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Abstract

In this paper it is shown how simple texts that can
be parsed in a Lambek Categorial Grammar can
also automatically be provided with a semantics in
the form of a Discourse Representation Structure
in the sense of Kamp [1981]. The assignment of
meanings to texts uses the Curry-Howard-Van
Benthem correspondence.

0. INTRODUCTION

In Van Benthem [1986] it was observed that the
Curry-Howard correspondence between proofls
and lambda terms can be used to obtain a very cl-
egant and principled match between Lambek
Categorial Grammar and Montague Semantics.
Each proof in the Lambek calculus is matched
with a lambda term in this approach, and Van
Benthem shows how this lambda term can be in-
terpreted as a recipe for obtaining the meaning of
the expression that corresponds to the conclusion
of the Lambcek proof from the meanings of its
conslituent parts.

Usually the semantics that is obtained in this
way is an cxtensional variant of the semantics
given in Montague [1973] (Hendriks [1993]
sketches how the method can be generalized for
the full intensional fragment). However, it is gen-
erally acknowledged nowadays that the empirical
coverage of classical Montague Grammar falls
short in some important respects. Rescarch in
semantics in the last fifteen years or so has in-
creasingly been concerned with a set ol puzzles
for which Montague’s original system does not
seem to provide us with adequate answers. The
puzzles [ am referring to have to do with the intri-
cacics of anaphoric linking. What is the mecha-
nism behind ordinary cross-sentential anaphora,
as in ‘Harry has a cat. He [eeds it’? Is it essen-
tially the same mechanism as the one that is at
work in the case of temporal anaphora? How is it
possible that in Geach’s notorious ‘donkey’
sentences, such as ‘If a farmer owns a donkey, he
beats it’, the noun phrase ‘a farmer’ is linked to
the anaphoric pronoun ‘it’ without its having
scope over the conditional and why is it that the
noun phrase is interpreted as a universal quanti-
ficr, not as an existential one?

While it has turned out rather fruitless to study
these and similar questions within classical Mon-

tagne Grammar (MG), they can be studied prof-
itably within the framework of Discourse
Representation Theory (DRT, sce Heim [1982,
19831, Kamp [1981], Kamp & Reyle [1993]).
This semantic theory offers interesting analyses
of the phenomena that were mentioned above and
many rescarchers in the ficld now adopt some
form of DRT as the {ormalism underlying their
semantical investigations,

But the shift of paradigm scems to have is
drawbacks too. Barwise [1987] and Rooth
[1987], for example, observe that the new theory
does not give us the nice unified account of noun
phrases as generalized quantifiers that Monta-
gue’s approach had to offer and it is also clear
from Kamp & Reyle [1993] that the standard
DRT treatment of coordination in arbitrary cate-
gories cannot claim the eclegance of the
Montagovian treatment. For the purposes of this
paper a third consequence ol the paradigm shift is
important. The Curry-Howard-Van Benthem
method of providing Lambek proofs with mean-
ings requires that meanings be expressed as
typed lambda terms. Since this is not the case in
standard DRT, the latter has no natural interface
with Lambek Categorial Grammar.

It seems then that the niceties of MG and DRT
have a complementary distribution and that con-
siderable advantages could be gained [rom
merging the two, provided that the best of both
worlds can be retained in the merge. In fact the
last cight years have witnessed a growing conver-
genee between the two semantic {rameworks. The
articles by Barwise and Rooth that were men-
tioned above are carly examples of this trend.
Other important examples are Zecvat [1989] and
Groenendijk & Stokhof [1990, 1991].

