PRINCIPAR—An Efficient, Broad-coverage, Principle-based
Parser

Dekang Lin

Department of Computer Science, University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2, lindek@cs.umanitoba.ca

Abstract

We present an eflicient, broad-coverage,
principle-based parser for linglish. The parser
has been implemented in C+4+ and runs on
SUN Sparcstations with X-windows. It con-
tains a lexicon with over 90,000 entries, con-
structed automatically by applying a set of ex-
traction and conversion rules to entries from

machine readable dictionaries.

1. Introduction

Principle-based grammars, such as Govern-
ment-Binding (GB) theory (Chomsky, 1981,
Haegeman, 1991), offer many advantages over
rule-based and unification-hased grammars,
such as the universality of principles and mod-
ularity of components in the grammar. Prin-
ciples are constraints over X-bar structures.
Most previous principle-based parsers, e.g.,
(Dorr, 1991; TFong, 1991; Johnson, 1991), es-
sentially generate all possible X-bar structures
of a sentence and then use the principles to (il-
ter out the illicit ones. The drawback of this
approach is the inefficiency due to the large
number of candidate structures to be filtered
out. The problem persists cven when various
techniques such as optimal ordering ol princi-
ples (Fong, 1991), and coroutining (Dorr, 1991,
Johnson, 1991) arc used. This problem may
also account for the fact that these parsers are
experimental and have limited coverage.

This paper describes an eflicient, broad-
coverage, principle-based parser, called PRIN-
CIPAR. The main innovation in PRINCIPAR
is that it applies principles to descriptions ol X-
bar structures rather than the structures them-
selves. X-bar structures of a sentence are only

482

built when their descriptions have satisfied all
the principles.

Q

| Lexical |
Analyzer

O dynamic
data
static
data
E:I processing

module
e ity flow

| Messing-Passing |
GH-Parser

Q

Parse Tree
Retriever

Figure 1: The architecture of PRINCIPAR

Figure 1 shows the architecture of PRIN-
CIPAR. Sentence analysis is divided into three
steps. The lexical analyser first converts the in-
put sentence into a set of lexical items. Then,
a message passing algorithm for GB-parsing is
used to construct a shared parse florest. Ifi-
nally, a parse tree rebriever is used to enumer-
ate the parse trees.

The key idea of the parsing algorithm was
presented in (Lin, 1993). This paper presents
some implementation details and experimental
results.

2. Parsing by Message Passing

The parser in PRINCIPAR is based on a
message-passing [ramework proposed by Lin
(1993) and Lin and Gocebel (1993), which uses
a network to encode the grammar. The nodes
in the grammar network represent grammati-
cal categories (e.g., NP, Nbar, N) or subcate-
gories, such as V:NI? (transitive verbs that take
NPs as complements). The links in the net-
work represent relationships between the cat-
egories. GB-principles are implemented as lo-
cal constraints attached to the nodes and

percolation constraints attached to links in
the network. Tigure 2 depicts a portion of the
grammar network for Fnglish.

Pbar 7 “Det Nbar
e
r wON A
PN
......... , .
.............. .
.................................... N
v:Cp
<€ - < -
adjunct dominance complement dominance specialization
<€ - - - o
specifier dominance head dominance barrier

figure 2: A Grammar Network

There are two types of links in the network:
. 14 . .
subsumption links and dominance links.

e There is a subswmption link from « to
B il o subsumes . For example, since
V subsumes V:NTI and V:CP, there is a
subsumption link from V to each one of
them.

e There is a dominance link from node « to
3 il B can be immediately dominated hy
a. Tor example, since an Nbar may im-
mediately dominate a PP adjunct, there
is a dominance link from Nbar to PP.
A dominance link from « to f is associated
with an integer id that determines the lincar
order between f and other categories domi-
nated by «, and a binary attribute to specily
whether 8 is optional or obligatory.'

Un order to simplify the diagram, we did not label
the links with their ids in Pigure 2. Instead, the prece-
dence between dominance links is indicated by their

Input sentences ave parsed by passing mes-
sages n the grammar network. ‘T'he nodes in
the network are compuling agents that com-
municate with cach other by sending messages
in the reverse direction of the links in the net-
work. ISach node has a local memory that
stores a set ol items. An item is a triplet that
represents a (possibly incomplete) X-bar struc-
ture o

<str, att, src>, where

str is an integer interval [i,j] denoting the i’th
to j'th word in the input sentence; att is the
attribute values of the root node ol the X-bar
structure; and src is a setl of source messages
from which this item is combined. The source
messages vepresent immediate constituents of
the root node. ach node in the grammar net-
work has a completion predicate thal deter-
mines whether an item at the node is “com-
plete,” in which case the item is senl as a mes-
sage to other nodes in the reverse direction of
the links,

When a node receives an item, it allempts
[rom other
nodes to form new items. Two items

<[i1,j1], /\l, S]> and <[i2,jg], Ag, S)>
can be combined if

to combine the item with items

II1

1. their surface strings are adjacent to each
other: iy = jy-+1.

