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A b s t r a c t  

We propose a bottom-up variant of Earley de- 
duction. Bottom-up deduction is preferable to 
top-down deduction because it allows incremen- 
tai processing (even for head-driven grammars), 
it is data-driven, no subsumption check is needed, 
and preference values attached to lexical items can 
be used to guide best-first search. We discuss the 
scanning step for bottom-up Earley deduction and 
indexing schemes that help avoid useless deduc- 
tion steps. 

1 Introduction 

Recently, there has been a lot of interest in Earley 
deduction [10] with applications to parsing and 
generation [13, 6, 7, 3]. 

Earley deduction is a very attractive framwork 
for natural language processing because it has the 
following properties and applications. 

• Memoization and reuse of partial results 

• Incremental processing by addition of new 
items 

• Hypothetical reasoning by keeping track of 
dependencies between items 

• Best-first search by means of an agenda 

*This work was supported by the Deutsche Forschuugs- 
gemeinschaft through the project N3 "Bidirektionale Lin- 
guistische Deduktion (BiLD)" in the Sonderforschungsbe- 
reich 314 Ki lns t l i che  In te l l igenz  - -  Wissensbas ier te  Sy-  
sterne and by the Commission of the European Communi- 
ties through the project LRE-61-061 "Reusable Gramma- 
tical Resources." I would like to thank Gfinter Neumann, 
Christer Samuelsson and Mats Wirdn for comments on this 
paper. 

Like Earley's algorithm, all of these approa- 
ches operate top-down (backward chaining). The 
interest has naturally focussed on top-down me- 
thods because they are at least to a certain degree 
goal-directed. 

In this paper, we present a bottom-up variant 
of Earley deduction, which we find advantageous 
for the following reasons: 

I ne r emen ta l i t y :  Portions of an input string can 
be analysed as soon as they are produced (or 
generated as soon as the what-to-say com- 
ponent has decided to verbalize them), even 
for grammars where one cannot assume that 
the left-corner has been predicted before it 
is scanned. 

Da t a -Dr lven  Process ing :  Top-down al- 
gorithms are not well suited for processing 
grammatical theories like Categoriai Gram- 
mar or nesG that would only allow very 
general predictions because they make use 
of general schemata instead of construction- 
specific rules. For these grammars data- 
driven bottom-up processing is more appro- 
priate. The same is true for large-coverage 
rule-based grammars which lead to the crea- 
tion of very many predictions. 

S u b s u m p t i o n  Checking:  Since the bottom-up 
algorithm does not have a prediction step, 
there is no need for the costly operation of 
subsumption checking) 

Search S t ra t egy :  In the case where lexical ent- 
ries ]lave been associated with preference in- 

1Subsumption checking may still be needed to filter out 
spurious ambiguities. 
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formation,  this information can be exploited 
to guide the  heuristic search. 

2 Bottom-up Earley Deduction 

Earley deduction [10] is based on grammars  en- 
coded as definite clauses. The ins tant ia t ion  (pre- 
diction) rule of top-down Earley deduction is not 
needed in bo t tom-up  Earley deduction,  because 
there is no prediction. There is only one inference 
rule, namely the reduction rule (1)3 In (1), X ,  
G and G t are literals, ~ is a (possibly empty)  se- 
quence of l i terals,  and a is the most general unifier 
of G and G'.  The leftmost  l i teral in the. lmdy of a 
non:unit  clause is Mways the selected literal.  

X ~ (;' A ~ 
(.~l (:__ 

~(.x +- ~) (~) 

In 1)riuciple, this rule can be applied to any 
pair  of unit clanses and non:unit  clauses of the 
program to derive any consequences of the pro: 
gram. In order to reduce this search space and 
achieve a more goal-directed behaviour,  the rule 
is not applied to any pair  of clauses, but  clauses 
are on]y selected if they can contr ibute to a proof 
of the goal. The set of selected clauses is (;ailed 
the char t .  3 The selection of clauses is guided by a 
scanning step (section 2.1) an(l indexing of clauses 
(section 2.2). 

2 .1  Scann ing  

The purpose of the scanning step, whic:h corre- 
sponds to lexical lookup in chart  parsers,  is to 
look up base cases of recursive definitions to serve 
as a s tar t ing point for bo t tom-up  processing. The 
scanning step selects clauses tha t  can appear  as 
leaves in the proof  tree lbr a given goal C. 