None of these papers gives the combination
of DRT and type logic that is nceded [or attach-
ing the first to Lambek’s calculus, but in
Muskens [forthcoming] it was shown how the
necessary [usion can be obtained. The essential
observation is that the meanings of DRT’s dis-
course representation structures (boxes) are first
order delimable relations. They can thus be ex-
pressed within first order logic and within the
first order part of ordinary type logic (i.c. the
logic that was described in Church [1940], Gallin
[1975] and Andrews [1986]). This allows us to
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fig. 1. Proof for ‘a man adores a woman’

treat noun phrascs as expressions of a single type
(a generalized kind of generalized quantifiers)
and to have a simple rule for coordination in arbi-
trary categories (sce Muskens [forthcoming] for
a discussion of the latter). In this paper we build
on the result and show how the system can also
be attached to Lambek Categorial Grammar.

The rest of the paper consists of five main scc-
tions. The first takes us from English to Lambck
proofs and the sccond takes us from Lambek
proofs to semantical recipes. Alter the third sce-
tion has described how we can emulate boxes in
type logic, the fourth will take us from semantical
recipes to boxes and the fifth from boxes to truth
conditions,

1. FROM ENGLISH TO LAMBEK PROOFS
I shall assume familiarity with Lambek’s calculus
and rchearse only its most clementary features.
Starting with a set of basic caregories, which for
the purposcs of this paper will be {txt, s, n, ¢n}
(for texts, sentences, names and common nouns),
we define a category 10 be cither a basic category
or anything of onc of the forms a /b or b\ a,
where a and b are categories. A sequent is an cx-
pression T'}- ¢, where 1" is & non-emply finile se-
quence of categories (the antecedent) and ¢ (the
succedent) is a category. A scquent is provable il
it can be proved with the help ol the following
Gentzen rules.

c}—c['AX]

T't-b UaVic
UalbTV}c

[/L]

T'~0 UaV]- c[\ L]
UrbiaVi-c

hi-a.
l-a [/R]
Thalb

M;[LI'\ R}

T-b\a

An example of a proof 1 this caleulus is given in
fig. 1, where it is shown that (s / (n \8)) / ¢n, ¢n,
(n\s)/n, ((s/m)\s)/cn, en}- s isa provable se-
quent. If the categories in the antecedent of this
scquent are assigned to the words ‘a’, ‘man’,
‘adores’, ‘a” and ‘woman’ respectively, we can
interpret the derivability of the given scquent as
suying that these words, in this order, belong to
the category s.

2. FROM LAMBEK PROOFS TO
SEMANTICAL RECIPES

Proof theory teaches us that there is a close cor-
respondence between proofs and lambda terms.
The lambda term which corresponds to a given
proof can be obtained with the help of the so-
called Curry-Howard correspondence. Van
Benthem [1986] observed that the lambda term
that we get in this way also gives us a correspon-
dence between Lambek proofs on the one hand
and the intended meanings of the resulting ex-
pressions on the other. In the present exposition
of the Curry-Howard-Van Benthem correspon-
dence I shall follow the set-up and also the nota-
tional conventions of Hendriks [1993]. For more
explanation, the reader is referred to this work, to
Van Benthem [1986, 1988, 1991] and to
Moortgat [1988].

The idea behind the correspondence is that we
match cach rule in the Lambek calculus with a
corresponding semantic rule and that, for each
proof, we build an isomorphic tree of semantic
sequents, which we define as expressions 77}y,
where 77 1s a sequence of variables and yisa
lambda term with exactly the variables in 77 free.
The semantic rules that are to match the rules of
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fig. 2. Semantic tree for ‘a man adores a woman’

the Lambek calculus above are as follows. (The
term Y[ = w(f)] is meant to denote the result of
substituting w(f3) for 1 in y.)

