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A B S T R A C T  

We argue that flexibility is an important property for 
unification-based formalisms. By flexibility we mean 
the ability for the user to modify and extend the for- 
malism according to the needs of his problem. The 
paper discusses some properties necessary to achieve 
a flexible formalism and presents the FLUF formal- 
ism as a realization of these ideas. 

1 M O T I V A T I O N  

Unification based-formalisms are in common use 
within natural language processing and many differ- 
ent formalisms have been defined. PATR-II (Shieber 
et  al., 1983) is the most basic and a kind of common 
denominator which other formalisms are extensions 
of. Other formalisms are STUF (Beierle et  al., 1988), 
TFS (Emele & Zajac, 1990), CUF (D6rre & Eisele, 
1991) and, ALE (Carpenter, 1992). These formalisms 
include, for example, disjunction, various variants of 
negation and typing. When vaa'ious grammatical the- 
ories, such as LFG (Kaplan & Bresnan, 1983) or 
HPSG (Polku'd & Sag, 1987) are included, the range 
of extensions suggested to unification-based gram- 
mars becomes very wide. There are also many variant 
proposals on how the same extension should be used 
and interpreted. 

When using these formalisms for a particular prob- 
lem, it is oRen the case that the constructions pro- 
vided do not con'espond to the needs of your 
problem. It could either be the case that you want an 
additional construction or that you need a slight mod- 
ification of an existing one. Since the extensions are 
nmnerous it seems hard to include everything in one 
single formalism. 

In some formalisms, especially TFS and CUF, the 
user is allowed to define new constructions. This is an 
interesting property that I will develop further to 
achieve flexibility. In a flexible formalism, the user 
can define all the constructions he needs or modify 
definitions provided by the formalism. With this kind 
of formalism problems such as those mentioned 
above would not arise. 
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A flexible formalism would be a useful tool for 
delining various kinds of knowledge needed at differ- 
ent levels in a natural language system. It would be a 
great advantage to be able to use the same system for 
all levels, but adjusting it to suit the various structures 
that are needed at each level since the relations 
between the different levels would be clearer and it 
would be easier to share structures between the levels 
(cf. Seiffert (1992) for more motiwttion). 

Another advantage with such a formalism is that it 
can be used to define and test extensions and w~rious 
grammatical formalisms for the purpose of compari- 
son. 

Flexible formalisms allow the user to defne an 
expensive extension and use it for the cases where he 
really needs it. Thus an extension that is considered 
too expensive to be provided by a general formalism, 
can be included as it can provide a more efficient rep- 
resentation of some particular phenomenon. This is 
particularly important since, in natural language 
processing, it is common that expensive construc- 
tions are required for few and limited cases. 

However, if the user is allowed to define expensive 
constructions, an additional goal, predictability, must 
be considered. By this I mean that inefficient compu- 
tations should be necessary only when the construc- 
tion causing the inefficiency really participates in the 
computation. This idea was discussed in StrOmb/ick 
(1992) where I give a predictable algorithm for unifi- 
cation of feature structures containing disjunction. 
The goal of predictability is closely related to modu- 
larity, since if it is possible to make different con- 
structions independent of each other, it is easier to 
find predictable algorithms for them. Since this paper 
will discuss properties of a flexible formalism rather 
than unification algorithms there, will be no further 
discussion of predictability. 

In the following I first discuss the most important 
properties of a flexible formalism. I then present a 
flexible formalism, FLUF, by using it to define 
PATR-I[. The size of this paper does not admit a thor- 
ough description of FLUF and its semantics. This is 
given in StrOmbfick (l 994a, 1994b). 
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2 ACHIEVING FLEXIBILITY 

in this section l state some necessary properties of a 
flexible formalism. 

It is essential that the formalism does not provide a 
single basic construction in which all other structures 
must be defined, as this often leads to clumsy repre- 
sentations. Instead the user defines everything he 
needs. Theretbrc a flexible formalism must provide 
some way of defining structures and objects. These 
can be divided into two groups; those that are used as 
general elements in the t'ormalism, for example fea- 
ture structures or the empty set; and those that m'e 
specific for a particular problem, for example the 
attribute number. 

