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Abstract

We show the application of an optimisation technique to
natural language processing: genetic algorithms, thanks
to the definition of a data structure called board and
a formal distance. The system has two interesting
features: non-directionality, which 1s more than bi-
directionality, and self-assessment, independently of the
inner knowledge. Results of experiments are presented
and discussed.

Topical paper: Software for NLD

Introduction

The purpose of this article is to show that an engine
based on an optimisation technique, namely genefic al-
gorithms, can perform NLP tasks: analysis and gener-
ation in the frame of example-based approaches. But
more than that, the system we have built has interesting
properties:

¢ it is truly non-directional, i.e.

than bi-directional tasks;

it performs more

e it evaluates its results relatively to the input, and
not relatively to its internal knowledge.

Two original facts make this possible:

e the definition of a data structure, called board
which is in essence bidirectional. It is the associa-
tion of a sentence pattern and its linguistic strue-
ture;

e the definition of a distance on this data structure.

1 Motivations

1.1  Non-directionality
Qur main motivation was to design a system where not
only the formalism but also the system engine is bi-
directional. In [Lepage 91}, we sketched such an engine
tor a rule-based approach.

From a theoretical point of view, such a system is
also more interesting than a system where, although the
formalism would be bi-directional, analysis and genera-
tion would be separate modules resulting from different
compilations,

In our sketch, a more general property than bi-direc-
tionality ~merged: pon-direclionality. Bi-direclionality

6716

is just the property of executing analysis and genera-
tion with the same set of specilications, whereas non-
directionality allows miore: a complete sentence and its
complete analysis can be built from a partial specifica-
tion of the sentence and a partial description of the as-
sociated structure.

1.2  Self-assessment

A second motivation lies in a flaw of rule-based systeins
using context-free parsers, which is that they often fail
to deliver a solution for trivial reasons such as a word
missing in a dictionary. On the contrary, our system al-
ways delivers an output for any input, would the solution
be "bad”. Of course, this would be of no meaning if the
quality of outputs would not be evaluated. Hence, when
delivering a solution, the system scores it.

Some machine translation systems viewed as expert
systems may return an evaluation of their work in terms
of their knowledge (grammar) [Tong 89}, some other may
evaluate the result according to thesaurus classification
and statistical frequencies [Furuse and Iida 92b], but all
these methods are specific. Iere, on the contrary, the
system delivers a score which is a formal distance be-
tween the input and the output. Thus, it is independent
of the linguistic representation chosen (dependency or
constitiuency). This is not the case of a proposal such as
{ITarrison el ol 91).

This score is a possible answer to the serious lack of
assessment in natural language processing, as it may ap-
ply to any other system, leading to reliable comparisons
of intrinsic performances

2 Realisation

Genetic algorithms constitute a possible answer Lo the
previous motivations, 'They are a collection of techniques
for approaching the solution of optimisalion problems
[Goldberg 89).

On the contrary to usual programming techniques
which handle only one object at a time, genetic algo-
rithms deal with o collection of individuals, called a pop-
ulation. For each individual, one can compute a function,
called the fitness funciion. Those individuals for which
the fitness fMinction is optimum, are the best tdividuals.

From two individuals, one can derive two new indi-
viduals by cutling them into two pieces and gluing the



pieces back in the way illustrated in Figure 1. This is
crossover, Some random modification of the children
may occur, accounting for mulation to complete the ge-
netic metaphor.
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Figure 1: Principle of crossover

The previous operation can be repeated over a popu-
lation a number of times so that populations follow one
another. In the last generaifion, the best individuals are
hopefully solutions of the optimisation problem at hand.

In order to apply genctic algorithms to natural lan-
guage processing, one has to determine:

o which data has to play the role of individuals;
e consequently, what a population will be;
e for an individual, what ils fitness is;

e in a population, how individuals are selected for
crossover and how 1t is performed;

e how analysis and generation can be viewed as op-
timisation problems on a population.