P

T Uy
U.w, T, V' |- y[u:= w(B)]

[/L]

THp UuV'iy
U, T w, V' |- ylu= w(P)]

[\L]

Tvi-a [/R]
T |- Av.a
vwI'|-a AR]
T Ava
Note that axioms and the rules [/L] and [\L] in-
troduce new free variables. With respecet to these
some conditions hold. The first of thesc is that
only variables that do not already occur elsewhere
in the tree may be introduced. To state the second
condition, we assume that some fixed function
TYPE from categories to semantic types is given,
such that TYPE(a / b) = TYPE(b \ a) = (TYPE(b),
TYPE(a)). The condition requires that the variable
X in an axiom x |- x must be of TYPE(C) if x |- x
corresponds to ¢ |- ¢ in the Lambek proof. Also,
the variable w that is introduced in [/L] ([\L])
must be of (TYPE(b), TYPE(a)), where a/ b (b \a)
is the active category in the corresponding se-
quent,
With the help of thesc rules we can now build
a tree of semantic sequents that is isomorphic to
the Lambek proof in fig. 1; it is shown in fig. 2.
The semantic sequent at the root of this tree gives
us a recipe to compute the meaning of ‘a man
adores a woman’ once we are given the meanings
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of its constituting words. Let us suppose momen-
tarily that the translation of the determiner ‘a’ is
given as the term APAPIx(P(x) A P(x)) of type
(eN((eHt) and that the remaining words are {rans-
lated as the terms man, adores and woman of
types e, e(et) and ef respectively, then substitut-
ing AP’AP3Ax(P(x) A P(x)) for DD and for D’ in
the succedent and substituting man, adores and
woman for P, R and P’ gives us a lambda term
that readily reduces to the sentence dx(znan(x) A
Ay(woman(y) a adores(y)(x))).

The same recipe will assign a meaning to any
sentence that consists of a determiner followed by
a noun, a transitive verb, a determiner and a noun
(in that order), provided that meanings for these
words are given. For example, if we translate the
word ‘no’ as APAP-Ax(P’(x) A P(x)) and
‘every’ as APAPYX(P/(x) — P(x)), substitute the
first term for D, the sccond for D, and man,
adores and woman for P, R and P’ as before, we
get a term that is equivalent to ~Ix(man(x) A
Vy(woman(y) — adores(y)(x))), the translation
of ‘no man adores every woman’.

3. BOXES IN TYPE LOGIC

In this section I will show that there is a natural
way to emulate the DRT language in the [first-or-
der part of type logic, provided that we adopt a
few axioms. This possibility to view DRT as be-
ing a fragment of ordinary type logic will cnable
us to deline our interface between Categorial
Grammar and DRT in the next section.

We shall have four types of primitive objects
in our logic: apart from the ordinary cabbages
and kings sort of entitics (type ¢) and the two
truth values (type #) we shall also allow for what I
would like to call pigeon-holes or registers (Lype
m) and for states (type s). Pigecon-holes, which
arc the things that are denoted by discourse refer-
ents, may be thought of as small chunks of space
that can contain exactly onc object (whatever its
size). States may be thought of as a list of the
current inhabitants of all pigeon-holes. States arc
very much like the program states that theoretical



computer scientists talk about, which are lists of
the current values of all variables in a given pro-
gram at some stage of its exccution.

In order to be able to impose the neccessary
structure on our models, we shall let V be some
fixed non-logical constant of type n(se) and de-
note the inhabitant of pigeon-hole w1 in state i with
the type e term V(u)(f). We define i[n;...u,)j o
be short for

Vv((u; 2 v Ao iy, 2 v) = VOO = V),

a term which expresses that states i and j differ at
most in 1;,...,1,; i[}j will stand for the formula
Yv(VW(E) = V(v)()). We impose the following
axtoms.

AX1  ViVyWx 3ivlj a VW) = x)
AX2 ViVji[lj—i=))
AX3 u=zu’

for each two different discourse referents
(constants of type @) 1 and 1’

AX1 requires that for each state, cach pigeon-hole
and cach object, there must be a sccond state that
is just like the first one, except that the given ob-
ject is an occupant of the given pigeon-hole. AX2
says that two states cannot be different if they
agree in all pigecon-holes. AX3 makes sure that
diflerent discourse referents refer to different pi-
geon-holes, so that an update on one discourse
referent will not result in a change in some other
discourse referent’s value.

