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Abstract

Frequency information on co-oceurrence patterns can
be automatically collected from a syntactically ana-
lyzed corpus; this information can then serve as the ba-
sis for selectional constraints when analyzing new text
from the same domain. This information, however, 1s
necessarily incomplete. We report on measurements of
the degree of selectional coverage obtained with differ-
ent sizes of corpora. We then describe a technique for
using the corpus to identify selectionally similar terms,
and for using this similarity to broaden the selectional
coverage for a fixed corpus size.

1 Introduction

Selectional constraints specify what combinations of
words are acceptable or meaningful in particular syn-
tactic relations, such as subject-verb-object or head-
modifier relations. Such constraints are necessary for
the accurate analysis of natural language text. Accord-
ingly, the acquisition of these constraints is an cssen-
tial yet time-consuming part of porting a natural lan-
guage system to anew domain. Several research groups
have attempted to automate this process by collecting
co-oceurrence patterns (e.g., subject-verb-object pat-
terns) from a large training corpus. These patterns
are then used as the source of selectional constraints
in analyzing new text.

The initial successes of this approach raise the ques-
tion of how large a training corpus is required. Any
answer to this question must ol course be relative to
the degree of coverage required; the set of selectional
patterns will never be 100% complete, so a large cor-
pus will always provide greater coverage. We attempt
to shed to some light on this question by processing
a large corpus of text from a broad domain (business
news) and observing how sclectional coverage increases
with domain size.

In many cases, there are limits on the amount of
training text available. We therefore also consider how
coverage can be increased using a fixed amount of text.
The most straightforward acquisition procedures build
selectional patterns containing only the specific word
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combinations found in the training corpus. Greater
coverage can be obtained by generalizing from the
patterns collected so that patterns with semantically
related words will also be considered acceptable. In
most cases this has been done using manually-created
word classes, generalizing from specific words to their
classes [12,1,10]. If a pre-existing set of classes is used
(as in [L0]), there is a risk that the classes available
may not match the nceds of the task. If classes are
created specifically to capture selectional constraints,
there may be a substantial manual burden in moving
to a new domain, since at least some of the semantic
word classes will be domain-specific.

We wish to avoid this manual component by auto-
matically identifying semantically related words. This
can be done using the co-occurrence data, i.e., by iden-
tifying words which occur in the same contexts (for ex-
ample, verbs which occur with the same subjects and
objects). From the co-occurrence data one can com-
pute a similarity relation between words [8,7]. 'l'his
similarity information can then be used in several ways.
One approach is to form word clusters hased on this
sirnilarity relation [8]. This approach was taken by
Sekine et al. at UMIST, who then used these clusters
to generalize the semantic patterns [{1]. Pereira et al.
[9] used a variant of this approach, “soft clusters”, in
which words can be members of different clusters to
different degrees.

An alternative approach is to use the word similar-
ity information directly, to infer information about the
likelihood of a co-occurrence pattern from information
This is the
approach we have adopted for our current experimenls
[6], and which has also been employed by Dagan et
al. [2]. We compute from the co-occurrence data a
“confusion matrix”, which measurcs the interchange-
ability of words in particular contexts. We then use
the confusion matrix directly to generalize the seman-
tic patierns.

about patterns involving similar words.

2 Acquiring Semantic Patterns

Based on a scries of experiments over the past two
years [5,6] we have developed the following procedure



for acquiring scmantic patterns from a text corpus:

1. Parse the training corpus using a broad-coverage
grauntar, and regularize the parses to produce
something akin to an LG f-structure, with explic:
itly labeled syntactic relations such as SUBJECT
and OBJRC!

2. lixtract Trom the regularized parse a series of
triples ol the form
head head-ol~argument,
Jumodifier

syntactic-relation

We will use the notation < w; rw;
triple, and < 7 w; > for a relation-argument pair.

> lor such a

3. Cowmpute the frequency I of each head and cach
triple in the corpus. [If a sentence produces N
parses, a triple generated from a single parse has
weight 1/N in the total.