2. their altribute values Ay and Ay are
unifiable.

3. the source messages come via different
links: links(Sy) N links(Sy) == 0, where
links(S) is a lunction thatl, given a sct
of messages, returns the set of links via
which the messages arrived.

The result of the combination is a new item:
<[ig,ja], unily(Ay, Ag), 51 U Sy>.

new itern represents a larger X-bar struc-
resulting from the combination of the two

The
ture
smaller ones. 1[the new item satisfies the lo-
cal constraint of the node it is considered valid
and saved into the local memory. Otherwise, it
is discarded. A valid item satisfying the com-
starting points, c.g, C precedes 1P under Char since
the link leading to C is to the lefil of the link leading
to 1P,

483

pletion predicate of the node is sent further as
messages to other nodes.

The input sentence is parsed in the follow-
ing steps.

Step 1: Lexical Look-up: Retrieve the lex-
ical entries for all the words in the sentence
and create a lexical item for each word sense.
A lexical item is a triple: <[i,]], aVself, aVeomp>,
where [1,j] is an interval denoting the position
of the word in the sentence; avgy is the at-
tribute values of the word sense; and aveon,, is
the attribute values of the complements of the
word sense.

Step 2: Message Passing: Ior cach lexi-
cal item <[i,j], aVselr, aVcomp>>, create an initial
message <[i,j], avser, > and send this message
to the grammar network node that represents
the category or subcategory of the word sense.
When the node receives the initial message, it
may forward the message to other nodes or it
may combine the message with other messages
and send the resulting combination to other
nodes. This initiates a message passing pro-
cess which stops when therc are no more mes-
sages to be passed around. At that point, the
initial message for the next lexical item is [ed
into the network.

Step 3: Build a Shared Parse Forest
When all lexical items have been processed, a
shared parse forest for the input sentence can
be built by tracing the origins of the messages
at the highest node (CP or IP), whose stx com-
ponent is the whole sentence. The parse forest
consists of the links of the grammar network
that are traversed during the tracing process.
The structure of the parse forest is similar to
(Billot and Lang, 1989) and (Tomita, 1986),
but extended to include attribute values.

The parse trees of the input sentence can
be retrieved from the parse forest one by one.
The next section explains how the constraints
attached to the nodes and links in the network
ensure that the parse trees satisly all the prin-
ciples.

3. Implementation of Principles

GB principles are implemented as local and
percolation constraints on the items. Lo-

cal constraints arc attached to nodes in the
network. All items al a node must satisly
the node’s local constraint. Percolation con-
straints are attached to the links in the net-
work. A message can be sent across a link only
if the item satisfies the percolation constraint
of the link,

We will only use two examples to give the
rcader a general idea about how G principles
are interpreted as local and percolation con-
straints. Interested reader is relerred to Lin
(1993) for more details.

3.1. Bounding Theory

The Bounding Theory (Subjancency) states
thal a movement can cross at most one bar-
rier without leaving an intermediate trace. An
attribute named whbarrier is used Lo imple-
ment this principle. A message containing
the attribute value -whbarrier is used to rep-
resent an X-bar structure conlaining a posi-
tion out ol which a wh-constituent has moved,
but without yet crossing a barrier. The value
+yhbarrier means that the movement has al-
ready crossed one barrier. Certain dominance
links in the network are designated as bar-
rier links. Bounding condition is implemented
by the percolation constraints attached to the
barrier links, which block any message with
+yhbarrier and change ~whbarrier to +whbarrier
belore the message is allowed to pass through.

3.2, Case Theory

Case Theory requires that cvery lexical NI be
assigned an abstract case. The implementation
ol case theory in PRINCIPAR is based on the

[ollowing attribute values: ca, govern, cm.

