598

A TOOL FOR COLLECTING DOMAIN DEPENDENT
SORTAL CONSTRAINTS FROM CORPORA

Frangois Andry*, Mark Gawron, John Dowding, and Robert Moore

SRI International, Menlo Park, CA
*CAP GEMINI Innovation, Boulogne Billancourt, I'rance
Internet: andry@capsogeti.{r

Topical paper Tools for NL Understanding

(Portability).

1 ABSTRACT

In this paper, we describe a tool designed to gener-
ate semi-automatically the sortal constraints spe-
cific to a domain to be used in a natural language
(NTL) understanding system. This tool is evaluated
using the SRI Gemini N1, understanding system in
the ATIS domain.

2 INTRODUCTION

The construction of a knowledge base related to
a specific domain for a NI, understanding system
is time consuming. In the Gemini system, the
domain-specific knowledge base includes a sort hi-
erarchy and a set of sort rules that provide (largely
domain-specific) selectional restrictions for every
predicate invoked by the lexicon and the gram-
mar. The selectional restrictions provide a source
of constraints over and above syntactic constraints
for choosing the correct analysis ol a sentence. The
sort rules are generally entered by a linguist, by
hand, from the study of a corpus and while tuning
the grammar.

ITowever, the use of an interactive tool that
can help the linguist to acquire this knowledge
from a corpus[3][5], can drastically reduce the time
dedicated to this task, and also improve the qual-
ity of the knowledge base in terms of both ac-
curacy and conipleteness. 'The reduction in the
amount of effort to develop the knowledge base
becomes obvious when porting an existing system
to a new domain. At SRI, our main concern was
to port Gemini, our NL understanding system to
other domains without investing the same amount

of work we put into the first domain application!,

In this paper, we deseribe the results of us-
ing this semi-antomatic tool to port the Gemini
NT systemn to the ATIS domain, a domain that
Gemini had already been ported to, and for which
it had achieved high performance and grammati-
cal coverage using hand-written sortal constraints.
Chossing a known domain, rather than a new one,
allowed us to compare the performance of the de-
rived sorts to the hand-written ones, holding the
domain, grammar, and lexicon constant. It also
allowed us to evaluate the semi-automatically ob-
tained coverage using the cvaluation tools pro-
vided for the ATYS corpus.

3 PARSING WITIH SORTS

Gemini[2) implements a clear separation hetween
syntactic and semantic Information. Fach syntac-
tic node invokes a sel of sermantic rules which re-
sult in the building of a set of logical forms for
that node. Selectional vestrictions are enflorced on
the logical forms through the sorts mechanism: All
predications in a candidate logical form must be k-
censed by some sorts rule. The sorts are located in
a conceptual hierarchy of approximately 200 con-
cepls and are implemented as Prolog terms such
that more general sorts subsume more specific
sorts[G]. Failure to match any available sorts rule
can thus be implemented as unification-failure.

Gemini parser creates logical forms expres-
sions like the following one :
exists((A; [flight]),

land, [[light, (A; [ftight])]; [prop],
[to, (A;[[light]),
(' BOSTON'; [cityD)]; [propl); [prop]); [prop)

In these logical form expressions, every sub-

cxpression is assigned a sort, represented as the

VThe actual domain is Air [ransportation (ATIS)
used as a benchmark in the ARPA community,

right-hand-side of a ’;” operator[l]. Sorts rules for
predicates are declared with sor/2 clauses:

sor(' BOSTON', [city]).
sox(to, ([[flight), [city}], [prop])).

The above declarations license the use of
"BOSTON’ as a zero-ary predicate with “result-
ing” sort [eity] and ’to’ as a two-place predicate
relating flights and cities with resulting sort [prop]
(or proposition).

In the ATIS application domain, for example,
the subject (or actor) of the verb depart, as in
the morning flights deperting for denver’, can be
a flight. Tor this, we nse the following set of sort
definitions:

sor(depart, ([[departiure]], [prop]))
sor(flight, ([[flight]], [prop]))
sor(actor, ([[departure), [flight]], [prop]))

The first two definitions make depart and flight
predicates compatible with departure and flight
events respectively, returning a proposition; the
third makes actor a relation that can hold be-
tween [lights and flights, also returning a proposi-
tion. A simple example of a logical form licensed
by these rules follows (with the result sort [prop]
suppressed):
qterm(some, ((X;[flight]),
[und, [flight, (X;[flight])],
exista((Y;[flight]),
[and, [depart, (Y; [departure])],
(V; [departurc]),
[actor, (Y;[departure]), (X [flight)]
Which would be ronghly the logical form for
o departing flight’.

