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A b s t r a c t  

Ideally, the time that an incremental algorithm uses to 
process a change should be a fimction of the size of the 
change rather than, say, the size of the entire current 
input. Based o n  a formalization of "the set of things 
changed" by an increInental modification, this paper 
investigates how and to what extent it is possibh~' to 
give such a guarantee for a chart-ba.se(l parsing frmne- 
work and discusses the general utility of a tninlmality 
notion in incremental processing) 

1 I n t r o d u c t i o n  

1.1 Background 

Natural-language computing has traditionally been un- 
derstood as a "batch-mode" or "once-only" process, in 
which a problem instance P (shy, a text) is mapped 
as a whole to a solution S (such as air analysis of the 
text). IIowever, in highly interactive and real-time ap- 
plications - -  for example, grammar checking, structure 
editing and on-line translation - -  what is required is ef- 
ficient processing of a sequence of small changes of a 
text. Exhaustive recomlmtation is tber, not a feasible 
alternative. Rather, to avoid ms much recomputation 
as possible, each update cycle must re-use those parts 
of the previous solution that are still wdid. We say that 
an algorithm is incremental if it rises information from 
an old solution in computing the new solution. 

The problem of incremental processing can be stal.ed 
its follows, using a notation similar to that of All)ern et 
al. [1]: Assume given a problenr instance P (a represen- 
tation of the current input), a solution S (the current 
output), and a modification Ap to p.2 The modifica- 
tion r e s u l t s  in a new problem instance P' = P • A t , ,  
where • is a composition operator. The task of an in- 

1I would like to t h a n k  Ra lph  RSnnquls t  as well as Gregor  
Erbach  a n d  o ther  colleagues in Snarbrfieken for discussions on 
the ma te r i a l  presented here,  Peter  Fritzson for originally aler t ing 
my a t ten t ion  to R a m a l i n g a m  a n d  t leps '  paper ,  and  the anony-  
mous  referees. This  research has  been flmded by the C e r m a n  
Science Founda t ion  (DFG) th rough  the Sonderforschnngsl)erelch 
314, p ro jec t  N3 (BiLD). 

~A terminological  note:  we use " inpu t  change"  and  "modifi- 
ca t ion"  as well as "ou tpu t  cllange" and  "upda te"  synonymously.  

z~ p 

~ P ' = P ( D A p  

A s  
S.  ~- S'  -- S (I) A s 

l;'igure 1: Batch-mode versus incremental cornlmtation. 

cremental algorithm is then to produce an upd~te As 
in the old solution such that .5' • As  is a solution to 
P(DAp (see figure 1). At this point, nothing is stipula- 
ted about tim amount, of information it, S tlmt should 
be re-used in S'. 

To show properties such im correctness and comple- 
xity of incremental algorithms, it is necessary to esta- 
blish a formal measure of "the set of things changed". 
This me,inure sllouhl capture tim minimal change re- 
suiting from a modification and, moreover, should be 
independent of any particular algorithms R)r incremen- 
tal update. One way of achieving this is to compare 
the results obtained by batch-mode processing of the 
inputs before and after the change, respectively (Wirfin 
and l~.Snnquist [15, 17]): By forming tile "difference" 
l)el.ween the lmtch-mode soh,tions S and £,1 obtained 
before ;tlt(] after a modillcation At ,  to P, we obtain a 
parameter A s , m  ' which captures tin.' minimal change 
in a way which is indeed imlependent of the incremen- 
tal ul)date. Given that A.s,,,i" corre.sl)onds precisely to 
what any sound and complete incremental algorithm 
must do, it, can be used as a blmis lbr correctness proofs 
for suclt algorithms (given tl,at the batch-rhode algo- 
rithm is correct). 