We will use the notation I'(< w;rw; >) for the fre-

quency of a triple; and Iy .qq(1w;) for the frequency

with which w; appears as a head in a parse troe.?
lor example, the sentence

Mary likes young linguists {rom Limerick.

would produce the regularized syntactic structure

(s like (subject (np Mary))
(object (np Linguist (a-pos young)
(from (np Limerick)))))

from which the following four triples are generated:

like subject Mary
like object linguist
linguist  a-pos young
linguist  from Limerick

Given the frequency information /7, we can then
estimmate the probability that a particular head w;
with modifier

appears a particular

< 7wy

argument  or

(< wi vy >)

[/'hcud(“)i)
Tlis probability information would then be used in
scoring alternative parse trees, for the evaluation be-
low, however, we will use the frequency data I7 divectly.

Step 3 (the triples extraction) includes a number of
special cases:

'But with somewhat more regularization than is doue in LI
in particular, passive structures are converted to corresponding
aclive forms.

?Note that headalws) i
different from 1°(w; appears as a head in a triple) since a single
Lead in a parse trec may produce several such triples, one for
cach argument or modifier of that head.

(a) if a verb has a separable particle (e.g., “out” in
“carry out”), this is attached to the head (to cre
ate the head carry-out) and not treated as a sepa-
rate relation. Diflerent particles often correspond
to very different senses of a verh, so this avoids
conflating the subject and object distributions of

these different senses,

(b) il the verb is “be”, we generate a relation be-
complement between the subject and the predicate

cotnplenent,.

(¢) triples in which cither the head or the argument is
a pronoun are discarded

(d) triples in which the argument is a subordinate
clause are discarded (Ghis includes subordinate

conjunctions and verbs taking clausal argumenis)

(e) triples indicating negation (with an argument, of
“not” or “never”) arc ignored

3 Generalizing Semantic Pat-
terns

The procedure deseribed above produces a set of fre-
guencies and probability estimates based on specific
words. "T'he “traditional” approach to generalizing this
mtormation has been to assign the words to a set of
seinantic classes, and then to collect the frequency in-
formation on combinations of semantic classes [12,14.
Since at least some of these classes will be domain
specifie, there has been interest in automating the ac-
quisition of these classes as well, This can be done
hy clustering together words which appear in the same
context. Starting from the (ile of triples, this involves:

I. collecting for each word the frequency with which
it oceurs in each possible context; for example, for
a noun we would collect the frequency with which
it occurs as the subject and the object of cach verb

2. delining a similarity measure between  words,
which reflects the number of common contexts in
which they appear

3. forming clusters based on this similarity measure

Such a procedure was performed by Sckine et al. al
UMIS'T [LL]; these clusters were then manually re
viewed and the resulting clusters were used to gener-
alize selectional patterns. A similar approach to word
cluster formation was described by Hirschinan et al.
in 1975 [8]. More recently, Percira et al. [9] have de-
sceribed a word clustering method using “soft clusters”
in which a word can belong to several clusters, with
diflerent cluster membership probabilities,

Cluster ercation has the advantage that the clusters
arc amenable to manual review and correction.  On
the other hand, our expericnce indicates that success-
ful cluster generation depends on rather delicate ad-

Justiment of the clustering criteria. We have therefore
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elected to try an approach which directly uses a form
of similarity measure to smooth (generalize) the prob-
abilities.

(lo-occurrence smoothing 1s a method which has
been recently proposed for smoothing n-gram rmodels
[3].% The core of this method involves the computation
of a co-occurrence matrix (a malrix of confusion prob-
abilities) Pe(wj|w;), which indicates the probability of
word w; occurring in contexts in which word w; occurs,
averaged over thesc contexts.