4 SORT ACQUISITION

The approach we have taken is to start [rom an
initial “schematic” sorts file we call the signature
file (explained below), which essentially allows all
predicate argument combinations. We then har-
vest a set of preliminary sort rules by parsing a
large corpus. "The logical forms that induce these
preliminary rules come fromn parses that esscutially
incorporate only syntactic constraints, 'T'he result-
ing sorts rules are filtered by hand and the process
is iterated with an increasingly accurate sorts file,
converging rapidly on the sorts lile specific to the
application domain (fig. 1).

4.1 Signature and Restrictions

If we started the above iteralion process with no
sortal information, then the logical forms resulting

[Corpus J
[L’ll_,ll‘lllll(‘ I 1;} step=:1 (l’«usm > steps > |

r

Sorts -} Stals

Iu(htm
Tool

,F

[New Sort l'lln I»—ﬁu g

Iigure 1o lterative Acquisition of Sorts.,

from a parse would contain no sortal information,
and only vacuous sortal rules would be harvested.

The first step is thus to build an initial sort
file we call the signature file. The idea is to as-
sign lexical predicates inherent sorts, but not to
assign assign any rules which constrain which lex-
ical items can combine with which, T'he signature
[ile, then, is not just domain-independent. 1t has
no information at all about semantic combinalo-
rial possibilities, not even those determined by the
language (for example, that the verlb break does
not allow propositional subjects). The reason for
this 1g so that it can be generated largely antomat-
ically from the lexicon.

4.2 'The Signature

Lets hegin with certain inherently relational pred-
icates, for which the signature file gives r)nly an
arity An(l the result sort. For example the signa-
ture for Lhe predicales al (corresponding to the
preposition) and actor (corresponding to logical
subject) would be the same:

signature(al, ([X, Y], [prop])
stgnature(actor, ([X, Y], [prop])

This signature is used as the sort rule for at
and actor in the sorts tool’s first iteration. The
effect is to limit the choice of sorts rules lor these
predicates to rales which are further instantiations
their signatures, that is, to rules licensing them to

5

99

600

take two arguments of any sort to make a proposi-
tion. The object in successive iterations will be
to assign these relational predicates substantive
sortal constraints, thus constraining head modifier
relations and the parse possibilities.

Verbs, nouns, some adjective and adverbs, on
the other hand, have signatures with fully or par-
tially instanciated arguments: For example, in the
ATIS domain, the verbs depart, gel.in and the
nouns date, flight have the signatures:

signature(depart, ([[departure]], [prop)))
signature(get_in, (‘[[arrz‘val]]', [prop]))
signature(data, ([[mfc?rmatzon]], [prop]))
signature(flight, ({[flight]), [prop]))

These declarations have no effect on the combi-
natorial possibilities of these words (they tell us
nothing about what can be the subject of the verb
depart or what verbs the noun flight can be sub-
ject of), but when a logical form is built up from
a syntactically licensed parse (like the one given
above for a departing flight), these sortal decla-
rations will “fill in” the sorts for the connecting
predicate actor, generating the sort rule:

signature(actor, ([[departure], [flight]], [prop})

Thus in the signature file, lexical predicates have
their own “inherent” sort rules, which then help
build up the sort rules for the relational predi-
cates. The inherent sort rules for adjectives like
cheap and late will constrain only their first argu-
ment. The reason for this is that it is this first
argument that modifiers (such as intensifying ad-
verbs and specifiers), will hook on to.

signature(cheap, ([[cost_soa), A, B], [prop]))
signature(late, ([[temporal_stage], A, B), [prop}]))

At the same time the argument position filled
in by what the adjectives modify is left uncon-
strained. The signature file thus makes no com-
mitment about what sorts of things can be lale or
cheap; it just needs to say there is such a thing
as lateness and cheapness. This is why for a new
domain the signature file can be generated largely
automatically, using a new inherent sort for each
new lexical item, assigning the type of predicate
appropriate to its grammatical category.

