LHIP: Extended DCGs for Configurable Robust Parsing*

Afzal Ballim

Graham Russell

ISSCO, University of Geneva, 54 Route des Acacias, Geneva, CH-1227 Switzerland
email: afzal@divsun.unige.ch, russell@divsun.unige.ch

Abstract

We present LHIP, a system for incremental gram-
mar development using an extended DCG for-
malism. The system uses a robust island-based
parsing method controlled by user-defined perfor-
mance thresholds.

Keywords: DCG, head, island parsing, robust
parsing, Prolog

1 LHIP Overview

This paper describes LIIIP (Left-Head corner
Island Parser), a parser designed for broad-
coverage handling of unrestricted text. The sys-
tem interprets an extended DCG formalism to
produce a robust analyser that finds parses of
the input made from ‘islands’ of terminals (cor-
responding to terminals consumed by success-
ful grammar rules). It is currently in use for
processing dialogue transcripts from the HCRC
Map Task Corpus (Anderson et al.,, 1991), al-
though we expect its eventual applications to be
much wider.! Transcribed natural speech con-
tains a number of frequent characteristic ‘un-
grammatical’ phenomena: filled pauses, repeti-
tions, restarts, etc. (as in e.g. Right Ill have
...you know, like I’ll have to ...so I'm going
between the pickel fence and the mill, right.).?
While a full analysis of a conversation might well
take these into account, for many purposes they
represent a significant obstacle to analysis. LILP
provides a processing method which allows se-
lected portions of the input to be ignored or han-
dled differently.

The chief modifications to the standard Prolog
tgrammar rule’ format are of two types: one or
more right-hand side (RIS) items may be marked

*This work was carried out under grants nos. 20-
33903.92 and 12-36505.92 from the Swiss National
Fund.

INote that the input consists of writlen texts
within the Map Task Corpus; LHIP is not intended
for use in speech processing.

2This example is taken from the Map Task Corpus.

as ‘heads’, and one or more RHS items may be
marked as ‘ignorable’. We expand on these points
and introduce other differences below.

The behaviour of LHIP can best be understood
in terms of the notions of island, span, cover
and threshold:

Island: Within an input string consisting of the
terminals (t1,%s,...t,), an island is a sub-
sequence (t;,tiq1,.--tiym), Whose length is
m - 1.

Span: The span of a grammar rule R is the
length of the longest island (t;,...t;) such
that terminals ¢; and t; are both consumed
(directly or indirectly) by R.

Cover: A rule R is said to cover m items if m
terminals are consumned within the island de-
scribed by R. The coverage of B is then m.

Threshold: The threshold of a rule is the mini-
mum value for the ratio of its coverage ¢ to
its span s which must hold in order for the
rule to succeed. Note that ¢ < s, and that
if ¢ = s the rule has completely covered the
span, consuming all terminals.

As implied here, rules need not cover all of the
input in order to succeed. More specifically, the
constraints applied in creating islands are such
that islands do not have to be adjacent, but may
be separated by non-covered input. Moreover,
an island may itself contain input which is unac-
counted for by the grammar. Islands do not over-
lap, although when multiple analyses exist they
will in gencral involve different segmentations of
the input into islands.

There are two notions of non-coverage of the
input: sanctioned and unsanctioned non-
coverage. The latter case arises when the gram-
mar simply does not account for some terminal,
Sanctioned non-coverage means that some num-
ber of special ‘ignore’ rules have been applied
which simulate coverage of input material lying
between the islands, thus in effect making the is-
lands contiguous. Those parts of the input that
have been ‘ignored’ are considered to have heen

consumed. These ignore rules can be invoked in-
dividually or as a class. It is this latter capabil-
ity which distinguishes ignore rules from regular

- rules, as they are functionally equivalent other-
wise, mainly serving as a notational aid for the
grammar writer.

Strict adjacency between RHS clauses can he
specified in the grammar. It is possible to define
global and local thresholds for the proportion of
the spanned input that must be covered by rules;

in this way, the user of an LHIP grammar can ~

exercise quite fine control over the required accu-
racy and completeness of the analysis.

A chart is kept of successes and failures of rules,
both to improve efficiency and to provide a means
of identifying unattached constituents. In addi-
tion, feedback is given to the grammar writer on
the degree to which the grammar is able to cope
with the given input; in a context of grammar de-
velopment, this may serve as notification of areas
to which the coverage of the grammar might next
be extended.