+ca the head is a case assigner

-ca the head is not a case assigner

+govern | the head is a governor

~govern | the head is not a governor

-cm an NP m-commanded by the
head needs case marking

The case filter is implemented as follows:

1. Local constraints attached to the nodes
assign +ca to items thatl represent X-bar
structures whose heads arc case assigners
(P, active V, and tensed I).

r 2 ——
Node | Local Constraint
r assign +ca to every item

V |assign +ca to ilems with
-passive

I assign +ca to ilems with tense
attribute

2. Ivery item at NP node is assigned an
attribute value -cm, which means that
the NP represented by the item needs to
be case-marked. The -em attribute then
propagates with the item as it is sent to
other nodes. This item is said to be the
origin of the —cm attribute.

3. Barrier links do not allow any item with
~em to pass through, because, once the
item goes beyond the barrier, the origin
of —cm will not, be governed, lel alone case-
marked.

4. Since each node in X-bar struclure has
al most one governor, if the governor is
not a case assigner, the node will not be
case-marked. Therelore, a case-filter vi-
olation is detected if +govern -cm -ca co-

On the other hand,

il tgovern +ca -cm co-occur in an itern,

then the head daughter of the item gov-

occur in an item.

erns and case-marks the origin ol -em.
The case-filter condition on the origin of
—em 18 met. The —em attribute is cleared.
The local constraints attached to all the
nodes check for the co-occurrences of ca,
em, and govern Lo ensure case-filter 1s not
violated by any item.

4, Lexicon

The lexicon in PRINCIPAR consists of two
hash tables: a primary onc in memory and a
sccondary one on disk. The sccondary hash ta-
ble contains over 90,000 entries, most of which
are constructed automatically by applying a
set of extraction and conversion rules to en-
tries in Oxford Advanced l.eancr’s Dictionary
and Collins Iinglish Dictionary.

When a word is looked up, the primary
hashtable is searched first. [f an entry for the
word is found, the lexical search is done. Oth-
erwise, the secondary hash table is searched.

The entry retrieved from the sccondary table
is inserted into the primary one, so that when
the word is encountered again only in-memory
scarch will he necessary.

The primary hash table is loaded from a [ile
al the system start-up. The file also serves as a
buffer

When

is saved in Lhe file for the primary hash table.

for changes to the secondary hash table.
a lexical entry is added or modilied, it

The entry in the secondary hash table remains
unchanged. Since the primary hash table is
always consulled first, its entries override the
corresponding entries in the secondary table.
The reason why the bufler is needed is that
the secondary hash table is designed in such a
way Lhat update speed is sacriliced for the sake
of eflicient retrieval. Therelore, updates to the
secondary hash table should be done in batch
and relatively inlrequently.

The two-tier organization of the lexicon is
transparent to the parser, That is, as far as
the parser is concerned, the lexicon is an ob-

Ject that, given a word or a phrase, returns ils

lexical entry or nil if the entry does not exist in
the lexicon. Lexical retrieval is very ellicient,
with over 90,000 entries, the average time to
retrieve an entry is 0,002 second.

4.1, Lexical Entries

Although the lexicon currently used in PRIN-
CIPAR contains only syntactic information, it
may also be used to hold other types of infor-
malion. Fach lexical entry consists of an entry
word or phrase and a list of functions with ar-
guments:

(<entry-word-or-phrase>

(<func-name> <arg> <arg>)
(<func-name> <arg> <arg>)
(<func-name> <arg> <arg>))

For example,
(acknowledge
(subcat ((cat v)) (((cat i) -bare_inf)))
(subcat ((cat v)) (((cat n) {(case acc))))
(subcat ((cat v)) (({cat c))))
The function subcat returns a subcalegoriza-
tion frame of the word. The first argument of
the function is the attribute values of the word

485

486

itself. The second argument of the function is
a list of attribute value vector for the comple-
ments of the word. I'or example, the above en-
try means that acknowledge is a verb that takes
an IP, NP or CP as the complement. The lex-
icon is extensible in that users can defline new
functions to suit their own needs. Current im-
plementation of the lexicon also includes func-
tions ref and phrase, which are explained in
the next two subsections.

4.2. Reference Entries

The lexicon does not contain separate entrics
for regular variations of words. When a word
is not found in the lexicon, the lexical retriever
strips the endings of the word to recover pos-
sible base forms of the word and look them up
in the lexicon. FFor example, when the lexical
retriever fails to find an entry for “studies,” it
searches the lexicon for “studie,” “studi” and
“study.” Only the last one of these has an en-
try in the lexicon and its entry is returned.
Irregular variations of words are explicitly

listed in the lexicon. Tor example, there is an
entry for the word “began.” However, the sub-
catgorization frames of “begin” are not listed
again under “began.” Instead, the entry con-
tains a ref function which returns a reference
to the entry for “begin.”