Consider the following simple definition of an 
HPSG, with the recursive definition of the predi- 
cate sign/I. 4 

2This rule is called combine by Earley, and is also re- 
ferred to as the f lmdamental  rule in the literature on 
chart parsing. 

aThc chart differs from the state of [10] in that clauses 
in the chart arc indexed (cf. section 2.2). 

4 We use feature terms in dcfinitc clauses in addition to 
Prolog terms, f:X denotes a feature structure where X is 
the value of h:ature f, and X ~ Y denotes the conjunction 

sign(X) <- phrasal_sign(X). 
sign(X) <- l e x i c a l  sign(X).  

phrasal sign(X ~ dtrs:(head dtr:RD & 
comp_dtr:CD) 

sign(RD), 
sign(CD), 
principles(X,HD,CD). 

) <- 

principles(X,HD,CD) <- 
constituent_order_principle(X,HD,CD), 
head_featureprinciple(X,RD), 

constituent order principle(phon:X_Ph, 
phon:HD_Ph, 
phon:CD_Ph) <- 

sequence_union(CD_Ph,HD_Ph,X_Ph). 

The predicate  sign/1 is defined recursi- 
vely, and the base case is the predicate 
l e x i c a l _ s i g n / 1 .  But,  clearly it is not restric- 
tive enough to find only the predicate name of 
the base case for a given goal. The base cases 
must also be ins tant ia ted  in order to find those 
that  are useful for proving a given goal. In the 
case of parsing, the lookup of base cases (lexi- 
cal i tems) will depend on the words tha t  are 
present in the input  string. This is implied by 
the first goal of the predicate  p r i n c i p l e s / 3 ,  the 
c o n s t i t u e n t  o r d e r  p r i n c i p l e ,  which determi- 
nes ihow the l'nON value of a const i tuent  is con- 
s t ru t t ed  from the eflON values of its daughters.  
in general,  we assume tha t  the const i tuent  order 
principle makes use of a linear and non-erasing 
oI)eratkm tor combining s t r ingsJ  If this is the 
case, then M1 the words contained in the PnON va- 
lue of the goal can have their lexical i tems selected 
as unit clauses to s tar t  bo t tom-up  processing. 

l%r generation,  an analogous condition on logi- 
cal forms has been proposed by Shieber [13] as the 
"semantic monotonici ty  condition," which requi- 
res tha t  the :logical form of every base case must 
subsume some por t ion of the goal 's logical form. 

Base case lookup must  be defined specifically 
tbr different g rammat ica l  theories and directions 
of processing by the predicate  l o o k u p / 2 ,  whose 
first argument is the goal and whose second ar- 
gument is the selected base case. The following 

of the feature terms X and Y. 
r'There is an obvions connection to the Linear Context- 

Free Rewriting Systems (LCFRS) [15, 16]. 
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clause defines the lookup relation for parsing with 
HPSG. 

7. lookup(+Goal,-BaseCase) 
lookup (phon : PhonList, 

lexical_sign(phon: [Word] ~ synsem:X) 
) <- 

member (Word, PhonList ), 
lexicon(Word,X). 

Note that the base case clauses can become 
further instantiated in this step. If concatena- 
tion (of difference lists) is used as the operation 
on strings, then each base case clause can be in- 
stantiated with the string that follows it. This 
avoids combination of items that are not adjacent 
in the input string. 

lookup (phon : PhonLis t, 
lexical_sign(phon: [Word[ Suf] -Suf 

synsem : Synsem) 
) <- 

append(_, [Word I Suf] , PhonList), 
lexicon (Word, Synsem). 

In bottom-up Earley deduction, the first step 
towards proving a goal is perform lookup for the 
goal, and to add all the resulting (unit) clauses to 
the chart. Also, all non-unit clauses of the pro- 
gram, which can appear as internal nodes in the 
proof tree of the goal, are added to the chart. 

The scanning step achieves a certain degree of 
goal-directedness for bottom-up algorithms bec- 
ause only those clauses which can appear as lea- 
ves in the proof tree of the goal are added to the 
chart. 

2.2 Indexing 

An item in normal context-free chart parsing can 
be regarded as a pair (R,S) consisting of a dotted 
rule R and the substring S that the item covers 
(a pair of starting and ending position). The fun- 
damental rule of chart parsing makes use of these 
string positions to ensure that only adjacent sub- 
strings are combined and that the result is the 
concatenation of the substrings. 