The notion of ‘head’ employed here is con-
nected more closely with processing control than
linguisties. In particular, nothing requires that a
head of a rule should share any information with
the LHS item, although in practice it often will.
Heads serve as anchor-points in the input string
around which islands may be formed, and are
accordingly treated before non-head items (RHS
items are re-ordered during compilation—see be-
low). In the central role of heads, LHIP resem-
bles parsers devised by Kay {1989) and van Noord
(1991); in other respects, including the use which
is made of heads, the approaches are rather dif-
ferent, however.

2 ‘The LHIP System

In this section we describe the LHIP system.
First, we define what constitutes an acceptable
LHIP grammar, second, we describe the process
of converting such a grammar into Prolog code,
and third, we describe the analysis of input with
such a grammar.

LHIP grammars are an extended form of Pro-
log DCG grammars. The extensions can be sum-
marized as follows:?

1. one or more RHS clauses may be nominated
as heads;

3A version of LHIP exists which permits a form
of negation on RHS clauses. That version is not de-
scribed here.

02

2. one or more RIS clauses may be marked as
optional;
3. ‘ignore’ rules may be invoked;

4. adjacency constraints may be imposed be-
tween RHS clauses;

5. a global threshold level may be set to deter-
mine the minimum fraction of spanned input
that may be covered in a parse, and

6. a local threshold level may be set in a rule
to override the global threshold within that
rule.

We provide a syntactic definition (below) of a
LHIP grammar rule, using a notation with syn-
tactic rules of the form C = F | Fy... | F,
which indicates that the category C may take any
of the forms Iy to F,,. An optional item in a form
is denoted by surrounding it with square brackets
‘...]. Syntactic categories are italicised, while
Y

terminals are underlined: ‘...".
A LHIP grammar rule has the form:

lhiprule = [— | term [#£ T | _cen> lhipbody

where 7' is a value between zero and one. If
present, this value defines the local threshold
fraction for that rule. This local threshold value
overrules the global threshold. The symbol ‘-*
before the name of a rule marks it as being an
‘ignore’ rule. Only a rule defined this way can be
invoked as an ignore rule in an RHS clause.

lhipbody = lhipclause
| lhipclause , lhipbody
| hipclause ; thipbody
| Ihipclause ; thipbody
| (7 thipbody 1)

The connectives ‘,’ and ;> have the same prece-
dence as in Prolog, while *:’ has the same prece-
dence as ‘,’. Parentheses may be used to resolve
ambiguities. The connective ¢’ is used to indi-
cate that strings subsumed by two RHS clauses
are ordered but not necessarily adjacent in the
input. Thus ‘A , B’ indicates that A precedes
B in the input, perhaps with some intervening
material. The stronger constraint of immediate
precedence is marked by ‘s’ ‘A ¢ B’ indicates that
the span of A precedes that of B, and that there
is no uncovered input between the two. Disjunc-
tion is expressed by ‘;’, and optional RHS clauses

{hipclause = term

| x term

| @ string
*@ strmg

[:[I

I
i
l

[

prologcode }

The symbol *’ is used to indicate a head
clause. A rule name is a Prolog term, and only
rules and terminal items may act as heads within
a rule body. The symbol ‘@’ introduces a ter-
minal string. As previously said, the purpose
of ignore rules is simply to consume input ter-
minals, and their intended use is in facilitat-
ing repairs in analysing input that contains the
false starts, restarts, filled pauses, etc. mentioned
above. These rules are referred to individually by
preceding their name by the ‘—’ symhol. They
can also be referred to as a class in a rule body by
the special RHS clause ‘[]". If used in a rule body,
they indicate that input is potentially ignored -
the problems that ignore rules are intended to re-
pair will not always occur, in which case the rules
succeed without consuming any input. There is a
semantic restriction on the body of a rule which
is that it must contain at least one clause which
necessarily covers input (optional clauses and ig-
nore rules do not necessarily cover input).

The following is an example of a LHIP rule.
Here, the sub-rule ‘conjunction{Conj)’ is marked
as a head and is therefore evaluated before either

of ‘s(S1)? or ‘s(5r)%

s{conjunct(Conj, Sl, Sr)) ~ro>
s(Sh),
* conjunction{Conj},

s(Sr).