Fnrthermore, Asmi"  can be used ms a basis of com- 
plexity analyses: Ideally, each update cycle of an in- 
cremental algorithm slmuld expend an amount of work 
which is a polynomial fimction of the size of the change, 
rather than, say, tile size of tl,e entire current input. 
However, making this notion precise in a way which is 
independent of particular incremental algorithms is not 
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always straightforward. Two early approaches along 
these lines are Goodwin [3, 4] (reason maintenance) 
and Reps [11] (language-based editing). More recently, 
Alpern et al. [1] and Ramalingam and R.eps [9, 10] have 
provided a framework for analysing incremental algo- 
rithms, in which the basic measure used is the snm of 
the sizes of the changes in the input and output. This 
framework assumes that the modification of the input 
can be carried out in o(IAPI) time, where the generic 
notation IXI is used for the size of X. Furthermore, it 
assumes that ]As,m,] denotes the minimal IAsl such 
that S (9 As solves P (9 Ap.  Alpern et al. then define 

= lapl + IzXs,~. I 

as the intrinsic size of a change. 
The choice of 6 is motivated as follows: IAph the size 

of the modification, is in itself too crude a measure, 
since a small change in problem instance may cause 
a large change in solution or vice versa. IAs..,,I iv 
then chosen as a measure of the size of the chauge in 
the solution, since the time for updating the solution 
can be no less than this. The 5 measure thus makes 
it possible to capture how well a particular algorithm 
performs relative to the amount of work that must be 
performed in response to a change. 

An incremental algorithm is said to be bounded if 
it can process any change in time O(f(5)), that is, in 
time depending only or, 5. Intuitively, this means that 
it only processes the "region" where the input or output 
changes. Algorithms of this kind can then be classified 
according to their respective degrees of boundedness 
(see Ftamalingam and Reps [10, section 5]). For exam- 
pie, an algorithm which is linear in 5 is asymptotically 
optimal. Furthermore, an incremental algorithm is said 
to be unbounded if the time it takes to update the so- 
lution can be arbitrarily large for a given 5. 

It might seem that  what has been discussed so far has 
little relevance to natural-language processing, where 
incrementality is typically understood ,as the piecemeM 
assembly of an analysis during a single left-to-right a 
pass through a text or a spoken utterance. In parti- 
cular, incrementality is often used as a synonym for 
interleaved approaches, in which syntax and seman- 
tics work in parallel such that each word or phr~me is 
given an interpretation immediately upon being reco- 
gnized (see, for example, Mellish [7] and lladdock [5]). 
llowever, the two views are closely related: The "left- 
to-right view" is an idealized, psycholinguistically mo- 
tivated special case, in which the only kind of change 
allowed is addition of new material at the end of the 
current input, resulting in piecemeal expansion of the 
analysis. Moreover, the interleaving is just a conse- 
quence of the fact that every piece of new input must, 
in some sense, be fully analysed in order to be integra- 
ted with the old analysis. 

To distinguish this special case from the general case, 
in wtfich arbitrary changes are allowed, Wirdn [15] re- 
fers to them as left-to-right (Lll) incrementality and 

3Strictly speaking front-to-back or beginMng-to-end. 

full incremenlalily, respectively. The former case cor- 
responds to on-line analysis - -  that  each prefix of a 
string is parsed (interpreted) before any of the input 
beyond that prefix is read (llarrison [6, page 433]). 
The latter case has long been studied in interactive 
language-based programming environments (for exam- 
ple, Ghezzi and Mandrioli [2]), whereas the only pre- 
vious such work that we are aware of in the context of 
natural-language processing is Wirdn and R.gmlqnist 
[14, 15, 16, 17]. 

1 .2  T h e  P r o b l e m  

The aim of this paper is to begin to adapt and ap- 
ply the notion of bounded incremental computation to 
natural-language parsing, using a method for establis- 
hing minimal change previously introduced by Wir6n 
and RSnnquist [15, 17]. To this end, the paper shows 
how the 6 parameter can be defined in a fully incremen- 
tal, chart-based parsing framework, briefly describes a 
previous, unbomMed algorithm, and then shows how a 
polynomially bounded algorithm can be obtained. 

2 B a t c h - M o d e  Chart Parsing 

An incremental problem can be defined by specifying 
its batch-mode version and the set of allowable modifi- 
cations. We thus begin by specifying batch-rhode chart 
parsing, restricting ourselves to a standard context-free 
grammar without cyclic or empty productions. 

D e f i n i t i o n  1 ( C h a r t )  A chart is a directed graph 
C = (V, E) such that V is a linite, non-empty set of 
vertices and E C V x V x R is a finite set of edges, 
where R iv the set of dotted context-free rules obtained 
from the grammar. 4 

The vertices v l , . . . , v n + l  G V correspond to the li- 
near positions between the tokens r = tl . . .  t ,  of an 
n - t o k e n  t ex t .  5 All edge e G I'; hetween vertices vl and 
vj carries information al>out a (partially) analysed con- 
stituent between the corresponding positions. 