In addition to the elements defined in a fonnalism 
the user needs other ways of describing his objects, 
e.g logical operators, such as conjunction and dis- 
junction, and functions, such as concatenation of 
lists. Important to note here is that these constructs do 
not add further elements to the defined language, they 
just specify additional syntax for describing the 
objects. 

Another requirement tor a flexible formalism is that 
the user nmst define the behaviour of his elements, 
that is, how they unify with each otheL Similarly, 
when defining some additional syntax, he nmst spec- 
ify the meaning of it. I have chosen to do this by stat- 
ing constraint relations, which means that results 
from term rewriting systems (Middeltorp & Halnoen, 
1992) and algebraic specification (Ehrig & Mahr, 
1985) can be applied. Using constraint relations it can 
be specified that two defined objects should be inter- 
preted as the same, or that one object should subsume 
some other object. 

The last property I want to mention is the use of an 
inheritance hierarchy fur the delinitions. This is a 
good way of taking advantage of similarities between 
different extensions and also a suitable way of defin- 
ing linguistic knowledge (see, fi)r example, the arti- 
cles in Computational Linguistics 18(2,3)). 

By using an inheritance net for defining new con- 
structions in the formalism several other benefits arc 
obtained. One is that if the mathematical properties of 
a construction are known, this knowledge can be used 
instead of defining the construction with constraint 
relations. The inheritance net allows us to replace the 
construction defined with constraint relations with a 
predefined mathematical domain provided that both 
the properties of this domain and how objects unifies 
are known. 

The inheritance net also provides ways to iinprove 
the efficiency in in~plementations of the system. 
Since a defined construction corresponds to a node in 

~ c e p t  noun;] 

Fig. 1: A FLUF definition 

the net (together with inherited information), known 
unification algorithms tbr objects corresponding to 
this node can be used. This gives the design of a full- 
scale implementation as a library of the most com- 
mon extensions, where the user can choose which he 
wants and define new ones or change existing defini- 
tions only when necessary. 

3 T H E  F L U F  F O R M A L I S M  

In this section I show how the FLUF formalism 
works by defining feature structures as they are used 
in PATR-ll. I have defined conjunction and disjunc- 
tion and some minimal linguistic knowledge. The 
inheritance hierarchy expressing the definition is 
shown in Fig. 1. 

First the objects needed to build feature structures 
are defined. This is done using classes. The objects 
needed are attributes and values. These are the two 
subclasses of top. Values are divided into atomic and 
complex values, corresponding to the two classes 
atom 'and fs'. 

The two chtsses top and value are used to build up 
the hierarchy and contain no object definitions of 
their own, all objects are defined in atom, attribute 
andf~, l show the definitions of Is' and attribute 
below. The definition of atom is very similar to the 
definition of attribute. 

chtss Is; 
isa value; 
consmtctor empty; 
constructor add_pair: attribute,value,Is; 
constraint empty>add pair(A,V, FS); 
constraint add_pair(A,U,add pair(A,V, FS))= 

add pair(A,and(U,V),FS); 
constraint add pair(A,U,add pair(B,V, FS))= 

add pair(B ,V, add pair(A ,U ,FS)). 

class attribute; 
isa top; 
constructor instances. 
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A class definition contains the name of the class and 
the parent in the hierarchy. Furthermore, classes can 
contain constructor and constraint definitions. The 
constructor definitions state what elements the class 
contains. In the definition offs above, the class con- 
tains one element empty, and one element 
add_pair(A,V, FS) for each possible instantiation of A 
as an attribute, V as a value and FS as afs. In the def- 
inition of add~pair the symbols after : refer to the 
type of the arguments to addpair. Here it can be 
noted that FLUF makes use of typed terms. In the 
examples i omit the types when writing terms since 
they are clear from the context. 

The definition of attribute makes use of a special 
constructor instances. This constructor means that the 
elements in the class are defined as objects below it. 