In grammar formalisms like DCG or IIPSG, the 
complex nonterminals have an argument or a fea- 
ture (PtION) that represents the covered substring 
explicitly. The combination of the substrings is 

explicit in the rules of the grammar. As a conse- 
quence, Earley deduction does not need to make 
use of string positions for its clauses, as Pereira 
and Warren [10] point out. 

Moreover, the use of string positions known 
from chart parsing is too inflexible because it el= 
lows only concatenation of adjacent contiguous 
substrings. In linguistic theory, the interest has 
shifted from phrase structure rules that combine 
adjacent and contiguous constituents to 

• principle-based approaches to grammar that 
state general well-formedness conditions in- 
stead of describing particular constructions 
(e.g. IIPSG) 

• operations on strings that go beyond conca- 
tenation (head wrapping [11], tree adjoining 
[15], sequence uuion [12]). 

The string positions known from chart parsing 
are also inadequate for generation, as pointed out 
by Shieber [13] in whose generator all items go 
from position 0 to 0 so that any item can be com- 
bined with any item. 

Itowever, the string positions are useful as an 
indexing of the items so that it can be easily detec- 
ted whether their combination can contribute to a 
proof of the goal. This is especially important for 
a bottom-up algorithm which is not goal-directed 
like top-down processing. Without indexing, there 
are too many combinations of items which are use- 
less for a proof of the goal, in fact there may be in- 
finitely many items so that termination problems 
can arise. 

For example, in an order-monotonic grammar 
formalism that uses sequence union as the opera- 
tion for combining strings, a combination of items 
would be useless which results in a sign in which 
the words are not in the same order as in the input 
string [14]. 

We generalize the indexing scheme from chart 
parsing in order to allow different operations for 
the combination of strings. Indexing improves ef- 
ficiency by detecting combinations that would fall 
anyway and by avoiding combinations of items 
that are useless for a proof of the goal. 

We define an item as a pair of a clause Cl and 
an index Idx, written as (Cl~ Idx}. 
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Below, we give some examples of possible in- 
dexing schemes. Other indexing schemes can be 
used if they are needed. 

1. N o n - r e u s e  o f  I t e m s :  This is useful for 
LCFRS, where no word of the input string 
can be used twice in a proof, or for genera- 
tion where no part  of the goal logical form 
should be verbalized twice in a derivation. 

2. N o n - a d j a c e n t  c o m b i n a t i o n :  This indexing 
scheme is useful for order-monotonic gram- 
mars. 

3.  N o n - d i r e c t i o n a l  a d j a c e n t  c o m b i n a t i o n :  
This indexing is used if only adjacent con- 
stituents can be combined, but the order 
of comhination is not prescrihcd (e.g. non- 
directional basic categorial grammars).  

4.  D i r e c t i o n a l  a d j a c e n t  c o m b i n a t i o n :  
This is used tbr grammars with a "context- 
flee backbone." 

5. F ree  c o m b i n a t i o n :  Allows an item to be 
used several times in a proof, tor example for 
the non-unit clauses of the program, which 
would be represented as items of the form 
<X ~-- (11 A . . .  h Gn,  fret;). 

The following table summarizes the properties 
of these live coml)ination schemes. Index 1 (11) 

is the index associated with the non-unit clause, 
Index 2 (12) is associated with the unit clause, and 
I1 * 12 is tit(; result of coml)ining tile indices. 

I Index 1 Index 2 Result [ Nolc 
12 11 ,12  [ 

1. X Y X U Y  I X r q Y - - q )  
2. X Y X ( . ) Y  I 
3. X + Y  Y + Z  X + Z  I 

Y + Z  X + Y  X + Z  I 
. . . . . . .  + 

4. X - Y  Y - Z  X - Z  I 
5 .  l--~-- 'free ~ . . . .  ~ - - +  

In case 2 ("non-adjacent combinatiou"), the 
indices X and Y consist of a set of string positions, 
and tile operation (:) is the union of these string 
positions, provided that  no two string positions 
fi'om X and Y do overlap. 

In (2), the reduction rule is augmented to 
handle indices. X ,  Y denotes the combination 
of the indices X and Y. 

(X +- G Afl, l l )  
(c' +-,12/ 

+- a) ,  n .  12> (2) 

With the use of indices, the lookup relation 
becomes a relation between goals and i tems. The 
following specification of the lookup relation pro- 
vides indexing according to string positions as in 
a chart parser (usable for combination schemes 2, 
3, and 4). 

lookup (phon : PhonList, 
item(lexical sign(phon:[Word] & 

synsem:X), 
Begin-End) 

) <- 

nt h_member (Word, Begin, End, PhonLis t ), 
lexicon(Word,X) . 

nth member(X,O,l,[X[_]). 

nth member(X,NI,N2,[_lR]) <- 
nth member(X,NO,Ni,R), 
N2 is N1 + 1. 