All zero-arity predicates (names) need to
have inherent sorts. Certain general ’tool words’
which include numbers, dates, time, and commons
words, will receive the same signatures in any do-
main :
signature(8, ([number]))

signature(friday, ([[day]), [prop)))
signature(pm, ([nonagent]))

signature(yes, ([prop]))

In addition to this, however, there is a whole list of
words specific to the domain which need to be in-
herently sorted. This part of creating a signature
file will need to be done by hand:
signature(! NASHVILLE', ([city]))
signature(' AIRCCANADA', ([airline]

)
signature(' LA GUARDIA' ([airport]))

4.3 Extracting the Sorts

We now give a more detailed example of how sort
rules are extracted from logical forms (LFs) built
by the parser. For ’the morning flights flying 1o
denver’, we obtain roughly the following Logical
Form :

qterm(the; [non_syminelric_determiner],
A [flight),
[and,
[flight, (A; [flight]),
[n.n_rel,
(B; [day-part]) [and,
{morning,
(B [day par)]
i [[daypart]], [prop],
A; [flight]),
exists(C; [flight],
[and,
[J1y, (C; [flight])],
[actor, (C; [flight)),
(A; [Jtighe])],
[has_aspeet,
(C Lftight),
(tn_progress; [aspect])),
fto, (C; [Stight]),
_ (DENV ER [ety)ID])
[flight)

The extraction process consists of a recursive
exploration of the logical form and retrieval of each
predicate and its arguments. For example, from
the LI's above, our tool would extract the follow-
ing sort definitions set? :

sor(flight, [[flight]], [prop])

sor(morning, ([day.part]], [prop])

sor(nn.rel, [([[daypart]], [prop)), [flight]], [prop])
sor(fly, {[flight]], [prop])

sor(actor, {[flight], [ftight]], [prop])

sor(to, [[flight), [city]], [prop])

sor(frag-np, {[flight]}, [prop))

*For reason of efliciency and simplification, we ex-
clide some very common predicates independent of
the domain, such as *and’, *equal’, exists’, *has.aspect’,
and ’qlterm’.

sor(np-frag, [[propl],(prop])

When constrained only by signatures, the
parser typically finds a large number of logical
forms. The sorts tool provides the option of har-
vesting sort rules in one of two ways, either {rom
all generated logical forms, or only from the Pre-
ferred Logical Form (PLF). The parse preference
component implemented in Gemini chooses the
best intepretation from the chart, based on syn-
tactic heuristics[2], and provides a set of PLFs.

In addition to the extraction of the sort rules,
we also calculate the occurrence ©; of each sort
rule for all the sentences of the corpus. We then
normalized ©; by the number of logical forms that
include the sort rule (8;). Each value ©; is stored
along with its sort rule and used to calculate the

probabilities related to the sort rule :
Prob(Sort;) :”"ﬁé—-i"“"
im0 Oi

In fact three sets of probabilitilies are caleu-
lated for each rule R: (1) Global probability of sort
rule R: the number of invocations of rule R nor-
malized by the number of LFs containing R and
divided by the total number of rule invocations in
the corpus; (2) Conditional probability of rule R
given a particular predicate; (3) Conditional prob-
ability of R given the predicate in R and an argu-
ment of the same sort as the first argument of R.

Also, associated to each sort definition, we
keep the list of the indexes of a small set of sen-
tences which contain the corresponding sort def-
inition in its logical form. This set is used as a
sample for the set editor tool.

4.4 The Argument Restrictions

The argument restrictions are instantiated ver-
sions of the signatures for each predicate. For ex-
ample, after parsing and extraction from the logi-
cal forms, the arguments X and Y of the signature
associated to the preposition af will help to gen-
crate a list of several sort definitions such as :

sor(at, ([[airport], [city]], [prop])
as in : 'the aiport at Dallas’,

sor(at, ({[domain_event], [time_poini}}, [prop])
as in : 'departure at 9pm’.

5 SORT EDITING

At cach step of the process, after parsing, the lin-
guist, using the interactive sort editor, can exam-
ine the new sort file which has been gencrated and
choose which sortal definition need to be elimi-
nated. Statistical information associated to each
sort definition helps him decide which ones are rev-
elant or not. We have also included the possiblility
of adding a sort definition, although this kind of
operations should be very rare. In fact the main
activity of the lingnist using the sort editor tool,
will be to filter the sort definitions generated by
the parsing of the corpus.