Type logic enriched with these three {irst-order
non-logical axioms has the very uscful property
that it allows us to have a form of the ‘unselective
binding’ that seems to be omnipresent in natural
language (sce Lewis [1975]). Since states corre-
spond to lists of items, quantifying over slates
corresponds to quantifying over such lists. The
following lemma gives a precise formulation of
this phenomenon; it has an clementary proof.

UNSELECTIVE BINDING LEMMA. Let 1y,...,1, be
constants of type m, let xy,...,x, be distinct vari-
ables ol type e, let @ be a formula that does not
contain j and let ¢’ be the result of the simultanc-
ous substitution of V(u,)(j) forx; and ... and
V(u,)(j) for x, in g, then:

|=ax Vi(Zi(iTrey,... .00, J A @) < Tx;. 3x,0)
|=ax ViV j(iluy,... .0ylJ = @) = Vx;.. Va0
We now come to the emulation of the DRT lan-

guage in type logic. Let us {ix some type s vari-
able i and define (1)t = V(1)) for each discourse

referent (constant of type x) u and (1) = 1 for
cach type e term 1, and let us agree to write

Pt for APt
Tk, for AR,
T is 7, for Ai((z)T = (r)1),

if P isaterm of type ef, R is a term of type e(er)
and the T’s are cither discourse referents or terms
of type e. This gives us our basic conditions ol
the DRT language as terms of type st. In order to
have complex conditions and boxes as well, we
shall write

not ¢ for IRk OIOR
Dor W for MAPHG) v DG,
G =W for AP — TG,

Loty | Vpoees¥yd for )
AA Ly, 1 A ¥ GY Ao v, (D),

@y for AAJF( D) A W()).

Here & and ¥ stand for any term of type s(s1),
which shall be the type we associate with boxes,
and the y’s stand for conditions, terms of type st.

[1e;0..00, 1 ¥4 onuYy | will be our linear notation for

standard DRT boxes and the last clause embodies
an addition to the standard DRT language: in or-
der to be able to give compositional translations
to natural language expressions and texts, we bor-
row the sequencing operator ‘3’ from the usual
imperative programming languages and stipulate
that a sequence of boxes is again a box. The fol-
lowing uselul lemma is easily scen to hold.

MERGING LEMMA. I &’ do not occur in any of
y then

l=ax L [y 1Lyl =1a i |y vl

The present emulation of DRT in type logic
should be compared with the semantics for DRT
given in Groenendijk & Stokhof [1991]. While
Groenendijk & Stokhol give a Tarski definition
for DRT in terms of sct theory and thus interpret
the object DRT language in a metalanguage, the
clauses given above arc simply abbreviations on
the object level of standard type logic. Apart from
this difference, the clauses given above and the
clauses given by Groenendijk & Stokhof are
much the same.

4. FROM SEMANTIC RECIPES TO
BOXES

Now that we have the DRT language as a part ol
type logic, connecting Lambek proofls for sen-
tences and texts with Discourse Representation



Structures is just plain sailing. All that needs to
be done is to define a function TYPE of the kind
described in section 3 and to specify a lexicon for
some fragment of English. The gencral mecha-
nism that assigns meanings to proofs will then
take care of the rest. The category-to-type func-
tion TYPE is defined as follows. TYPE(txt)
TYPE(S) = s(st), TYPE(n) = s and TYPE(cn)
x(s(st)), while TYPE(a/ b) = TYPE(b\a) =

(TYPE(b), TYPE(a)) in accordance with our previ-
ous requirement, It is handy to abbreviate a type
of the form o;(...(a,(s(sD)...) as [a;... a,], 50
that the type of a sentence now becomes [] (a
box!), the type of a common noun {7} and so on.