How is such a rule converted into Prolog code
by the LHIP system? Iirst, the rule is read
and the RHS clauses are partitioned into those
marked as heads, and those not. A record is
kept of their original ordering, and this record
allows each clause to be constrained with respect
to the clause that precedes it, as well as with re-
spect to the next head clause which follows it.
Additional code is added to maintain a chart of
known successes and failures of each rule. Each
rule name is turned into the name of a Prolog
clause, and additional arguments are added to it.
These arguments are used for the input, the start
and end points of the area of the input in which

the rule may succeed, the start and end points
of the actual part of the input over which it in
fact succeeds, the number of terminal items cov-
ered within that island, a reference to the point
in the chart where the result is stored, and a list
of pointers to sub-results. The converted form of
the above rule is given below (minus the code for
chart maintenance):

s(conjunct(H,I,J),
[LIK]I-X, G) :-
lhip_threshold_value(M),
conjunction(H, 4, B, ¢, 0, P, Q,
R-5,),

A, B,C, D, E, F,

s(I, A, B, 0, D, _, T, G-R, _),
s(J, A, P, C, _, E, U, s-[1,),
F is U+Q+T,
F/(E-D)>=M.

The important points to note about this con-
verted form are the following:

1. the conjunction clause is searched for he-
fore cither of the two s clauses;

2. the region of the input to be searched for the
conjunction clause is the same as that for
the rule’s LIS {B-C): its island extends from
0 to P and covers Q items;

3. the scarch region for the first s clause is B-0
(i.c. from the start of the LIS scarch region
to the start of the conjunction island), its
island starts at D and covers T items;

4. the scarch region for the second s clause is
P-C (i.c. from the end of the conjunction
island to the end of the LIS search region),
its island ends at E and covers U items;

5. the island associated with the rule as a whole
extends from D to E and covers F items,
where FisU + Q - T;

6. lhip_threshold_value/1 unifies its argu-
ment M with the current global threshold
value.

In the current implementation of LHIP, compiled
rules are interpreted depth-first and left-to-right
by the standard Prolog theorem-prover, giving an
analyser that proceeds in a top-down, ‘left-head-
corner’ fashion. Because of the reordering car-
ried out during compilation, the situation regard-
ing left-recursion is slightly more subtle than in
a conventional DCG. The ‘s(conjunct(...))’ rule
While at first
sight it appears left-recursive, inspection of its
converted form shows its true leftmost subrule

shown above is a case in point.

503

504

to be ‘conjunction’. Naturally, compilation may
induce left-recursion as well as eliminating it, in
which case LHIP will suffer from the same ter-
mination problems as an ordinary DCG formal-
ism interpreted in this way. And as with an or-
dinary DCG formalism, it is possible to apply
different parsing methods to LHIP in order to
circumvent these problems (see e.g. Pereira and
Shieber, 1987). A related issue concerns the in-
terpretation of embedded Prolog code. Reorder-
ing of RUS clauses will result in code which pre-
cedes a head within a LHIP rule being evaluated
after it; judicious freezing of goals and avoidance
of unsafe cuts are therefore required.

LHIP provides a number of ways of applying
a grammar to input. The simplest allows one to
enumerate the possible analyses of the input with
the gramnmar. The order in which the results are
produced will reflect the lexical ordering of the
rules as they are converted by LHIP. With the
threshold level set to 0, all analyses possible with
the grammar by deletion of input terminals can
be generated. Thus, supposing a suitable gram-
mar, for the sentence John saw Mary and Mark
saw them there would be analyses corresponding
to the sentence itself, as well as John saw Mary,
John saw Mark, John saw them, Mary saw them,
Mary and Mark saw them, etc.

By setting the threshold to 1, only those par-
tial analyses that have no unaccounted for ter-
minals within their spans can succeed. Hence,
Mark saw them would receive a valid analysis, as
would Mary and Mark saw them, provided that
the grammar contains a rule for conjoined NPs;
John saw them, on the other hand, would not. As
this example illustrates, a partial analysis of this
kind may not in fact correspond to a true sub-
parse of the input (since Mary and Mark was not
a conjoined subject in the original). Some care
must therefore be taken in interpreting results.