The algorithm makes use of an agenda (see Thomp- 
son [12]). Agenda t;~sks are created in response to to- 
kens being read and edges being added to the chart, 
and may be ordered according to their priorities. To 
define the agenda, we make use of the set of possible 
tokens 7'kns and the set of possible edges Edgs. 

D e f i n i t i o n  2 ( A g e n d a ) W e  define the agenda as 
Agda C Tkns U Edgs U ( Edgs x Edgs). We refer to 
the three types of tasks that it contains as scanning, 
prediction and combination tasks, respectively. 

4For brevity, we omit a fourth edge component correspon- 
ding to tile set of (partial) parse trees according to the g r ammar  
and lexicon (assuming that  only the topmost portion of a tree 
corresponding to the (lotted rule needs to be stored in an edge). 

5We shall use ~" interchangeably to denote a sequence a~td a 
set of tokens. 
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Each agenda task is executed by a ste 1) of the algorithln 
below. We specify two versions of batch-nmde chart  
parsing - -  the basic bo t tom-up  (strictly speaking, left- 
corner) and top-down (Earlcy-stylc) strategies - . aSSll~ 
ruing tha t  the one or the other is chosen. 

A l g o r i t h m  1 ( B a t c h - m o d e  c h a r t  p a r s i n g )  

I n p u t :  A seqnence of tokens r = t1 .. • t , .  

O u t p u t :  A chart.  

I n i t i a l i z a t i o n :  If tile tOll-down strategy is used, then 
add an agenda task corresponding to ail initial top- 
down prediction (Vl, Vl, S --~ .c~) for each rule S --+ ~v, 
where S is ttle s tar t  category of tile grammar .  

M e t h o d :  For each token, create a scanning tm~k. 
While tile agenda is not empty, remove the next task 
and execute tile corresponding step below: 

Scan :  Given a token I at position j ,  lbr each le- 
xical entry of the form X -> t, add all edge 
( v j , V j + l , X  --+ l . ) .  d Add restllting new t~sks to 
the agenda. 

P r e d i c t  1 ( B o t t o m - u p ) :  If tile edge is of the form 
(vj, v k , X  --* c¢.), then, for each rule of the form 
Y --+ XT, add an edge ( v j i v j , Y  ~-+ .XT)  unless 
it already exists. Add resulting new tasks to tile 
agenda. 

P r e d i c t  2 ( T o p - d o w n ) :  If the edge is of tile form 
(vl, vj,  X--+ oe. g f l ) ,  tlien, for each rule of the form 
Y "-* 3', add an edge ( v j , v j , Y  -+ -7) unless it 
already exists. Add resulting new tasks to the 
agenda. 

C o m b i n e :  If tile first edge is of tim form (vi, vj, X --* 
~ . Y f l }  and the second is of the form (vj, vk, Y - ,  
7. ) ,  then add an edge ( v i , v k , X  -+ a Y . f l ) .  Add 
resulting new tasks to the agenda. 

3 Incrementa l  Char t  Parsing 

a . 1  T h e  P r o b l e m  

]'lie overall incremental  process can be thought  of ~Ls a 
cl iange-update loop, where each chalige of the input is 
immediately followed by a corresponding update  of the 
output .  To completely specify the state of this process, 
we shall make use of a conliguration consisting of (a 
reI)resentation of) an input  text r ,  a cliart C and an 
edge-dependency relation 79 (to be &dined in section 4). 
The problem of incremental  chart  parsing can then be 
specilied abstract ly  as a mapping 

f ( ( r , C ,  79),Ar) ~ (r ' ,C' ,79')  

from an old configuration and a modillcation Ar  to a 
new configuration. We shall allow two kinds of change, 
namely, insertion and deletion of w > 1 contiguons 

~We refer to the  new edge as a lezical'edge. 

tokens. We assume tha t  a modification A~ is given as 
a vertex pair vj,  Vj+m G V defining the update  interval 
and, in the cILsc of an insertion, a seqnence of tokens 
T ~ lj • • • t i t  m . We fiirthernlore ;ussume tha t  either the 
bot tom-up or top-down strategy is chosen throughout  
a change-ul)date session, and, in tile lat ter  case, tha t  
tile toll-down initialization is made before the session 
is started. 