In Table 1 the lexicon for a limited fragment of
English is given. The sentences in this fragment
arc indexed as in Barwise [1987]: possible an-
tecedents with superscripts, anaphors with sub-
scripts. The second column assigns one or two
categories to each word in the first column, the
third column lists the types that correspond to
these categories according to the function TYPE
and the last column gives each word a translation
of this type. Here P is a variable of type [x], p
and ¢ are variables of type [], and v is a variable
of type .

Let us see how this immediately provides us
with a semantics. We have seen before that our
Lambek analysis of (1) provides us with a se-
mantic recipe that is reprinted as (2) below. If we
substitute the translation of at, AP'AP([u, |];
P’(;) , P(uy)) for D in the succedent of (2) and
substitute Av[ |man v] for P, we get a lambda
term that after a few conversions reduces to (3).
This can be reduced somewhat further, for now
the merging lemma applies, and we get (4).
Proceeding further in this way, we obtain (5), the
desired translation of (1).

iy

EXPR. CATILGORIES TYPE
a" (s/(n\s))/cn  [[x][x]]
((s/n)\s)/cen
no" (s/(n\s))/cen  [[x][x]]
{((s/n)\s)/cn
every" (s/(n\s))/cn [[x]{x]]
{((s/m)\s)/cn
Mary" s/(n\s) [{7]]

(s/n)\s
he, s/{n\s) [[=]
him, (s/n)\s HEAN
who (en\en) / (n\s) [[a][x]n]
man cn (]
stinks n\s ]
adores (n\s)/n [7r7c]
if (sl/s)/s ([101]
. s\(txt/s) (el
txe\ (Ixt / s)
and s\(s/s) ({101
or s\(s/s) L[10)]

(1) A! man adores a? woman

(2) D,P.R.D"\P'}- DPYAv.D'(PY AV .R(I)(V)))
@) AP(u)| 15[ |man u)]; DPYA RV w))
(4) AP([u; iman ], D{PY AV .ROY)(ep)))

(5) [u; uy | man u;, woman u,, u; adores u,)
(6) Every! man adores a? woman

() 1| [y | man 1] => (1, | woman u,, N
u; adores u,]|

(8) D,P,RD\ P’} DPHYMW' DP)Av.R(v)(¥)))

(9) {1ty | woman uy, [uy | man u;] =
L| u;yadores u,]]

(10) A* man adores a’ woman. She,
abhors him,

(11) [u; 1y | man w,, woman u,, 1, adores i,,
u, abhors u;]

(12) If a' man bores a’ woman she,
ignores him,

(13) [] [y uy | man ey, woman u,, w, bores u,)
= [ |u, ignores u,|]

The same semantical recipe can be used to obtain
a translation for sentence (6), we f{ind it in (7).
But (1) and (6) have alternative derivations in the
Lambek calculus too. Some of these lead to se-
mantical recipes equivalent to (2), but others lead

TRANSLATION

WPAP([1, |15 PAaty) 5 P
APAPT [not([u, |13 Pw,) s P,
MPAPL|(lity |15 PUaty)) = P(,)]
AP, | wyis mary); P(u,))

AP(P(1,))

AP(P(u,))
APALAV(P(V) ;, P(v))
A | man v]

Avl | stinks v]

A Av[ v adores v']
Apgl{p = q]

Apa(p s q)

Aa(p s q)
Apgl | porq]

Table 1. The Lexicon
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to recipes that are equivalent to (8) (for more ex-
planation consult Hendriks [1993]). If we apply
this recipe to the translations of the words in (6),
we obtain (9), the interpretation of the senlence in
which a? woman has a wide scope specific
reading and is available for anaphoric reference
from positions later in the text.

I leave it to the reader to verify that the little
text in (10) translates as (11) by the same method
(note that the stop separating the first and second
sentences is lexicalised as an item of category s\
(txt / 8)), and that (12) translates as (13). A reader
who has worked himself through one or two of
these examples will be happy to learn from
Moortgat [1988] that therc are relatively [ast
Prolog programs that automatically find all se-
mantic recipes for a given sentence.