A number of built-in predicates are provided
which allow the user to constrain the behaviour of
the parser in various ways, based on the notions
of coverage, span and threshold:

lhip_phrase(+C,+S)
Succeeds if the input S can be parsed as an
instance of category C.
lhip_cv_phrase(+C,+S)
As for 1hip_phrase/2, except that all of the
input must be covered.
lhip_phrase(+C,+S,-B,-E,~Cov)
As for 1hip_phrase/2, except that B binds to

the beginning of the island described by this
application of C, E binds to the position imme-
diately following the end, and Cov binds to the
number of terminals covered.
lhip_mc_phrases(+C,+S,-Cov,-Ps)
The maximal coverage of S by C is Cov. Ps is
the set of parses of S by € with coverage Cov.
lhip_minmax_phrases(+C,+S,~Cov,~Ps)
As for lhip_mc_phrases/4, except that Ps is
additionally the set of parses with the least
span.
lhip_seq_phrase(+C,+S,-Seq)
Succeeds if Seq is a sequence of one or more
parses of S by C such that they are non-
overlapping and each consumes input that pre-
cedes that consumed by the next.
lhip_maxT_phrases(+C,+S,-MaxT)
MaxT is the set of parses of S by C that have
the highest threshold value. On backtracking it
returns the set with the next highest threshold
value.

In addition, other predicates can be used to
search the chart for constituents that have been
identified but have not heen attached to the parse
tree. These include:

lhip_success
Lists successful rules, indicating island position
and coverage.
lhip_ms_success
As for 1hip_success, but lists only the most
specific successful rules (i.e. those which have
themselves succeeded but whose results have
not heen used elsewhere).
lhip_ms_success(N)
As for lhip_ms_success, but lists only suc-
cessful instances of rule N.

Wven if a sentence receives no complete analysis,
it is likely to contain some parsable substrings; re-
sults from these are recorded together with their
position within the input. By using these predi-
cates, partial but possibly useful information can
be extracted from a sentence despite a global fail-
ure to parse it (see section 4).

The conversion of the grammar into Prolog
code means that the user of the system can eas-
ily develop analysis tools that apply different
constraints, using the tools provided as building
blocks.

3 Using LHIP

As previously mentioned, LHIP facilitates a cyc-
lic approach to grammar development. Suppose
one is writing an English grammar for the Map
Task Corpus, and that the following is the first
attempt at a rule for noun phrases (with appro-
priate rules for determiners and nouns):

np(N, D, A) # 0.5 ~es>
determiner(D),
* noun(N}).

While this rule will adequately analyse simple
NPs such as your map, or a missionary camp, on
a NP such as the bottom right-hand corner it will
give analyses for the bottom, the right-hand and
the corner. Worse still, in a long sentence it will
join determiners from the start of the sentence
to nouns that occur in the latter half of the sen-
tence. The number of superfluous analyses can
be reduced by imposing a local threshold level,
of say 0.5. By looking at the various analyses of
sentences in the corpus, one can see that this rule
gives the skeleton for noun phrases, but from the
fraction of coverage of these parses one can also
see that it leaves out an important feature, adjec-
tives, which are optionally found in noun phrases.

np(N, D, A) # 0.5 ~~>
determiner(D),
(? adjectives(A) 7),
* noun(N).

With this rule, one can now handle such
phrases as the left-hand bottom corner, and a ba-
nana tree. Suppose further that this rule is now
applied to the corpus, and then the rule is ap-
plied again but with a local threshold level of 1.
By looking at items parsed in the first case but
not in the second, one can identify features of
noun phrases found in the corpus that are not
covered by the current rules. This might include,
for instance, phrases of the form « slightly dip-
ping line. One can then go back to the grammar
and see that the noun phrase rule needs to be
changed to account for certain types of modifier
including adjectives and adverbial modifiers.

It is also possible to set local thresholds dy-
namically, by making use of the ‘{ prolog code }’
facility:

np(N, DAY H T om>
determiner(D}),
(7 adjectives(A) ?),
* noun(N),
{ set_dynamic_threshold(A,T) }.