3 . 2  A C, e n e r a l  V e r t e x  M a p p i n g  

flow can tile minilnal  change ASh, in be defined il, a 
chart-b~sed framework? One way of doing this is to 
colnpare the charts C = (V, E} and C' = (V',  I',") tha t  
are obtained by batch-mode parsing of tile texts before 
and after a c h a n g e ,  respectively. We thereby obtain a 
measure which is independent  of part icular  increniental 
update  algoril, hms. hltnitively, only those edges tha t  
are in E but not in lq  r e , s t  I)e relnoved, and only those 
elites tha t  are in 1'; ~ Ilut not in E must  lie generated 
anew. If the change is snlall, then a large fraction of 
the edges are in /q gl I'Y (I.hat is, are unchanged).  

llowever, to be able to colnpare the edge sets in the 
two ('harts, we nmst  first establish a one-to-one map- 
ping between their vertices, l,et us consider the case in 
wlfich a single token ti is (Meted from an n-token text. 
The probleln is that ,  becanse of tile remove(l token, the 
two vertices vl and vi+l would seem to correspond to a 
single w~rtex in V ~. llowever, we can regard this single 
vertex as consisting of a "left half" and a "right half",  
which we assign diffe.rent indices. In other words, af- 
ter having increase(l each index of v~_l.1,... , v~, G V'  by 
one, we "split" vertex v~ and assign the index i+1  to its 
"right half".  The incoming non-predicted edges ms well 
as (looping) top-down predictions at  tile split vertex 
are then associated with its left half, and tile ontgoing 
non-predicted edges as well ~us (looping) bo t tom-up  pre- 
dictions are associated with its right half. 7 q'he reason 
for dividing the pre(licted edges in this way is tha t  a 
tOll-down prediction is made at (,tie ending vertex of 
the i,riggcril, g edge ( tha t  is, froln tim left), wllereas a 
/)ol.toln-up pre(liction is lnade at tim starting veri,ex of 
the triggering edge (that is, from the right). 

The lnapping Call I)e geIieralized to tile cruse ill whil:]l 
Ill COlitiguoiiS tokelis are deleted. Ttl is is done by iil- 
c.reasilig the index of eax:h w~rtex froin the "right half" 
of tile split wn'tex an(I oilwards by m (instead of one). 
Fnrtherinore, by nsing the salile lnlq)ping but in the 
opposite direction, we can ills() cover insertion of m 
contiguous toke[is. To express this generalized inal)- 
ping, m'-ISlliln~ tha t  !) is the set of vertices of the larger 
chart  and V is tha t  of the smaller chart. A deletion of 
m contiguous tokens then involves a mapping frona 
to V and an insertion of rn tokens involves a real/ping 
from V to V. In terms of tile indexing tha t  holds before 
the vertices in V are renumbered,  and assuniing tha t  l) 

7A,u l l lent lo i led  above,  we aSsulne t ha t  only the  one or the 
o the r  st, i 'ategy is i lsed, so tha t  ii, is k l l ow l i  l lefOl 'ehl lnd wh ich  
k ind  of predi<:t lons the cltal ' t  COlttliillS, 
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Figure 2: Chart of the sentence "The old man the tall 
ships" under bottom-up parsing. Inactive edges are 
drawn using continuous lines, active edges using dashed 
lines, and predicted (looping) edges are depicted below 
the vertices. 
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Figure 3: Chart of the sentence "The old man tile 
ships" under bottom-up parsing. 

has n + 1 vertices, we obtain the following bidirectional 
mapping: 

• Vertices v l , . . . ,  vi-1 C V correspond to 
vl,  • • . ,  vi-1 G V,  respectively. 

• Vertex vi corresponds to the "left half" of vertex 
Vi. 

• Vertices v i+ l , . . . ,V i+m- t  E ~" do not correspond 
to any vertices in V. 

• Vertex ~i+m corresponds to the "right half" of 
vertex vl. 

• Vertices 91+re+x, • •., ~.+1 correspond to 
vi+l, • • . ,  vn+l -m ,  respectively. 

