value;
constraint and(X,Y)<X;
constraint and(X,Y)<Y.

function or;
result value;

2. Here there is a slight difference from PATR-II since
empty does not subsume atoms. The interpretation used in
PATR-II can be obtained by defining empty as a value.

arguments value,value;
constraint or(X,Y)>X;
constraint or(X,Y)>Y.

By these definitions both functions give a value as
result and take two values as their arguments. The
constraint definition of and tells us that and is sub-
sumed by its arguments, while or subsumes its argu-
ments.

Next, some linguistic knowledge is defined. First
the attributes and atoms used by the application are
given. This can be done using objects. An object is
specified by just giving a name and a parent in the
inheritance hierarchy. What is special here is that
object definitions are only allowed if there is an
ancestor in the hierarchy which has a constructor
specified as instances. As an example I give the def-
inition of cat.

object cat;
isa attribute.

When defining linguistic knowledge, concept defini-
tions are used to group it into conceptual parts. In a
concept definition the name of the concept and its
parent in the inheritance hierarchy are specified. It is
also possible to specify a requirement as a typed
term. The meaning of such a requirement specifica-
tion is that all objects that are of this concept must
contain at least the information given by the require~
ment. Two concept definitions from the example are
wordcat and verb. Their definitions are given below.

concept wordcat;
isa atom.

concept verb;
isa fs;
requires add pair(cat,v,empty).

With this definition of PATR~II grammar rules can be
represented as feature structures. The terms in FLUF
allows assigning variables to subterms which gives a
simple representation of coreferences in PATRdl.

A declarative and operational the semantics of
FLUF is given in S tr0mbgck (1994b). The declarative
semantics is an initial algebra semantics where the
elements given by a definition are interpreted on a
partial order. The operational semantics amounts to
giving a unification algorithm which in many ways is
similar to narrowing (see, for example, Middeltorp &
Hamoen (1992)). The FLUF formalism is sound, but
not fully complete.

4 FURTHER EXAMPLES

In this section I give two further examples that dem-
onstrate the flexibility of FLUF. The first example

844

~ cl0sed

~ ~ ' / / / / / / ~ . add pair~a,v,closcd)

Fig. 2: The subsumption order for
closed feature structures

shows how fixed arity feature structures (used in, for
example, STUF (Beierle et al., 1988)) can be defined.

class fs;
isa value;
constructor empty;
constructor closed;
constructor add pair:attribute,value,fs;
constraint empty>closed;
constraint empty>add_pair(A,V, FS);
constraint add_pair(A,U,add_pair(A,V, FS))=

add_pair(A,and(U,V),FS);
constraint add_pair(A,U,add pair(B,V, FS))=

add pair(B ,V, add pair(A,U ,FS)).

Compared to the definition offi ' given previously, a
new constructor closed is added. The idea here is that
a feature structure ended with closed has a fixed arity
and can not be extended with new attributes. The
given constraint relations would give us the sub-
sumption order shown in Fig. 2. The most general
structure is at the top. The shadowed areas represent
feature structures not explicitly written in the figure.

The next example shows how different interpreta-
tions of sets can be detined in FLUE First I give a
definition of sets corresponding to that used in HPSG
(Pollard & Moshier, 1990).

class set;
isa ...;
constructor empty;
constructor Md elem(wdue,set);
constraint add_elem(V, add elem(V,S))=

add_elem(V,S);
constraint add elem(Vl,add elem(V2,S))=

add elem(V2,add_elem(V 1 ,S)).

Here the two constructors for sets empty and
add elem are detined. The two constraint relations in
the definition say that each element only occurs once
in a set and that the element order in a set is irrele-
vant. With this definition the unifications below hold.
To increase readability I have used the common nota-
tion for sets.

{X,Y}U{a}={a}
{X,Y}U{a,b}={a,b}

In the first example the first constraint rule, identify-
ing X and Y, is used.

For some linguistic phenomena it would be more
useful to have an interpretation of sets where unifica-
tion works like union. In FLUF this can be obtained
by the definition below.

class set;
isa ...;
constructor empty;
constructor add elem(value,set);
constraint empty>add elem(V,S);
constraint add Mem(V 1 ,add elem(V2,S))=

add elem(V2,add_elem(V 1 ,S)).

The difference between this detinition aM the previ-
ous one is that empty subsume all other sets. An ele-
ment is also allowed to occur more than once in a set.
With this second definition the first unification above
has three possible results.

[{a,Y}
{X,Y}U{a}= t {X,a}

[{x,Y,a}
In the first result a is identified with X, in the second
with Y, and in the third with neither of them. Pres-
ently FLUF gives all these three results as alterna-
tives of the unilication.

The reason why a set can be extended with new ele..
ments in the second definition but not in the first is
that the semantics of FLUF assumes that if two
expressions are not ordered by some constraint rela-
tion they are incomparable. Thus in the first definition
sets are only related if all their elements are. FLUF
assumes that all delined constructions are monotonic,
so by the constraint relation given for empty in the
second definition it can be concluded, for example,
that (a}>{a,b }.

Other examples of what can be defined in FLUF are
lists', trees and strings. It is also easy to define func-
tions such as concatenation of lists in FLUF.