In the definition offs constraint relations are used. 
In FLUF ' = '  is used to specify that two terms should 
be interpreted as equal and ' < ' o r  ' > '  to specify the 
subsumption order between the defined elements. 
The reason for having both >- and <-relations is that 
the left hand side of a relation is seen as the expres- 
sion being defined and the right hand side as what it 
is defined as. 

In the example above the first constraint tells us 
that empty should subsume every constructor starting 
with add pair. 2 The second relation states thatfs 's 
containing the same attribute more than once should 
have the same interpretation as the structure contain- 
ing the attribute only once with the conjunction of the 
two values as its value. The third equation says that 
the attribute order in afs is irrelevant. 

Next conjunction and disjunction are added. They 
do not add any new elements to our language and are 
defined as functions. For a function the name of the 
function, the type of the result and the number and 
type of arguments to the function are specified. To 
give the meaning of function expression constraints 
are specified as relations in the same way as for 
classes. The definitions of and and or are given 
below. 

function and; 
result value; 
arguments value,value; 
constraint and(X,Y)<X; 
constraint and(X,Y)<Y. 

function or; 
result value; 

2. Here there is a slight difference from PATR-II since 
empty does not subsume atoms. The interpretation used in 
PATR-II can be obtained by defining empty as a value. 

arguments value,value; 
constraint or(X,Y)>X; 
constraint or(X,Y)>Y. 

By these definitions both functions give a value as 
result and take two values as their arguments. The 
constraint definition of and tells us that and is sub- 
sumed by its arguments, while or subsumes its argu- 
ments. 

Next, some linguistic knowledge is defined. First 
the attributes and atoms used by the application are 
given. This can be done using objects. An object is 
specified by just giving a name and a parent in the 
inheritance hierarchy. What is special here is that 
object definitions are only allowed if there is an 
ancestor in the hierarchy which has a constructor 
specified as instances. As an example I give the def- 
inition of cat. 

object cat; 
isa attribute. 

When defining linguistic knowledge, concept defini- 
tions are used to group it into conceptual parts. In a 
concept definition the name of the concept and its 
parent in the inheritance hierarchy are specified. It is 
also possible to specify a requirement as a typed 
term. The meaning of such a requirement specifica- 
tion is that all objects that are of this concept must 
contain at least the information given by the require~ 
ment. Two concept definitions from the example are 
wordcat and verb. Their definitions are given below. 

concept wordcat; 
isa atom. 

concept verb; 
isa fs; 
requires add pair(cat,v,empty). 

With this definition of PATR~II grammar rules can be 
represented as feature structures. The terms in FLUF 
allows assigning variables to subterms which gives a 
simple representation of coreferences in PATRdl. 

A declarative and operational the semantics of 
FLUF is given in S tr0mbgck (1994b). The declarative 
semantics is an initial algebra semantics where the 
elements given by a definition are interpreted on a 
partial order. The operational semantics amounts to 
giving a unification algorithm which in many ways is 
similar to narrowing (see, for example, Middeltorp & 
Hamoen (1992)). The FLUF formalism is sound, but 
not fully complete. 

4 FURTHER EXAMPLES 

In this section I give two further examples that dem- 
onstrate the flexibility of FLUF. The first example 
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~ cl0sed 

~ ~ ' / / / / / / ~ .  add pair~a,v,closcd) 

Fig. 2: The subsumption order for 
closed feature structures 

shows how fixed arity feature structures (used in, for 
example, STUF (Beierle et al., 1988)) can be defined. 

class fs; 
isa value; 
constructor empty; 
constructor closed; 
constructor add pair:attribute,value,fs; 
constraint empty>closed; 
constraint empty>add_pair(A,V, FS); 
constraint add_pair(A,U,add_pair(A,V, FS))= 

add_pair(A,and(U,V),FS); 
constraint add_pair(A,U,add pair(B,V, FS))= 

add pair(B ,V, add pair(A,U ,FS)). 