In this way, the strictness of a rule may be var-
ied according to information originating either
within the particular run-time invocation of the
rule, or elsewhere in the current parse. Tor exam-
ple, it would be possible, by providing a suitable
definition for set_dynamic_threshold/2, to set T to
0.5 when more than one optional adjective has
been found, and 0.9 otherwise.

Once a given rule or set of rules is stable, and
the writer is satisfied with the performance of
that part of the grammar, a local threshold value
of 1 may be assigned so that superfluous parses
will not interfere with work elsewhere.

The use of the chart to store known results
and failures allows the user to develop hybrid
parsing technigues, rather than relying on the
default depth-first top-down strategy given by
analysing with respect to the top-most category.
Tor instance, it is possible to analyse the input
in ‘layers’ of linguistic categories, perhaps start-
ing by analysing noun-phrases, then prepositions,
verbs, relative clauses, clauses, conjuncts, and fi-
nally complete sentences. Such a strategy allows
the user to perform processing of results between
these layers, which can be useful in trying to find
the ‘best’ analyses first.

4 DPartial results

The discussion of built-in predicates mentioned
facilities for recovering partial parses. Here we
illustrate this process, and indicate what further
use might be made of the information thus ob-
tained.

In the following example, the chart is inspected
to reveal what constituents have been built dur-
ing a failed parse of the truncated sentence Have
you the tree by the brook that...:

> lhip_phrase(s(S),
[have,you,the,tree,by,the,brook,that]).

no

> lhip_success.

(-1) [7--8) /1 ~~> @brook

(-1) [6--6) /1 ~*> @by

(-1) [1--2) /1 ~~> Chave
(-1) [8--8) /1 ~~> Qthat
(-1) [3--4) /1 “~> @the
(-1) [6--7) /1 "> Qthe

505

506

(-1) [4--5) /1 “"> Qtree
(~1) [2--3) /1 "> Qyou
(4) [2--8) /4 ~~>
np (nppp (you,
pp(by,np(the,brook,B})))
(4) [3--8) /6 ~7>
np(nppp (np(the,tree,C),
pp(by,np(the,brook,D))))

(5) [3--8) /2 ““> np(np(the,brook,A))
(5) [6--8) /2 “~> np(np(the,brook,G))
(5) [3--5) /2 ~~> np(np(the,tree,E))
(7) [4--5) /1 “~> noun(tree)

(8) [7--8) /1 ~~> noun(brook)

(9) [2--3) /1 ~*> np(you)

(10) [5--8) /3 -*>

pp(pp(by,np(the,brook,F)})}
(11) [3--4) /1 > det(the)
(11) [6~--7) /1 ~=> det(the)
yes

Each rule is listed with its identifier (‘-1’ for lex-
ical rules), the island which it has analysed with
beginning and ending positions, its coverage, and
the representation that was constructed for it.
From this output it can be seen that the gram-
mar manages reasonably well with noun phrases,
but is unable to deal with questions (the initial
auxiliary have remains unattached).

Users will often be more interested in the
successful application of rules which represent
maximal constituents. These are displayed by
lhip_ms_success:

> lhip_ms_success.
(-1) [1--2) /1 ~~> Chave
(-1) [8--9) /1 ~~> @that
(4) [2--8) /4 ">
np (nppp (you,
pp(by,np(the,brook,J))))
(4) [3--8) /5 ">
np (nppp (np (the,tree,H),
pp(by,np{the,brook,I))))
(5) [3--8) /2 ~~> np(np(the,brook,X))

yes

Here, two unattached lexical items have been
identified, together with two instances of rule 4,
which combines a NP with a postmodifying PP.
The first of these has analysed the island you the
tree by the brook, ignoring the tree, while the sec-
ond has analysed the tree by the brook, consum-
ing all terminals. There is a second analysis for
the tree by the brook, due to rule 5, which has
been obtained by ignoring the sequence tree by
the. From this information, a user might wish to

rank the three results according to their respec-
tive span:coverage ratios, probably preferring the
second.

5 Discussion

The ability to deal with large amounts of possi-
bly ill-formed text is one of the principal objec-
tives of current NLP research. Recent proposals
include the use of probabilistic methods (see e.g.
Briscoe and Carroll, 1993) and large robust deter-
ministic systems like Hindle’s Fidditch (Hindle,
1989).% Experience so far suggests that systems
like LUIP may in the right circumstances provide
an alternative to these approaches. It combines
the advantages of Prolog-interpreted DCGs {ease
of modification, parser output suitable for direct
use by other programs, ete.) with the ability to
relax the adjacency constraints of that formalism
in a flexible and dynamic manner.