5.1 Description of the tool

The sort editor tool is an interactive, window-
based program. It has a main window for dis-
playing and editing the sorts and a set of buitons
that help the user to either display additional in-
formation or perform actions such as :

¢ load or save a sort file,

e select a functor among the list of all lunctors
and display the list of its possible arguments,
result and probabilities,

o deletion and insertion of a sort definition,

o display a sample of sentences associated to a
specific sort definition,

o mapping between the sort definitions and a ref-
erence sort file (for evaluation),

e changing the way the sort definitions are dis-
played (result or not, mapping or not, global
probability, conditional to a functor, or relative
to the first argument of a definition),

o usce of a threshold on the probabilities to filter
the sort, definitions,

o retrieve thie list of Tunctors given a certain argn-
ment,

o display the sentences associated to a sort defi-
nition,

display the list of predicates which have been
excluded form the extraction,

[2

specification of a sortal hierarchy to be used
with the sort definitions for the nexi iteration,

*

use of a whitehoard to save specific sentences
and information during a session.

The tool uses ProXT, the Quintus Prolog in-
terface to MOTIE widget set and the X-Toolkit,

601

602

6 EVALUATION AND RESULTS

tvaluate the porting to a new domain require mea-

suring how the new sort file contributes to per-
form the target task within the new domain. This
kind of evaluation is difficult because it is hard to
separate the contribution of the grammar and the
contribution of the sorts constraints. One way to
evaluate our tool would be to have a file of cor-
rect” sortal constraints that we use as a reference
to check the ones we generate with our tool. The
problern is that this kind of file does not exist for
new domains, since obtaining such file is preciscly
the purpose of our tool.

The approach we have chosen was to use the
sort file built by hand for the ATIS corpus and to
check this “reference file’ against the new sort file
we intend to build, using our tool on a corpus of
the same domaine.

6.1 Building the signature file

For the this first experimental exercise with the
sort tool, we built the signature file somewhat dif-
ferently than we would build it for a new applh-
cation. In order to facilitate evaluating the tool,
our goal this time was to come up with a signature
file be compatible with the reference [ile built by
hand.

The first step in the experiment was to auto-
matically extract the signatures from the lexicon
and reference sorts file, which contains nearly 2200
sort definitions. Signatures are largely predictable
from the grammatical category of a word For ex-
ample, most of the verbs (except the auxiliaries)
with one argument, received a signature identical
to the sort definition. On the other hand, most
of the prepositions received a signature with all
their arguments replaced by a variable (since they
are domain-specific). In this maiden voyage of the
sort acquisition system, the signatures chosen for
verbs, adjectives and nouns were made compati-
ble with the sort hierarchy used by the reference
sorts file. In porting to a new domain, the lexical
signatures would presumably use an automatically
generated sort hicrarchy, almost entirely flat, with
a unique lexical sort {or each lexical item.

In addition to this, some signatures, for logical
predicates and predicates introduced in semantic
rules, were added by hand. These represent a lit-
tle bit more than 15% of the final signature file
which contains a total of 1357 signatures. Half of
these signatures are zero-arity predicates mostly
automatically huilt from the lexicon,

6.2 Parsing Madcow

The next step of our experiment was to parse a
corpus from the ATIS domain using the signa-
ture file we have built. For this, we have used the
MADCOW corpus[4], that includes 7243 sentences
of various length (from 1 to 36 words) with a large
linguistic coverage from this domain. This process
had been done in both modes L¥s and PLEFs. The
idea was to compare the result in both modes, to
check whether the use of parsing preferences was
relevant for the extraction of the sort definitions
or if we had to use all the Logical Forms from the
parsing.

The first iteration of parsing MADCOW pro-
duced 5917 and 2275 sort rules? respectively for
the LI's and PLFs modes.

6.3 Mapping corpus and reference

rules

For this first evaluation, we also used a feature of
our tool whicli can map each sort rule produced
by the extraction phase against the rules of a ref-
erence sort file. "The mapping consists of assigning
one of the following categories to cach corpus ac-
quired sort rule :

o lixact : the corpus rule match exactly with a
reference rule,

o Incompatible : the corpus rule does not mateh
with any rveference rule,

¢ Subsumed-by : the corpus rule is subsumed by
at least one relerence rule,

e Subsumes : the corpus rule subsumes at least,
one reference rule,

o Incomparable : Lthe corpus rule is incomparable?
with at least one reference rule.

The following table shows the repartition ol
mapping categories modes LI's and PLIs @

I LIs [PLEs
Fxact 409 362
Incompatible | 3055 691
Subsumed-by | 1557 888
Subsumes 375 156
Incomparable | 52T 178

[Total 5917 [2275)

3Since zero-avity sort predicates have a signature
identical to their sort rule, only sorts rules with at
least an argument were extracted during the parsing
ofl MADCOW.