‘The meeting of our research interests with genetic al-
gorithms is a consequence of various available results.

Firstly, the need for linguistic specification of com-
puter grammars led to the proposal of an original data
structure called board. This data structure is neutral
with respect to analysis and generation. It will play the
role of individuals. Boards rely on the data structure
of forests, for which it is possible to define a crossover
method.

Secondly, the stream of example-based machine trans-
lation is now well-established and justifies considering a
collection of already parsed sentences as a population
[Sadler and Vendelmans 90}, [Sato and Nagao 90].

Finally, our recent work on distances, and especially
on distances between uncompletely specified boards, led
us to the idea of looking in a data base for boards with
the closest distance Lo a given board. This is an optimi-
sation problem and the fitness of any board will simply
be a function of its distance to the given board.

In the following we will first describe the data strue-
tures used. Then we will define the (unctions working
on these data structures.

2.1 Data structures
2.1.1

The board data structure [Vauquois and Chappuy 85]
was introduced as an answer to the problem of speci-
fication of real-size grammars. A board is the associa-
tion of a text with its corresponding linguistic structure.
Moreover, constraints express the linguistic validity of
the fine-grained correspondences between different parts
of the texts and of the structure [Boitet and Zaharin 88],
[Zaharin and Lepage 92]. As‘a particular case, projec-
tive constituency boards such as Figure 2 verify these
constraints.

Boards would be of little use if they would not allow
the description of patterns. lHence, Figure 3 is also a

Individuals = Boards

Figure 2: A board

valid board. It is similar to Pigure 2, except that por-
tions of the string and the tree have been replaced by
variables (prefixed by a $ sign). These variables stand
for forests, not. only for trees - the point is important,
Because it is always better to look for a unified view of

! S |
I el [J— i
| modal NP vp |
| I J— |
| pron  $vb Np |
) |
| det $noun |
| |
I I

Fignre 3: A board with variables

objects, the string part and the tree part are considered
to be of the same data type, that of forest. As a matter
of fact, a string is a forest with only enc level, and a tree
is a forest with only one node on the highest level. Now,
as forests are the underlying data type, variables stand
naturally for subforests. On the string side, considering
variables as forests is by far more interesting than il they
would instantiate with one word only.

An interesting property about the board data struc-
ture, and it is exactly why it has been devised, is that,
because it is the association of a string (the text) and a
(linguistic) tree, it is neutral with respect to the main
natural language processing operations:

o analysis (inpul: string, outpul: tree);

e generation (input: tree, output: string).

2.1.2 Population = Data hase of boards

Our database of sentences is that of ATR telephone
conversations. These dialogues are telephone conversa-
tions for a scenario where somebody calls a secretari. 1 to
get information about a coming conference he would ke
to attend. Figure 4 is an excerpt from these dialogues.

- Hello.
= This is the Conference Office.
= Could you tell me about the attendance fee for the

Conference? If I apply for the Conference now, how
much is the attendance fee?

= Yes. At present the attendance fee is 35,000 yen per
person. If you apply nect month, it will be 40,000 yen.

Figure 4@ An excerpt from the ATR dialogues

We kept 10 of these dialogues in English. This repre-
sents 255 sentences of which 150 are different.,
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The linguistic structures corresponding to the previ-
ous sentences have been drawn by hand and scrupulously
reviewed to ensure consistency. They are syntactic con-
stituency trees and are exactly projective, which means
that each leaf in the tree corresponds to a word in the
sentence in the same order.

As for illustration, all the trees and sentences in this
paper are extracted from our data base of boards. Some
representational choices have been made to limit the
number of morpho-syntactic categories to 14 (and phrase
types to 7) and to keep projectivity by all means.

2.2 Tanctions
2.2.1  Fitness = Distance between forests

We define the fitness of an element in a population (sel
of boards) as the distance to a given input {a board) to
the system. In other words, we have to define a distance
between boards. A simple idea is to take the sum of the
distances between the strings on the one hand, and the
trees on the other hand. As strings and trees are forests,
a distance on forests is required.