The mapping is thus established with respect to inset- 
tion or deletion of an arbitrary number of contiguous 
tokens, s 

3 . 3  M i n i m a l  C h a n g e  

Assume that E and E '  are the sets of edges of the 
charts C and C'  obtained by batch-mode parsing of a 
text before and after a modification Ar,  respectively. 

8 P r e s u m a b l y ,  i t  is  p o s s i b l e  to  g e n e r a l i z e  t h e  m a p p i n g  to  m o r e  

c o m p l e x  ( n o n - c o n t i g u o u s )  o p e r a t i o n s  s u c h  a s  r e p l a c e m e n t s  o r  r e -  

v e r s a l s .  H o w e v e r ,  we d o  n o t  p u r s u e  t h a t  h e r e .  

S --~ N P  VP the *-- Det 

N P  ---* Det N old ,--- N, A 
NP ~ Del A N man ,--- N, V 
VP --* V ships +-- N, V 
171) --~ V NP 

Figure 4: Example grammar and lexicon. 

We can then define the minimal ontput change on the 
b ~ i s  of two edge sets as follows: 

D e f i n i t i o n  3 ( M i n i m a l  o u t p u t  change)  We define 
the set of missing edges as tile set difference M = E \ E  j 

and the set of new edges as tile set difference N = 
E '  \ E. We then define the minimal  output change as 

A c , , i ,  = M U N.  

Next, we can define the size of tile minimal change as 
follows: 

De f in i t i on  4 (Size of  m i n i m a l  change)  We define 
the size of  the minimal  change as/~ = [A~I + ]Ac , , , , I ,  
the sum of the number of inserted or deleted tokens 
and the number of edges in Ac, , , i , .  

3 . 4  A n  E x a m p l e  

As an illustration, tile chart in tigure 2 is obtained un- 
der (batch-mode) bottom-up parsing, given the gram- 
mar in figure 4 and the sentence 'q 'he old man the 
tall ships". If the token "tall" is removed, the chart 
in figure 3 is obtained. Vertex v~ in figure 2 then c o l  
responds to the left half of vertex v~ in figure 3, and 
vertex v6 corresponds to the right half of vertex v~. 
Furthermore, v7 corresponds to v~. Clearly, tile input 
change A~ consists of the token "tall". The output 
change A ¢ , , i ,  consists of the missing set M, which 
contains the three edges A26, NP27 and NPa4 in fi- 
gure 2, and the new set N, which contains the singh. 
edge NPau in figure 3. ']'he size of the change is then 
6 =  I~Xrl + IZXC,,,.,I := t + a + l  = 5 .  

If instead "tall" is inserted before the last word in 
the sentence in figure 3, then the input change still 
eonslsts of the token "tall". ]lowever, the two sets ma- 
king up the output change are reversed: the missing 
set contains the single edge NPa2 in figure 3 and the 
new set contains the three edges A26, NP2r and NP34 
in figure 2. Thus, the size of the change is again 5. 

4 A n  U n b o u n d e d  A l g o r i t h m  

A key idea of the incremental chart-parsing algorithm 
put forward by Wir&, [14, 15] is to use edge dependen- 
cies for keeping track of edges that ]lave to be removed 
in response to a change. An edge e' is said to depend 
upon another edge or token e if it is formed (derived) 
directly on the b~usis of e. Furthermore, if e' is redun- 
dantly proposed by an edge f ,  then d can be said to 
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Figure 5: Edge-dependency graph induced by 1). q'he 
nodes of tl|e gral)h correspond to the chart edges in 
figure 3. A dummy root node 0 is shown instead of 
nodes corresponding to the tokens. 

depend (also) on f .  By e' being "redundantly propo- 
se(l", we mean that the parser at tempts to add an edge 
that is equivalent to # to the chart, but thai, that edge 
is rejected by the standard redundancy test in chart 
parsing. In effect, f provides an additional "justifica- 
tion" for #.  

Given a chart C = (V, E) and a set of tokens r,  these 
conditions correspond to the following dependency re- 
lation on E a n d  r: 

D e f i n i t i o n  5 ( E d g e  d e p e n d e n c y )  We define 79 as a 
binary relation on the set of chart edges and the set 
of tokens E U r such that 79(s, d) hohts if and only if 
d G E is formed, or is redun(lantly proposed, directly 
using s C E U  r according to a chart-l)arsing algorithm. 
We say that d is a dependent (or derivative) edge of s, 
and tl |at  s is a source edge (token) of d. 