LIIP is based on the assumption that partial
results can be useful (often much more useful
than no result at all), and that an approxima-
tion to complete coverage is more useful when it
comes with indications of how approximate it is.
This latter point is especially important in cases
where a grammar must be usable to some degree
at a relatively early stage in its development, as
is, for example, the case with the development of
a grammar for the Map Task Corpus. In the near
future, we expect to apply LHIP to a different
problem, that of defining a restricted language
for specialized parsing.

The rationale for the distinction between sanc-
tioned and unsanctioned non-coverage of input is
twofold. First, the ‘ignore’ facility permits dif-
ferent categories of unidentified input to be dis-
tinguished. For example, it may be interesting
to separate material which occurs at the start
of the input from that appearing clsewhere. Ig-
nore rules have a similar functionality to that of
normal rules. In particular, they can have ar-
guments, and may therefore be used to assign
a structure to unidentified input so that it may
be flagged as such within an overall parse. Sec-
ondly, by setting a threshold value of 1, LHIP can
be made to perform like a standardly interpreted
Prolog DCG, though somewhat more efficiently

*Indeed, the abililty of IFidditch to return a se-
quence of parsed but unattached phrases when a

global analysis fails has clearly influenced the design
of LHIP.

due to the use of the chart.”

A number of possible extensions to the sys-
tem can be envisaged. Whereas at present each
rule is compiled individually, it would be prefer-
able to enhance preprocessing in order to com-
pute certain kinds of global information from the
grammar. One improvement would be to deter-
mine possible linking of ‘root-to-head’ sequences
of rules, and index these to terminal items for use
as an oracle during analysis. A second would be
to identify those items whose early analysis would
most strongly reduce the search space for sub-
sequent processing and scan the input to begin
parsing at those points rather than proceeding
strictly from left to right. This further suggests
the possibility of a parallel approach to parsing.
We cxpect that these measures would increase
the efficiency of LHIP.

Currently, also, results are returned in an order
determined by the order of rules in the grammar.
It would be preferable to arrange matters in a
more cooperative fashion so that the best (those
with the highest coverage to span ratio) are dis-
played first. Support for bidirectional parsing
(see Satta and Stock, to appear) is another candi-
date for inclusion in a later version. Thesc appear
to be longer-term research goals, however.®

Acknowledgments: The authors would like to
thank Louis des Tombe and Dominique Estival
for comments on earlier versions of this paper.

References

Anderson, A.H., M. Bader, E.G. Bard, E. Boyle,
G. Doherty, S. Garrod, S. Isard, J. Kowtko, J.
McAllister, J. Miller, C. Sotillo, H. Thompson
and R. Weinert (1991) “The HCRC Map Task
Corpus”, Language and Speech 34(4), 351-366.

Briscoe, T. and J. Carroll (1993) “Generalized
Probabilistic LR Parsing of Natural Language
(Corpora) with Unification-Based Grammars”
Computational Linguistics 19(1), 25-59.

Hindle, D. (1989) “Acquiring Disambiguation
Rules from Text”. Proceedings of the 27th An-
nuel Meeting of the Association for Computa-
tional Linguistics, 118-125.

5In large grammars there is a significant time gain,
The chart’s main advantage, however, is in identify-
ing unattached constituents and allowing a ‘layered’
approach to analysis of input.

8Source code for the LHIP system has been made
publicly available. For information, contact the
authors.

Kay, M. (1989) “Head-Driven Parsing”, Proceed-
wmgs of the Workshop on Parsing Technologies,
52-62.

Pereira, I'.C.N. and S.M. Shieber (1987) Prolog
and Natural Language Analysis, CSLI Lecture
Notes No. 10, Stanford University.

Satta, G. and O. Stock (to appear) “Bidirec-
tional Context-Free Grammar Parsing for Nat-
ural Language Processing”, Artificial Intelli-
gence.

van Noord, G. (1991) “Head Corner Parsing for
Discontinuous Constituency”, Proceedings of
the 29th Annual Meeting of the Association for
Computational Linguistics, 114-121,

07