2.3  Goal Types  

In constraint-based grammars there are some pre- 
dicates that  are not adequately dealt with by 
bottom-up Earley deduction, for example the 
llead Feature Principle and the Subcategorization 
Principle of nrsG. The Head Feature Principle 
just unifies two variables, so that  it can be exe- 
cuted at compile time and need not be called as 
a goal at runtime. The Subcategorization Princi- 
ple involves an operation on lists (appond/3 or 
d o l o t + / 3  in different formalizations) that  does 
not need bot tom-up processing, but can better 
be evaluated by top-down resolution if its argu- 
ments are sulficiently instantiated. Creating and 
managing items for these proofs is too much of a 
computational overhead, arid, moreover, a proof 
may not terminate in the bot tom-up case because 
infinitely many consequences may be derived fi'om 
the base case of a recursively defined relation. 

In order to (teal with such goals, we associate 
the goals in the body of a clause with goal types. 
The goals that  are relevant for bot tom-up Earley 
deduction are called wail ing goals because they 
wait until they are activated by a unit clause that  
unifies with the goalfi Whenever at unit clause is 

6The other goM types arc top-down goals (top-down 
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combined with a non-unit clause all goals up to 
the first waiting goal of the resulting clause are 
proved according to their goal type, and then a 
new clause is added whose selected goal is the first 
waiting goal. 

In the following inference rule for clauses with 
mixed goal types, E is a (possibly empty) sequence 
of goals without any waiting goals, and 9t is a 
(possibly empty) sequence of goals starting with 
a waiting goal. (r is the most general unifier of 
G and G ~, and the substitution v is the solution 
which results from proving the sequence of goals 
~ ,  

( X + - - G A ~ A ~ , I 1 )  
(a'  ~-, x2) 

( r a ( X  ~ f~), 11 * 12) 
(a) 

2.4 Correctness and Completeness 

In order to show the correctness of the system, 
we must show that the scanning step only adds 
consequences of the program to the chart, and 
that any items derived by the inference rule are 
consequences of the program clauses. The former 
is easy to show because all clauses added by the 
scanning step are instances of program clauses, 
and the inference rule performs a resolution step 
whose correctness is well-known in logic program- 
ming. The other goal types are also proved by 
resolution. 

There are two potential sources of incomple- 
teness in the algorithm. One is that the scanning 
step may not add all the program clauses to tim 
chart that are needed for proving a goal, and the 
other is that  the indexing may prevent the deriva- 
tion of a clause that is needed to prove the goal. 

In order to avoid incompleteness, the scanning 
step must add all program clauses that are needed 
for a proof of the goal to the chart, and the combi- 
nation of indices may only fail for inference steps 
which are useless for a proof of the goal. That 

depth-first search), x-corner goals (which combine bottom- 
up and top-down processing like left-corner or head-corner 
algorithms), Prolog goals (which are directly executed by 
Prolog for efficiency or side-effects), and chart goals which 
create a new, independent chart for the proof of the goal. 
DSrre [3] proposes a system with two goal types, namely 
trigger goals, which lead to the creation of items and othcr 
goals which don't .  

the lookup relation and the indexing scheme sa- 
tisfy this property must be shown for particular 
grammar formalisms. 

In order to keep the search space small (and 
finite to ensure termination) the scanning step 
should (ideally) add only those items that are nee- 
ded for proving the goal to the chart, and the in- 
dexing should be chosen in such a way that it ex- 
cludes derived items that are useless for a proof of 
the goal. 

3 Best-First Search 

For practical NL applications, it is desirable to 
have a best-first search strategy, which follows the 
most promising paths in the search space first, and 
:finds preferred solutions before the less preferred 
ones .  