(began

(ret ((cat v) (vform ed) -prog -perf -passive

(tense past))) (begin (cat))))

The first argument of ref is the attribute val-
ues of “began.” The second argument contains
the base form of the word and a set ol al-
tribute names. The lexical items [or the word
“began” is obtained by unifying its attribute
values with the attribute values in the lexical
entry for “begin.” The advantage of making
references to the base form is that when the
base form is modified, one does not have to
make changes to the entries for its variations.

4.3. Phrasal Entries

The lexicon also allows for phrases thal consist
of multiple words. One of the words in a phrase
is designated as the head word. The head word
should be a word in the phrase that can un-
dergo morphological changes and is the most

inlrequent. For example, in the phrase, “down

payment,” the head word is “payment.” In

the lexicon, a phrase “w. w w,,” 1s
3 1 h 1

stored as a string “w,, Wy, 101 wy_1.”

That is, the first word in the string is always
head word and the words after “” should ap-
pear before the head word in texts. The func-
tion phrases converts its arguments into a list
of phrases where the entry word is the head.
For example, the lexical entry for “payment”
is as [ollows:

(payment

(subcat ((cat n) (nform norm)))

(phrases

(payment, down)

stop)
token)

transfer)))

(payment,

(payment,

(payment,
After retrieving the entry for a word, cach
phrase in the phrase list is compared with
the surrounding words in the sentence. If the
phrase is found in the sentence, the entry for
the phrase is retrieved from the lexicon.

5. Reducing Ambiguities

One of the problems with many parsers is that
they typically generate far more parses than
humans normally do. For example, the average
number of parses per word is 1.35 in (Black
et al, 1992). That means that their parser
produces, on average, 8 parses for a T-word
sentence, 34 parses for a 12-word sentence, and
14 parses for a 17-word sentence. The large
number of parse trees make the processing al
later stages more diflicult and error prune.

PRINCIPAR defines a weight for every
parse tree. A weight is associated with every
word sense and every link in the parse tree.
The weight of the parse tree is the total weight
of the links and the word senses at the leal
nodes of the tree.

The packed shared parse forest in PRIN-
CIPAR is organized in such a way that the
parse tree with minimum weight is retrieved
first. PRINCIPAR then uses Lhe minimum
weight and a predetermined number called
BIGWEIGHT, which is currently arbitraryly de-
fined to be 20, to prunc the parse forest. Only

the parse trees whose weights are less than
(minimum weight -+ BIGWEIGHT /2) arc sparcd
and output.

The weights of the links and word senses
are determined as follows:

o The links from Xbar to an adjunct YP
have weight=BIGWEIGHT and all the
other links have weight=1.0.

o The words in the lexicon may have
an atiribute rare, which takes values
fromn {very, very-very}. If a word sense
has the attribute value (rare very), ils
weight is BIGWEIGHT,
has the attribute value (rare very-very),
its weight is 2xBIGWEIGHT. Otherwise,

the weight is 0.

Il a word sense

Note that the attribute rare is used to indicate
the relative frequency among dilferent senses of
the same word.

1 N
1 bigweight
S,
I P NI / Syp
A A ! r /l
Joh)nu Viry/
ohn John
pp
VNP
/ NP / . about Kim
read Nb \r d ~
v \ read 4 bar
N PP
story /N stg]ry
about Kim
(@) (b)

Figure 3: Adjunct links have higher weights

Fxample 5.1. Comparing the two parses of
the sentence “John read the story about Kim?”
in Figure 3: in (a), [pp about Kim] is the com-
plement of “story”; in (b), it is the adjunct of
“read”. Since the adjunct dominance link from
Vbhar to PP has much higher weight than the
complement dominance link from Nbar to PP,
the total weight of (a) is much smaller than the
weight of (b). Therefore, only (a) is output as
the parse tree of the sentence.