5. FROM BOXES TO TRUTH
CONDITIONS

We now have a way to provide the expressions of
our fragment automatically with Discourse Re-
presentation Structures which denote relations
between states, but of course we are also inter-
ested in the truth conditions of a given text. These
we equate with the domain of the relation that is
denoted by its box translation (as is done in
Groenendijk & Stokhof [1991]).

Theoretically, if we are in the possession of a box
@, we also have its truth conditions, since these
are denoted by the first-order term Ai3j(D3G))),
but in practice, reducing the last term to some
manageable first-order term may be a less than
trivial task. Therefore we define an algorithmic
function that can do the job for us. The function
given will in fact be a slight extension of a similar
function defined in Kamp & Reyle [1993].

First some technicalitics. Define adr(®), the
sct of active discourse referents of a box @, by
adr([1t |y ]) = {a} and adr(P ; W) = adr(P)y U
adr(W). Let us define [t/ 1], the substitution of
the type e term ¢ for the discourse relerent 1 in the
construct of the box language I, by letting {#/ w}u
=rand [t/ wfju’ =w'if 1w s u; for type e terms 1/
we let [#/u]t’= 1. For complex constructs [t/ u]l’
is defined as follows.

[t/ ulPr =
[t/ u]t, R, =
[t/ u)(z; is 1p) =

Pl ulr
[t/ ulT,R[1/ u]z,
[/ ulzyis |t/ ulv,

[t/ ulnot @ =
[t/ ul(dor W) =
[t/ uj(b= W) =

not 7/ 1|

[t/ uldor [t/ )W
[t/ u)d= [t/ ]V
il wet adr(d)
[t/ u|d=> Y

if u € adr(d)

[/ ul(P = W) =

|1/ wlli 1yl = ~
L | [/ aady g L0 7 ady,,) i 0 6 {a}
(7l yeny,] = L0 ype Y,

Hue {u}

il

[t/ (D 0 EEANL N IFADY Y
if u € adr(d)
[2/ ], ¥

i € adr(D)

[t/ (D W) =

The next definition gives our translation function
1 from boxes and conditions to lirst-order formu-
tac. The variable x that is appearing in the sixth
and cighth clauscs is supposed to be fresh in both
cases, i.c. it is defined to be the {irst variable in
some fixed ordering that docs not occur (at all) in
@ or in ¥ Note that the scquencing operation | is
associative: @ ; (¥ E) is equivalent with (4 ; W)
; Eforall @, Wand & This means that we may
assume that all boxes are either of the form [ 1 |
y 1. @ orof the form [# | y]. We shall use the
form [# | ¥ 1; @ lo cover both cases, thus allow-
ing the possibility that ¢ is empty. If @ is cmpty,
¢ = Y denotes W,

(])T)‘ = ])(7)1

(7, R%,)! = R(TIPT(TZ)T
(1) is )t = (1)l = (1)1
(not Pyt = (@)t

(b or Ynt = Pty
(it |y1; @)=yt =

Va(lx /u([i |y ] @)= )t

«l I Yl-""Ym] , D) = ]],)T =
it A oAy — (@ =l

(wit |y, o)

i

In(lx /(5 |y ] o)

i

UV preeer¥] s DY viA oAy, A @
By way of example, the reader may verify that the
function § sends (10) to (11).

(4) 1] [y 1y | man w;, woman u,, iy bores wy|
=> [ |uy ignores u;])

(15) Vx;x,((man(x;) A woman(xy) A
bores(x )(x,)) — ignores(x;)(x,))

[t is clear that the function T is algorithmic: at
cach stage in the reduction of a box or condition
it 18 determined what step should be taken. The
following theorem, which has a surprisingly te-
dious proof, says that the funclion does what it is
intended to do.



THEOREM. For all conditions y and boxes @:

|=ax MPT = AAHPED)
=ax My =y
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