There are often situations where the criteria 
to guide the search are available only for the base 
cases, for example 

® weighted word hypotheses from a speech re- 
cognizer 

• readings for ambigous words with probabili- 
ties, possibly assigned by a stochastic tagger 
(el. [2]) 

hypotheses for correction of string errors 
which should be delayed [5] 

Goals and clauses are associated with prefe- 
rence values that are intended to model the de- 
gree of confidence that a particular solution is the 
~correct' one. Unit clauses are associated with 
a numerical preference value, and non-unit clau- 
ses with a formula that determines how its prefe- 
rence value is computed fi'om the preference va- 
lues of the goals in the body of the clause. Prefe- 
rence values can (but need not) be interpreted as 
probabilities. 7 

The preference values are the basis for giving 
priorities to items, l'br unit clauses, the priority is 
identified with the preference value, tibr non-unit 
clauses, where the preference formula may contain 
uninstantiated variables, the priority is the value 
of the formula with the free variables instantiated 
to the highest possible preference value (in case 

7For further details and examples see [4] and [5]. 
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of an interpretation as probabilities: 1), so that  
the priority is equal to the maximal possible pre- 
ference valne for the clause, s 

The implementation of best-first search does 
not combine new itelns with the chart immedia- 
tely, but makes use of an agenda [8], on which new 
items are ordered in order of descending priority. 
The following is the algorithm for bot tom-up best- 
first F, arley deduction. 

p rocedure  prove( Goal): 
- initialize-agenda(Goal) 
- consume-agenda 
- for any item {G,I) 

- return mgu(Goal, G) as solution if it exists 

p rocedure  initialize-agenda(Goal): 
- f o r  every unit clause UCin lookup(Goal, UC) 

- create the index I for UC 
- add item (UC, I) to agenda 

- for every non-unit program clause H +- Body 
- add item (H ",-- 13ody.free) to agenda 

p rocedure  add item 1 to agenda 
- compute the priority of I 
- agenda := agenda 12 {I} 

p rocedure  consume-agenda 
- while agenda is not empty 

- remove item I with highest priority from agenda 
- add item I to chart 

procedure  add item (C, It)  to chart 
- chart := chart O {(C, I1)} 
- if 6' is a unit clause 

- for all items (H ~-- G A E A ~, 12) 
- if I = 12-k I1 exists 

and r, = mgu(C, G) exists 
and goals ~ are provable with solution r 
then add item (ra(H ~- ~), 1) to agenda 

- i f  C = H ~- G A E A  ~ is a non-unit clause 
- for all items (G' ~-, I2) 

- if I = I1 -k I2 exists 
and ~r = mgu(G, G') exists 
and goals ~ are provable with solution r 
then add item (ra(l t  +- ~2), I) to agenda 

The algorithm is parametrized with respect to 
the relation l o o k u p / 2  and the choice of the inde- 
xing scheme, which are specific for difi'erent gram- 
matical theories and directions of processing. 

SThere are also other methods for mssigning priorities to 
items. 

4 Implementation 

The bot tom-up Earley deduction algorithm des- 
cribed here has been implemented in Quintus Pro- 
log as part  of the GeLD system. GeLD (Gene- 
raJized Linguistic Deduction) is an extension of 
Prolog which provides typed feature descriptions 
and preference values as additions to the expressi- 
vity of the language, and partial evaluation, top- 
down, head-driven, and bot tom-up Barley deduc- 
tion as processing strategies. Tests of the system 
with small grammars have shown promising re- 
salts, and a medium-scale HPSG for German is pre- 
sently being implemented in GeLD. The lookup 
relation and the choice of an indexing scheme must 
be specified by the user of the system. 

5 Conclusion and thlture Work 

We have proposed bot tom-up Earley deduction 
as a useful alternative to the top-down methods 
which require subsumption checking and restric- 
tion to avoid prediction loops. 

The proposed method should be improved in 
two directions. The first is that  the lookup predi- 
(:ate should not have to be specified by the user, 
but automatically inferred from the program. 

The second problem is that  all non-unit clau- 
ses of tile program are added to the chart. The 
addition of non-unit clauses should be made de- 
pendent on the goal and the base cases in order 
to go from a purely bottora-up algorithm to a di- 
rected algorithm that  combines the advantages of 
top-down and bot tom-up processing. It has been 
repeatedly noted [8, 17, 1] that  directed methods 
are more efficient than pure top-down or bot tom- 
up methods. However, it is not clear how well 
the directed methods are applicable to grammars 
which do not depend on concatenation and have 
no unique 'left cornet" which should be connected 
to the start symbol. 

It remains to I)e seeit how bot tom-up Barley 
deduction compares with (and can be combined 
with) the improved top-down Barley deduction of 
l)hrre [3], Johnson [7] mud Neumann [91, and to 
head-driven methods with well-formed substring 
tables [1], and which methods are best suited for 
which kinds of problems (e.g. parsing, generation, 
noisy input, incremental processing etc.). 
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