The definition of a distance on forests is given below,
with a, b being nodes, u, u/, v, v/ being forests and .
denoting concatenation of forests.

dist(a(u'y.u, b(v').0) = min(
dist{a{u'), b) 4 dist(u,v),
dist{a(u'),e) o+ dist(u,b(v').v),

dist(e,b(v"))  + dist(a(u’ ), v))

dist(a(u’), €) = dist(a,€) o dist(u’,€)
dist(a(u’), b(v")) = dist{a, b) o dist(u’ u')
dist(a,b) = 0 ifa=tb

1 else (replacement)
dist(e,a) = 1 (insertion)
dist{a,e) = 1 (deletion)

It is a direct generalisation of two classical distances
on strings [Wagner & TFischer 74] and trees [Selkow 77].
Both distances answer the correction problem: what
is the minimal number of typing operations needed to
transform one object into the other one? In both dis-
tances and their generalisation to forests, the typing op-
erations are insertion, deletion and replacement

An extension of the previous distance to forest pat-
terns (i.e. forests containing variables) has been pre-
sented in [Lepage et al. 92]. It is no longer a metric, so
we call it a proximity score. With this score, the dis-
tance between a varlable and a constant object is zero
by definition. Figure 5 gives an illustration (the unit is
a one word or node difference).

2.2.2 Crossover = Exchange of subforests

We turn now to crossover. The first question is how
be . ds abe selected in a population for crossover.

1t seems reasonable that those individuals with better
fitness value should intervene more in the production of
the next generation. Along this line, the simple following
law gives the probability of a board i with fitness f;
(some reciprocal of distance) to be sclected for crossover:

fi
T s
pi Z.‘ 7,

As for crossover itself, it has to be defined on strings
and on trees.

On strings, be they chromosomes or sequences of bits,
crossover is generally performed as itlustrated in F'ig-
ure L. We could crossover sentences following this simple
principle (see Figure 6).
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before crossovaer after crossover

"Thank you very much."

hpuk you ¥ ue "Thank you halp you."
ay elp you?

"Hay 1 very much."

Figure 6: Crossover on strings

But we insist on keeping the unity of data struc-
ture between strings and trees. So, we translate string
crossover into forest terms: it is the exchange of the sis-
ter forests of the crossover points. This can be applied
directly to trees, see Figure 7. This technique is different
from the exchange of subtrees as proposed in [Koza 92).

before crossover after crossover

S S
T ([—
VP AVP vp AVP
..... o I .
sverb NP AVP adv verb vp AVP adv
! wdee
pron adv verb NP adv
S pron
modal NP WP 5

U
pron verb NP modal NP NP

| bl

pron pron pron

Iigure 7: Crossover on forests (crossover points are
marked by *)

Now, by keeping projectivilty during crossover, only
corresponding parts of strings and trees will be ex-
changed. As a consequence, string crossover will allow
exchange of inner substrings. ‘To sum up, a board ob-
tained by crossover will give a partially valid description
ol a possibly ungrammatical sentence (see Figure 8).

before crossover

after crossover

! § ! | 5
| SRR PO | | S SO
| vp VP | i vp AP
T weloe ] [ .
| wverb NP AVP adv | | verb vp AVP wdv |
| b | | -
| pron adv | | verb KP adv
| | { {
|"Thank you very much.'] | pron
|
|"Thank help you very much."