Compared to the definition offi '  given previously, a 
new constructor closed is added. The idea here is that 
a feature structure ended with closed has a fixed arity 
and can not be extended with new attributes. The 
given constraint relations would give us the sub- 
sumption order shown in Fig. 2. The most general 
structure is at the top. The shadowed areas represent 
feature structures not explicitly written in the figure. 

The next example shows how different interpreta- 
tions of sets can be detined in FLUE First I give a 
definition of sets corresponding to that used in HPSG 
(Pollard & Moshier, 1990). 

class set; 
isa ...; 
constructor empty; 
constructor Md elem(wdue,set); 
constraint add_elem(V, add elem(V,S))= 

add_elem(V,S); 
constraint add elem(Vl,add elem(V2,S))= 

add elem(V2,add_elem(V 1 ,S)). 

Here the two constructors for sets empty and 
add elem are detined. The two constraint relations in 
the definition say that each element only occurs once 
in a set and that the element order in a set is irrele- 
vant. With this definition the unifications below hold. 
To increase readability I have used the common nota- 
tion for sets. 

{X,Y}U{a}={a} 
{X,Y}U{a,b}={a,b} 

In the first example the first constraint rule, identify- 
ing X and Y, is used. 

For some linguistic phenomena it would be more 
useful to have an interpretation of sets where unifica- 
tion works like union. In FLUF this can be obtained 
by the definition below. 

class set; 
isa ...; 
constructor empty; 
constructor add elem(value,set); 
constraint empty>add elem(V,S); 
constraint add Mem(V 1 ,add elem(V2,S))= 

add elem(V2,add_elem(V 1 ,S)). 

The difference between this detinition aM the previ- 
ous one is that empty subsume all other sets. An ele- 
ment is also allowed to occur more than once in a set. 
With this second definition the first unification above 
has three possible results. 

[{a,Y} 
{X,Y}U{a}= t {X,a} 

[{x,Y,a} 
In the first result a is identified with X, in the second 
with Y, and in the third with neither of them. Pres- 
ently FLUF gives all these three results as alterna- 
tives of the unilication. 

The reason why a set can be extended with new ele.. 
ments in the second definition but not in the first is 
that the semantics of FLUF assumes that if two 
expressions are not ordered by some constraint rela- 
tion they are incomparable. Thus in the first definition 
sets are only related if all their elements are. FLUF 
assumes that all delined constructions are monotonic, 
so by the constraint relation given for empty in the 
second definition it can be concluded, for example, 
that (a}>{a,b }. 

Other examples of what can be defined in FLUF are 
lists', trees and strings. It is also easy to define func- 
tions such as concatenation of lists in FLUF. 

5 DISCUSSION 

This paper discusses how a flexible unification for~ 
realism that can be used to obtain tailored unifiers for 
specific problems can be designed. I identify some 
important properties of a formalism that can be used 
to obtain flexibility. These are that the user nmst be 
allowed to define the elements he needs and functions 
on them. He must also have some way of defining the 
behaviour of his elements and functions. I observe 
that there are several advantages with using an inher- 
itance hierarchy for detining the formalism and lin- 
guistic knowledge. 
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I present the FLUF formalism as a concretization of 
these ideas of a flexible formalism. As for the expres- 
siveness of FLUF, it is still limited. There is a need 
for extending the hierarchy to allow for multiple 
inheritance and non-monotonicity. Str6mb~ick 
(1994a) provides more discussion on the expressive- 
ness of FLUE 

There is very little discussion about unification 
algorithms in this paper. There is, however, a pilot 
implementation of the FLUF formalism. The imple- 
mentation handles everything described above, but is 
very inefficient since it is based directly on opera- 
tional semantics. There are, however, several 
improvements that can be made, for example apply- 
ing existing results for more efficient narrowing 
(Hanus (1993) gives an overview) and integrating 
existing unification algorithms for some commonly 
used structures such as feature structures. The idea of 
integrating existing algorithms ensures us a more pre- 
dictable behaviour for FLUKE 

Another possibility is to use ideas from constraint 
logic programming (Jaffar & Lassez, 1987). This is 
particularly important in applications where this sys- 
tem is combined with some other process, for exam- 
ple, a parser. 
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