5 DISCUSSION

This paper discusses how a flexible unification for~
realism that can be used to obtain tailored unifiers for
specific problems can be designed. I identify some
important properties of a formalism that can be used
to obtain flexibility. These are that the user nmst be
allowed to define the elements he needs and functions
on them. He must also have some way of defining the
behaviour of his elements and functions. I observe
that there are several advantages with using an inher-
itance hierarchy for detining the formalism and lin-
guistic knowledge.

845

I present the FLUF formalism as a concretization of
these ideas of a flexible formalism. As for the expres-
siveness of FLUF, it is still limited. There is a need
for extending the hierarchy to allow for multiple
inheritance and non-monotonicity. Str6mb~ick
(1994a) provides more discussion on the expressive-
ness of FLUE

There is very little discussion about unification
algorithms in this paper. There is, however, a pilot
implementation of the FLUF formalism. The imple-
mentation handles everything described above, but is
very inefficient since it is based directly on opera-
tional semantics. There are, however, several
improvements that can be made, for example apply-
ing existing results for more efficient narrowing
(Hanus (1993) gives an overview) and integrating
existing unification algorithms for some commonly
used structures such as feature structures. The idea of
integrating existing algorithms ensures us a more pre-
dictable behaviour for FLUKE

Another possibility is to use ideas from constraint
logic programming (Jaffar & Lassez, 1987). This is
particularly important in applications where this sys-
tem is combined with some other process, for exam-
ple, a parser.

ACKNOWLEDGEMENTS

This work has been supported by the Swedish
Research Council for Engineering Sciences. I am also
grateful to Lars Ahrenberg for guidance on this work.

REFERENCES

Beierle, C, U Pletat, and H Uszkoreit (1988). An Al-
gebraic Characterization of STUF. LILOG Report
IBM Deutschland, P.O. Box 800880, 7000 Stuttgart
80, West Germany.

Carpenter, B, (1992). The Logic of Typed Feature
Structures with Applications to Unification Gram-
mars, Logic Programs and Constraint Resolution.
Cambridge Tracts in Theoretical Computer Science
32, Cambridge University Press.

Computational Linguistics 18(2-3). Special Issue on
Inheritance in Natural Language. June and September
1992.

D6rre, J, and A Eisele (1991). A Comprehensive Uni-
fication-Based Grammar Formalism. DYANA Re-
port. Deliverable R3,1B. January 1991.

Ehrig, H and B Mabr (1985). Fundamentals of Alge-
braic Specifications 1. Equations and Initial Seman-
tics. Springer-Verlag, Berlin, Heidelberg.

Emele, M C, and R Zajac (1990). Typed Unification
Grammars. Proc. 13th International Conference on
Computational Linguistics, Helsinki, Finland, Vol 3,
pp 293-298.

Hanus, M, (1993). The Integration of Functions into
Logic Programming: From Theory to Practice. Man-
uscript, Max-Planck-Institut fiir informatik, Saar-
brticken.

Jaffar, J, and J L Lassez (1987). Constraint Logic
Programming. In Proceedings of the 14th ACM sym-
posium of Principles of Programming Languages.
Munchen, Germany. pp 111-119.

Kaplan, R. and J. Bresnan (1983). A Formal System
for Grammatical Representation, In: J Bresnan Ed.,
The Mental Representation of Grammatical Rela-
tions, MIT Press, Cambridge Massachusets.

Middeltorp, A, and E Hamoen (1992). Couuterexam-
ples to Completeness Results for Basic Nan'owing.
In: H. Kirchner and G. Levi Ed., Proceedings of the
3rd international conference on Algebraic and Logic
Programming, Volterra, Italy. pp. 244-258, LNC 632,
Springer-Verlag,

Pollard, C and Ivan A S (1987). Information Based
Syntax and Semantics. Vol 1. CSLI Lecture notes,
CSLI Stanford.

Pollard, C J, and M D Moshier(1990). Unifying Par-
tial Descriptions of Sets. Manuscript.

Seiffert, R (1992). How coukt a good system for
practical NLP look like? Paper presented at the work-
shop on Coping with Linguistic Ambiguity in 7}q~ed
Feature Formalism at the European Conference on
Artifieial Intelligence. Vienna, Austria.

Shieber, S M, H Uszkoreit, F C N Pereira, J Robin-
son, and M Tyson (1983). The Formalisms and Im-
plementation of PATR-II. In: Barbara Grosz and
Mark Stickel, Ed., Research on Interactive Acquisi-
tion and Use of Knowledge. SRI Final Report 1984,
SRI International, Menlo Park, California.

Str6mbdck, L (1992). Unifying Disjunctive Feature
Structures. Proc. 14th International Conference on
Computational Linguistics, Nantes, France, Vol 4, pp
1167-1171.

Str6mbfick, L (1994a). FLUF: A Flexible Unification
Formalism - the idea. Technical Report. LITH-IDA-
R-94~12.

Str6mb/ick, L (1994b). FLUF: A Flexible Unification
Formalism - Syntax and Semantics. Technical Re~
port. LITH-IDA-R-94-13.

846