! |

! {

| modal %P vp | | S |
! o PO . I— |
| prea verb NP | | modul NP NP |
] I | |
| pron | | pron pron |
! ! ! !
| “May I help you." | | "May T you." |

Iigure 8: Crossover on projective boards

2.2.3  Optimisation problem = Closest board iu
database

The system built for the experiment implements a
simple genetic algorithm, The starting populalion is a
set of example boards, i.e. complete senlences with their
complete associated linguistic structures,
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IFigure 5: Distance between two boards

If an input board is given to the system, each board
in the data base of examples can be assigned a fitness
score: its distance to the input board.

e When the input is a board where the linguistic tree
is unknown (a variable), the output will be the clos-
est board containing the closest sentence with its
associated tree. This is a kind of analysis.

| 31 | | S |
| | | e [ |
] | | modal P W
| ! | [
| | } pron verb NP |
| ! ! I
| | | pron |
| | [ |
] "may I help you" | | "May I help you?" |

output

e When the input is a board where the string is un-
known (a variable), the output will be the closest
board containing the closest tree with its associated
string. This is a kind of generation.

| | | 5 !
| | | [— !
| | | modul NP vp

] ! | [ DO
| pron verb NP | | pron verb XP |
| I | I
] noun | | pron |
! | I t
| g | | "May T help you?" |

input output

e When the input is a board where both the sentence
and the linguistic tree are partially specified (they
contain variables), the output will be the closest
hoard containing a complete sentence and its com-
plete associated linguistic structure.

! 5 ! I 5 |
! Y [ ! | e (N |
} §1 WP VP | modal NP VP
| Pl | | [
| pron $2 | { pron verb WP |
| | | I
| | ! pron |
| | ! |
[ "33 help you $4" | | "May I help you?" |

output

We call the last operation non-direclional comple-
tion. In fact, analysis and generation are only particular
cases of this operation. For instance, analysis is non-
directional completion for a board with no variable in
the string part, and a variable as the tree part.

For each operation above, the external behaviour of
the system may be considered different, although the
internal behaviour is exactly the sanee. In any case) the

output is a board, buill from picces of the data hase
boards, and minimising the distance to the input. It is
important to stress the point that the input never enters
the data base of boards. 1t is only used to compute the
fitness of each board in the data base in each generation.
Figure 9 sunmarises the system and its functioning.

T ]

. -
I . : -
/9: * erfuffar ¢ %
01N — 2
JouM sl § e vz
T t LI I T
] outpul
Input )
,‘ )
-
.
. .
. -
. .
N

generatlon | genaration 2

gensration n

Pigure 91 A scheme of the system

3  Iixperimentation
3.1  Experiments

We tested the performance of the systemn for analysis,
generation and non-directional completion.

For analysis, a hoard is extracted from the data base
(cadl it reference board). A new board is built by as-
sociating the string part of the reference board with a
variable as its tree part. It hecomes the input Lo the sys-
tem. Of course, the reference board is eliminated from
Lhe database,

A first measure is given by the system itsell; it is the
fitness of the output, which is the distance between the
output and the input. A second measure is the distance
between the output and the reference board, which re-
flects the absolute quality of the output. Moreovér, run-
times have been measured.,

T'his procedure was carried out for each board of the
data base so that average values could be computed.
There were 225 boards in the data base
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For gencration, the same procedure was applied, but,
of course, the tree part is kept in building the input
board. For non-directional completion, an uncomplete
board is automatically built by inserting variables at ran-
dom positions in the siring and tree parts of the reference
board.

3.2 Results

Analysis  Analysis gives an average error of about 9.2
elements relatively to the exact output after thirty gen-
erations. The average number of elements (nodes and
words) in a board is 24.5, henee, the error rate is 38%,
not a very good result. The fitness gives the average
number of words wrong in the average string output by
the system: around 3.2 words for a 8.5 word-long sen-
tence.

sncration | Atness | quality [ time (in sec.) |
3 .01 11.86 151
[§ §.48 13.09 8.61
] 4,52 13.52 10.80
i3 1,60 1350 13.96
15 1.46 13.027] 15,02
18 413 12.07 1582 |
31 3.7 11.39 16.74
34 .68 10.60 17.65
[ 37 3.35 965 18.07
[ a0 3,23 994 1363
Generation Generation is performed with better re-

sults than analysis. The average error in the tree only is
1.1 node for 16 node-heavy trees and the absolute error
rate Talls to 12%. However, as expected, generation is
slower than analysis because more tree distance compu-
tations are performed.