7) can be ilh|strated by a graph. The dependency graph 
corresponding to the chart in figure 3 is shown in [i- 
gure 5. 

On the basis of the dependency relation, WirSn and 
RSnnqnist [15, 17] define different disturbance sets, gi- 
ven as fimctions t'rom tokens to sets of edges, and con- 
taining edges that need to be removed from the chart 
in response to a token-level change. The simplest such 
set is 7)*(tj), the transitive closure of 79(tj). Wirdn 
and Rfnnquist  [15, 17] discuss this and other alterna- 
tives and show completeness of 79* with respect to the 
missing set. 

The algorithm performs an update essentially by re- 
moving the entire disturbance set an([ then generating 
all possible edges. The latter set includes not only 
the new edges, but also disturbed, non-missing edges, 

which have to be generated anew. q'he coml)lexity ana- 
lysis of the algorithm yields that it is unbounded incre- 
mental in both its botto |n-up and top-down version (see 
Wir6n [16]). The source of this is that the algorithm 
removes the entire disturbance set, whose size depends 
on n, the size of the entire input. 

5 A B o u n d e d  A l g o r i t h m  

5.1 Intuitive Idea 

Intuitively, a bounded incremental algorii.hm only pro- 
cesses the region where the input or output  changes 
during an update cycle. In our c~se, the problem in 
achieving this is that the missing and new edges are 
not a priori known - -  when the incremental update 
begins, only a set of potentially missing edges (the di- 
sturbance set) is known. Ilowever, the ul)date can be 
limited by using a change-prol)agation algorithm (com- 
pare Itamalingam and l{.eps [10, page 21]): By initially 
retaining the disturl)ance set, new and old edges can be 
coml)ared during reparsing. If a new edge e' is different 
from the corresponding old edge e (if this exists), then 
the dependants of c are regarded ms disturbed (poten- 
tially missing). If # is equivalent to e in the sense of 
giving rise to the sltme derivative edges, then the de- 
pendants of c are known not to be missing, and hence 
tim reparsing process does not have to proceed beyond 
this point in the search sl)ace, in order to avoid extra 
computation, the disturbed edges should be visited in 
the order given by the dependency graph. 

llow can the points aL which a change "(lies out" 
be characterized? Since we are interested in characte- 
rizing the conditions under which two edges give rise 
to the same derivtLtive edges, the contents part of an 
edge (that is, the rigltt-hand side before the dot of the 
dotted rule) is irrelevant. For example, we want to say 
that the new edge Nl):~2 in fig||re 3 to be reparsing- 
equivalent with edge NP:~4 in figure 2 although their 
dotted rules and parse trees are different: the dotte(I 
rule of the former is N P  -~ Dcl N .  and that of the 
latter is NI" ~ l)cI A N . .  We can summarize this in 
t i le following delini t ion: 

D e f i n i t i o n  6 ( R e p a r s i n g - e q u i v a l e n t  edges )  
Assume given a proposed edge e and a disturbed edge 
e' C- C. Wesay that e = ( v i , v j ,X - .*o~ . f l )  and # = 
(v , ,  vt, Y - * t t . v )  are equivalent from the point of view 
o f r e p a r s i n g i f i = s , j = t , X = Y  a n d f l = v .  

Inactive (combined or lexical) edges and predicted ed- 
ges are special cases under this definition. Ill the former 
case, fl and u are empty, and thus two inactive edges 
are reparsing-equivalent if i = s, j = t and X = Y. In 
the latter case, (v and i t are empty, and thus two pre- 
dicted edges e and c' are reparsing-equivalent if e = d.  
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5.2 The A l g o r i t h m  

We now specify a bounded incremental chart-parsing 
algorithm that handles one update cycle. 9 In compari- 
son with the unbounded algorithm, the differences are 
in the reparse and remove steps. 

A l g o r i t h m  2 ( I n c r e m e n t a l  C h a r t  P a r s i n g )  

I n p u t :  A configuration (r,C,:D) and a modification 
Ar corresponding to insertion or dcletlon of m tokens 
ti , . . •, ti+m. 