“T'wo sort rules are incomparable, when they unify
cach other while none of them subsumes the other one.

The first comments concerning these figures is
that the percentage of incompatible rules is higher
for the LI's than the ’LI's mode (respectively 52%
vs 30%), and the number of ’exact’ sorts is more
than hall for LI's than PLYs. This shows that the
use of Preferred Logical Yorms for parsing is more
efficient in extracting the ’good sorts’.

However, the figures do not give an exact idea
of the completeness and precision of our tool, since
there is a large number of rules subsumed by other
ones (more than 30% for LFs and almost 50% for
PLI's mode). In fact, some of the corpus rules are
subsumed by more general rules in the reference
sort file while providing the same coverage as the
reference sort rules,

Therefore, the precision of our tool for the
PLFs mode just after the extraction phase can
be estimated between 16% (exacts rules) and 55%
(exact rules plus subsumed rules). 'This number
gets better and more precise very quickly after the
first iteration of editing since the work of the lin-
guist is precisely to remove most of the incompat-
ible and incomparable rules and rules which are
either too general or too specific,

The overgenecration of the tool just after
parsing, for the PLFs mode, can e estimated to
at least 30% (the percentage of incorrect rules).
After the first iteration of editing, this munber
decreases very quickly since low probabilities help
the linguist to eliminate rules that are incompati-
ble or incomparable.

The recall for the PLI's mode alter parsing,
which is the ratio of the *Fxact’ corpus rules by the
number of reference rules used lor the mapping in
our evaluation (636 non zero-arity sorts rules), can
be estimated to at least 57%.

A more precise estimation of the exact num-
ber of 'Kxact’ rules could be computed by using
the sortal hierarchy, and generate for the two sets
of rules (corpus and refercnce) all the rules that
can be subsumed, and realize the mapping only
with these rules.

7 CONCLUSION

This first evaluation of our tool in the ATIS do-
main shows that the acquisition of sorts from a
corpus can be partially automated, reducing dras-
tically the time the linguistic dedicates 1o this task
(the precision converges in few editing iteration).
In addition to this, the possibility of a systematic
examination for all predicates with crosschecking
tools such as sentence visualisation and functor
browing helps the linguist Lo establish strict aqui-
sition methods for the knowledge base in new do-

niains.

In addition to this, the tool can also be used
to improve an existing knowledge base. For ex-
ample, the study of the incompatible rules dur-
ing this first evaluation helped us to discover new
rules that will increase the coverage of Gemini in
the ATIS system.,

8 Acknowledgements

‘T'his research was supported by the Advanced Re-
search Projects Agency under contract with the Oflice
of Naval Research, and by a grant of the Lavoisier Pro-
gram from the French Foreign Office. The views and
conclusions contained in this document are those of
the authors and should notl be interpreted as necessar-
ily representing the oflicial policies, either expressed or
implied, of the Advanced Research Projects Agency ol
the U.S. Government, or those of the Scientific Mission
of the I'rench Foreign Oflice.

References

(1] Alshawi, 1. (ed.), The Core Language Iin-
gene, MI'I' Press, 1992,

[2] Dowding J., Gawron I.M., Appelt D., Bear
J., Cherny L., Moore R. and Moran 1.,
“GEMINT A Natural Langoage Syslem For
Spoken-Language Understanding”, Proceed-
ings of the 31st Meeting of the Association for
Computational Linguistics, Ohio State Uni-
versity, Columbus, Ohio, pp. 54-61, 1993

[3] Grishman R., Hirschman 1. and Ngo T.N.,
“Discovery Procedures for Sublanguage Se-
lectional Patlerns Initial Kxperiments”,
Computational Linguistics, Vol. 12:3 pp. 205,
1986.

(M) Hirschiman L. “Mulii-Site Data Collection
(or & Spoken Language Corpus”, MADCOW,
in Proceedings of the DARPA Speech and Nal-
wral Language Workshop, pp. 7-14, Feb. 1992,

[6] Lang F.M., Hirschiman 1., “Tmproved Porta-
bility and Parsing ‘I'hrough Interactive Ac-
quisition of Semantic Information”, In Sec-
ond Conference on Applied Natural Language
Processing’, leb. 1988,

[6] Mellish, C., “Implementing Systemic Classi-
fication by Unification”. Computationel Lin-
guistics, Vol. 14, pp. 40-51, 1988,

603