generation fitness quality time im sei
3 4.64 9.49 3.16
G 473 9.49 14.85 |
9 3.92 3.06 16.86
12 3.56 7.35 18.76
5 239 5.38 18.95
18 2.01 4.64 18,99
[~ 31 174 3.95 19,14
g 1,43 352 16,54
27 1.33 321 20,01
30 1.14 7.86 7301 |

Non-directional completion The [ollowing resuits
must be considered as purely illustrative, because the
form of boards for non-directional completio i: anve-
stricted. As could be expected, because no pa.. 15 €om-
plete in the input, quality is worse than for analysis and

generation, although fitness appears to be quite good.

Eveuural.ion fitness | quality 1 time
3 .02 14.09

4 561 14,16
G 4,92 1372
[ 3,97 13,97
i5 789 1399
i3 717 | 1498
21 1,59 13.96 0%
34 1.39 13,25 20,01
7 [z R T
30 1.10 13780 2739
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3.3 Discussion

We will now discuss the advantages and drawbacks of
our system.

3.3.1

The general function of the system is to build a com-
plete sentence and its complete associated syntactic tree
from a partially specified sentence and a partially spec-
ificd tree. Heuce, analysis and generation turn oul to
be only particular cases of this general operation. This
feature i1s what we called non-directionalily. 1t is more
general than bi-directionality. Until now, we are not
aware of any natural langnage processing system having
this property.

From the applications point of view, non-directionali-
ty allows one to envisage linguistically founded editing
operations. For example, suppose we would like to re-
place refund the fee by pay the fee back all over a text.
We would like the operation to apply for any lense of
the verb. The following board could be used to retrieve
all possible candidates. It says that we want a verbal
phrase (structural constraint) and that the substring fee
must appear (string constraint). Of course, to perform
such an operation, we would not advise the use of geneltic
algorithms . .,

Non-directionality

| |
| . |
| verb §1 |
! |
! |

3.3.2 Assessment

Because parts of the input may be modified in the
output, assessment is necessary. ‘The system delivers a
score which is not directly connected to the knowledge of
the system. It is the distance between the input and the
output. Minimising this distance is precisely the task
of the system. As this score is a theoretical metric be-
tween structures, 1t 1s not-stuck to a particular represen-
tation. It could be applied to evaluate similar systems
using different representations, for example dependency
structures.

3.3.3 Normalising effect

Despite the previous points, important criticisms can
still he addressed to the current system.

Experiments carricd out with input sentences from
outside the data base have shown that the system has
a normalising effect: outputs are cast to resemble sen-
tences and trees from the database, This is a negati-
effect if a [ree-input, system is wanted. But, if a large
enough data base is built and if standardisation is re-
quired, as is the case with technical documents in many
companies, this may be seen as a positive feature.

3.3.4

A classical criticlsm of genetic algorithm concerns
licavy computation timme, Here, it 1s proportional to the
number of examples in the data base! This prevents us
from using a big enough data base for any reasonable-size
application.

As for space, our implementation of the system re-
lies on a toolhox which makes extensive use o dynamic
programming (sloring intermediale results to inerease
speed). Mooty size timits ave rapidly reached. In this

Computational limits



implementation, the space-time trade-ofl is a sensitive
ssue.

To remedy both these problems we are envisaging
porting our programs on a parallel machine. This does
not add anything from the theoretical point of view, but
genetic algorithms are obvious candidates lor paralleli-
sation.

Conclusion

This paper has described the application of an optimisa-
tion technique to natnral language processing tasks, v.c.
analysis and generation. 'The system has been shown
to have two interesting properties: non-directionality,
which is more than bi-directionality and self-assessment,
independently of its internal knowledge.
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