Po(w;lw;) = ZP(wj|s)P(5|w,>)
225 Plwjls) P(wils)’(s)
P(w;)

where the sum is over the set of all possible contexts s.
In applying this technique to the triples we have col-
lected, we have initially chosen to generalize (smooth
over) the first element of triple. Thus, in triples of the
forin word! relation word2 we focus on wordl, treating
relation and word? as the context:

Pe(wilw?)
> P(wi] < rw; ) P(< rw; > [w)
Z (< wirwy >)

]*1(< ”wW; >)

i

< wirw; >)
Fheml(w;‘)

W,

Informally, we can say that a large value of Po(w;|w])
indicates that w; is selectionally (semantically) accept-
able in the syntactic contexts where word w} appears.
For example, looking at the verb “convict”, we sce that
the largest values of Pi(convict, @) are for # = “acquit”
and # = “indict”, indicating that “convict” is selec-
tionally acceptable in contexts where words “acquit”
or “indict” appear (see Figure 4 for a larger example).

How do we use this information to generalize the
triples obtained from the corpus? Suppose we are in-
terested in determining the acceptability of the pattern
convict-object-owner, even though this triple does not
appear in our training corpus. Since “convict” can
appear in contexts in which “acquit” or “indict” ap-
pear, and the patterns acquit-object-owner and indict-
object-owner appear in the corpus, we can conclude
that the pattern convict-object-owner is acceptable
too. More formally, we compute a smoothed triples
frequency Fg from the observed frequency F' by aver-
aging over all words w}, incorporating frequency infor-
mation for w) to the extent that its contexts are also
suitable contexts for w;:

Fg(<wirw; >) = Z Po(wi|w)) - F(< wirwj >)
;

wy

In order to avoid the gencration of confusion table en-
trics from a single shared context (which quite often

3We wish to thank Richard Schwartz of BBN for referring us
to this method and article.
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is the result of an incorrect parse), we apply a filter
in generating P’c: for i # j, we generate a non-zero
Pe(wj|w;) only if the w; and w; appear in at least two
common contexts, and there 1s some common context
in which both words occur at least twice. Further-
more, if the value computed by the formula for P is
less than some threshold 7, the value is taken to be
zero; we have used 7¢ = 0.001 in the experiments re-
ported below. (Thesc filters are not applied for the
case i = j; the diagonal elements of the confusion
matrix are always computed exactly.) Because these
filters may yeild an un-normalized confusion matrix
(i.e., 3w, Po(wslwy) < 1), we renormalize the matrix
so that _,,. Po(wjlwi) = L.

A similar approach to pattern generalization, using
a similarity measure derived from co-occurrence data,
has been recently described by Dagan ct al. [2]. Their
approach differs from the one described here in two
significant regards: their co-occurrence data is based
on linear distance within the sentence, rather than on
syntactic relations, and they use a different similarity
measure, based on mutual information. The relative
mierits of the two shmilarity measures may need to be
resolved empirically; however, we believe that there s
a virtue to our non-symmetric measure, because sub-
stitutibility in sclectional contexts is not a symmetric
relation.t

4 Evaluation

4.1 Evaluation Metric

We have previously [] described two methods for the
evaluation of sermantic constraints, FFor the current ex-
periments, we have used one of these methods, where
the constraints are evaluated against a set of manually
classified sernantic triples.®

For this evaluation, we sclect a small test corpus sep-
arate from the training corpus. We parse the corpus,
regularize the parses, and extract triples just as we did
for the semantic acquisition phase. We then manually
classify cach triple as valid or invalid, depending on
whether or not it arises from the correct parse for the
sentence.®

We then establish a threshold 7' for the weighted
triples counts in our training set, and define

41f wy allows a broader range of arguments than wsy, then
we can replace wz by wy, bul not vice versa, l'or example, we
can replace “speak” {which takes a human subject) by “sleep”
(which takes an animate subject), and still have a selectionally
valid pattern, but not the other way around.