Example 5.2, The lexical entry for the word
“do” is as follows:

/C) P

S w e

A e A S N
Ap yp NP o/

Who Who (trace) V,P""'

bar

vV
Kim % bigweight \
\ gueity - VNP
V:NDP |
| () did NP NP
ove race [Cx ZA\
(ﬂ) (h) Kim love

Figure 4: Texical items have diflerent weights

(do
(subcat ((cat i) -passive -perf (auxform do)
~prog (cform fin) (tense present)))
(subcat ((cat v) (rare very))
(((cat n) (case acc) (nform norm))))
(subcat ((cat v) (rare very-very))
(({cat n) (case acc) (nform norm))
((cat n) (case acc) (nform norm))))
That 1s “do” can be an auxiliary verDh, a tran-
sitive verb or a di-transitive verb. Fipure 4
shows two parse trees for the sentence “Who
did Kim love?” The parse tree (a) corresponds
to the correct understanding of the sentence.
fn (), “did” is analyzed as a bi-transitive
verb as in “Who did Kim a lavor?” [low-
ever, since the latter sense ol the word has an
attribute value (rare very-very), tree (b) has
much higher weight than tree (a) and only (a)
is outlpul by the parser.

6. Implementation and

Results

Experimental

PRINCIPAR has been implemented in C-f--.
The graphical user interface is developed with
a toolkit called InterViews. T'he program runs
on SUN Sparcstations with X-windows. A ver-
sion without graphical user interface can also
be run on most Unix machines with GNU g+
compiler.

Lin and Goebel (1993) showed that the
complexity of the message passing algorithm
is O(]G/n®) for context-free grammars, where
n is the length of input sentence, |G| is size

487

Table 1: Iixperimental Results

Example sentences words | time* | parses
Who do you think Bill said Mary expected to sce 10 0.46 1
I asked which books he told me that I should read 1l 0.76 1
The petition listed the mayor’s occupation as attorney and his age as 71 13 0.60 14
He said evidence was obtained in violation of the legal rights of citizens 13 .55 4
Mr. Nixon , for his part , would oppose intervention in Cuba without specific 13 0.51 6
provocation
The assembly language provides a means [or writing a program and you arc 19 0.80 2
not concerned with actual memory addresses
Labels can be assigned to a particular instruction step in a source program 26 4.13 32
that identify that step as an entry point for use in subseqnent instructions

* time (in seconds) taken on a Sparcstation BLC.

of the grammar (measure by the number of
the total length of the phrase structure rules).
When attribute values are used in messages,
the complexity of the algorithm is not yel
known. Our experiments have shown that the
parser is very fast. Table 1 lists the parsing
time and the number of parses for several ex-
ample sentences. The correct parses for all the
sentences in Table 1 are returned by the parser.
Even though the lexicon is derived from ma-
chine readable dictionaries and contains a large
number of senses for many words, the ratio he-
tween the number of parse trees and the sen-
tence length here is well bellow the ratio re-
ported in (Black et al., 1992).

Acknowledgements

The author wishes to thank Bonnie Dorr for
comments about Sections 1, 2, and 3. I'his re-
search was supported by Natural Sciences and
Tingineering Rescarch Council of Canada grant

0GP121338.

References

Berwick, R. C., Abney, S. ., and Tenny, C., cdi-
tors (1991). Principle-Based Parsing: Com-
putation and Psycholinguisties. Kluwer Aca-
demic Publishers.

Billot, S. and Lang, B. (1989). The structure of
shared forests in ambiguous parsing, In Pro-
ceedings of ACL-89, pages 143-151, Vancou-
ver.

488

Black, ., Laflerty, J., and Roukos, S. (1992).
Development and cvaluation of a broad-
coverage probabilistic grammar of english-
language computer manuals. In Proceed-
ings of ACL-92, pages 185-192, Newark,
Dalaware.

Chomsky, N. (1981). Lectures on Government and
Binding. Toris Publications, Cinnaminson,

USA.

Daorr, B. J. (1991). Principle-based parsing lor ma-
chine translation. In (Berwick et al., 1991),
pages 153-184.,

Fong, S. (1991). The computational implementa-
tion ol principle-based parsers. In (Berwick
et al., 1991), pages 65-82.

Taegeman, L. (1991). Introduction to Government
and Binding Theory. Basil Blackwell Ltd.

Johuson, M. (1091). Deductive parsing: The use
of knowledge of language. In (Berwick el al.,
1991), pages 39--64.

Lin, D. (1993). Principle-based parsing without
overgeneration. In Proceedings of ACL-93,
pages 112120, Columbus, Ohio.

Lin, D. and Goebel, R. (1993). Context-free gram-
mar parsing by message passing. In Proceed-
ings of the First Conference of the Pacific
Association for Computational Linguistics,
pages 203-211, Vancouver, British Columbia.

Tomita, M. (1986). FEfficient Parsing for Nalu-
ral Language. Kluwer Academic Publishers,
Norwell, Massachusetts,