5Ihis is similar to tests conducted by Percira et al. [9]) and
Dagan et al. [2]. 'The cited Lests, however, were based on selected
words or word pairs of high frequency, whereas our test sets
involve a representative set of high and low frequency triples,

SThis is a different criterion from the one used in our earlier
papers. In our earlier work, we marked a triple as valid if it
could be valid in some sentence in the domain, We found that it
was very difficult to apply such a standard cousistently, and have
therefore changed to a criterion based on an individual sentence.
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Figure 1: Recall/precision trade-off using cntire cor-

pus.

vy number ol triples in test set which were classified
as valid and which appeared in training set with
count, > 1

v_. numiber of triples in Lest set which were classilicd
as valid and which appeared in training set with
count. <7’

i nunber of triples in test set which were classified
as invalid and which appeared in training set with
count > '

and then define

Yop
recall = =
vy +vo

- vy
precision == —— 4
U + by

By varying the threshold, we can sclect different
trade-ofls of recall and precision (at high threshold, we
select only a small number of triples which appeared
frequently and in which we therefore have high confi-
dence, thus obtaining a high precision but low recall;
conversiely, at a low threshold we adrmit a muach larger
number of triples, obtaining a high recall but lower
precision).

4.2 st Data

The training and test corpora were taken from the Wall
Street Journal. In order to get higher-quality parses
of these sentences, we disabled sonie of the recovery
mechanisms normally used inour parser. Of the 57,366
sentences in our training corpus, we obtained complete
parses for 34,414 and parses of initial substrings for an
additional 12,441 sentences. These parses were then
We generated a
total of 279,233 distincet triples from the corpus.

regularized and reduced to triples.

The test corpus  -used to generate the triples which
were manually classified - consisted of 10 articles, also
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[igure 2: Growth of recall as a function of corpus size
(percentage of total corpus used). o = at 72% preci-
sion; e == maxirum recall, regardless of precision; x ==
predicted values for maxirmum recall

from the Wall Sireet Journal, distinet lrom those in
the training set. These articles produced a test set
containing a total of 1932 triples, of which 1107 were
valid and 825 were invalid.

4.3 Results

4.3.1 Growth with Corpus Sizc

We began by gencrating triples from the entire corpus
and evaluating the sclectional patterns as described
above; the resulting recall/precision curve generated
by varying the threshold is shown in Figure 1.

To sce how pattern coverage inproves with corpus
size, we divided our training corpus into 8 segments
and computed sets of triples based on the first segment,
the lirst two seginents, etc. We show in Figure 2 a plot
ol recall vs, corpus size, both at a constant precision of

72% and for maximuin recall regardless of precision.”

T'he rate of growth of the maximum recall ean be
understood in terms of the {requency distribution of
triples. In our carlier work [4] we {it the growth data
to cnrves of the forin | — exp(—f2), on the assump-
tion that all selectional patterns are equally likely.
"I'his may have been a roughly accurate assumption for
that application, involving semantic-class based pat-
terns (rather than word-based patterns), and a rather
sharply circumscribed sublanguage (medical reports).
For the (word-level) patterns described here, however,

the distribution is quite skewed, with a small number
of very-high-frequency patterns,® which results in dif-

"No data point is shown for 72% precision for the first seg-
ment alone because we are not able to reach a precision of 72%

with a single segiment.
8'he number of high-frequency patterns is accentuated by
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ferent growth curves. Figure 3 plots the number of
distinct triples per unit frequency, as a function of fre-
quency, for the entive training corpus. This data can
be very closely approximated by a funetion of the form
N(I") = al'=%, where v = 2.2.9

To derive a growth curve for maximum recall, we
will assume that the frequency distribution for triples
sclected al random [ollows the same form. Let p(7)
represent the probability that a triple chosen at ran-
dom is a particular tripte 7. Let P(p) be the density
of triples with a given probability; i.c., the number of
triples with probabilitics between p and p+ ¢ is ¢ P(p)
(for sinall €). Then we are assuming that P(p) = kp™?,
for p ranging from some minimum probability pyi, to
L. For a triple T, the probability that we would find
al least one instance of it in a corpus of 7 triples is
approximately 1 - ¢=™(T) The maximum recall for a
corpus of 7 triples is the probability of a given triple
(the “test triple”) being sclected at random, multiplied
by the probability that that triple was found in the
training corpus, summed over all triples:

S0(1) (1)
pe
which can he computed using the density function

1
/ p-P(p)- (1 — e )dp

Pmin

1
:/ kp-p~ (1 —
1

Danin

"M Ydp

By sclecting an appropriate value of & (and correspond-
Ing pouin so that the total probability is 1), we can get a

the fact that our lexical scanner replaces all identifiable com-
pany nates by the token a-company, all currency values by a-
currency, etc. Many of the highest frequency triples involve such

tokens.
OThis is quite similar to a Zipf’s law distribution, for which
=32,
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[w Pe(bond|w)
eurobond 0.133
foray 0.128
mortgage 0.093
objective 0.089
marriage 0.071
note 0.068
maturity 0.057
subsidy 0.016
veteran 0.046
commitment 0.046
debenture 0.044
activism 0.043
mile 0.038
coupon 0.038
security 0.037
yield 0.036

| issuc ) 0.035 |

I'igure 4: Nouns closely related to the noun “bond”,
ranked by ¢.

good match to the actual maximun recall values; these
computed values arc shown as x in Pigure 2. Fxcept
for the smallest data set, the agrecment is quite good
considering the very simple assumptions made.

4.3.2  Smoothing

lu order to increase our coverage (recall), we then ap-
plied the smoothing procedure to the triples from our
training corpus. In testing our procedure, we first gen-
erated the confusion matrix Pe and examined some of
the entries. Figure 4 shows the largest entries in e for
the noun “bond”, a common word in the Wall Street
Journal. 1t is clear thal (with some odd cxceptions)
most of the words with high £ values are semanti-
cally related to the original word.

"To evaluate the effectiveness of our smoothing pro-
cedure, we have plotted recall vs. precision graphs for
both unsmoothed and smoothed frequency data. The
results arce shown in Figure 5. Over the range of preci-
sions where the two curves overlap, the smoothed data
performs better at low precision/high recall, whereas
the unsmoothed data is betier at high precision/low
recall. In addition, sinoothing substantially extends
the level of recall which can be achicved for a given
corpus size, although at some sacrifice in precision.

Intuitively we can understand why these curves
should cross as they do. Smoothing introduces a cer-
tain degree of additional error. As is evident from Fig-
ure 4, some of the confusion matrix entries are spuri-
ous, arising from such sources as incorrect parses and
the conflation of word senses. In addition, some of the
triples being genceralized are themselves incorrect (note
that even at high threshold the precision is below 90%).
The net result is that a portion (roughly 1/3 to 1/5) of
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the triples added by smoothing are incorrect. At low
levels of precision, this produces a net gain on the pre-
cision/recall curve; at higher levels of precision, there
15 a net loss. In any event, smoothing does allow for
substantially higher levels of recall than are possible
without smoothing.

5  Conclusion

We have deronstrated how selectional patterns can be
automatically acquired from a corpus; and how selec-
tional coverage gradually increases with the size of the
training corpus. We have also demonstrated that -
for a given corpus size - - coverage can be significantly
improved by using the corpus to identify sclectionally
related terms, and using these stmilarities to generalize
the patterns observed in the training corpus. ‘L'his is
consistent with other recent results using related tech-
niques [2,9].

We believe that these technigues can be further fm-
proved in several ways. The experiments reported
above have only gencralized over the lirst (head) po-
sition of the triples; we need to measure the cflect of
generalizing over the argnument position as well. With
larger corpora it may also be feasible to use larger pat-
terus, including in particular subject-verb-objeet pat-
terns, and thus reduce the confusion due to treating
dilferent words scuses as common contexts,
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