O u t p u t :  An updated configuration (r', C ~, D').  

M e t h o d :  Do the following steps: 

M o d i f y  t h e  p r o b l e m  i n s t a n c e :  
Insert or delete the modified tokens given by A~ 
into or from r. 

P r e p a r e  t h e  char t :  Do one of the following steps in 
the case of insertion or deletion, respectively: 

Insertion: Renumber edges as follows: First, re- 
place each edge (vj,v~,r} where j _> i and k 
i with an edge (vj+m,vk,r}. Secondly, replace 
each edge (vj ,v~,r)  where k > i with an edge 
(vj, vk+m, r). Looping edges at the "modification 
vertex", which have the form (vi, vi, r), are dealt 
with differently depending on where their sources 
are located, which in turn depends on the predic- 
tion strategy: 

• Bottom-up case: If the looping edge depends 
on an outgoing, non-looping edge ((vi, vj, r) 
such that j > i), then the looping edge is re- 
placed with an edge (vi+,n, Vi+m, r) (in effect, 
it is moved). 

• Top-down case: If the looping edge de- 
pends on an incoming, possibly looping edge 
((vi, v~, r) such that k < i), then do nothing. 

Finally, update the depemlency relation 79 so that 
any edge (vj ,vk,r)  such that j < i and k > i is 
made dependent on ti. 

Deletion: Renumber edges ms follows: First, re- 
place each edge (vj, vie, r) where j > i with an edge 
(Vj-m,vk,r) .  Then replace each edge (vj, vk, r) 
where k > i with an edge (vj, vk ..... r). 

R e p a r s e :  Do the following steps: 

In the ease of insertion: create a scanning task for 
each new token; create a combination tmsk for each 
active-inactive edge pair meeting at vl and vi+m. 

In the case of deletion: create a combination task 
for each active-inactive edge pair meeting at vi. 

Reparse while visiting the disturbed edges in the 
order given by the dependency graph and treating 
the disturbed edges as "sleeping" (that is, they do 
not play any role in the parsing process ms such). 

9The a lgor i thm is cur ren t ly  being implenlented.  

Whenever a new edge is proposed, check if an equi- 
valent edge exists in the disturbance set according 
to definition 6. If so, install the new edge, update 
2) by letting the new edge inherit the dependencies 
from the old edge. Do not add any agenda items 
for the new edge (thereby discontinuing reparsing 
along this path). Mark the new edge as re-created 
(with respect to a reparsing-equivalent one). 

R e m o v e  edges:  Remove each edge that is in the di- 
sturbance set but not in the dependency set of any 
re-created edge. 

5 . 3  I n c r e m e n t a l  C o m p l e x i t y  

For the purpose of analysing the incremental comple- 
xity of algorithm 2, we assume that adding or removing 
an edge takes unit time. We also assume that no edge 
h,'~ m o r e  than a cons t an t  munber of sources or depen- 
dants and, hence, that the time required to install or 
examine the depemlencies of k edges is O(k). t° 

We first focus on the reparsing step. 11 Consider the 
case of a deletion within a text. The set of new edges N 
are generated ;ks a result of joining two subcharts, which 
we assume have length i and j and contain O(i 2) and 
O(j  2) edges, respectively (disregarding the grammar 
constant ]G D. The joined chart thus has length i + j 
and consists of O((i + j)'-') edges. The number of uew 
edges resulting from joining the subcharts is then INI -- 
O((i + j)2) _ (O(i 2) + O(j2)) = O(i. j)  cages. Since the 
algorithm generates these edges by invoking a O(n 3) 
reparsing algorithm, the new edges require O((i+j)a)  - 
(O(i a) + O(jJ)) = O( i . j .  (i+ j ))  = O(i ~. j2) = O(IN2[) 
time. The insertion case can be obtained in a similar 
way and gives the same result. In the remove step, 
the missing edges are found by following dependency 
chains originating from tokens until a reparsing-equi- 
valent edge is found or the chain ends. This step can 
therefore be executed in O(IM]) time. The algorithm 
as a whole then requires 0(/~ 2) time. 

6 C o n c l u s i o n s  

The boundedness criterion used here provides a gua- 
rantee that tile next update state is never more than 
an amount of computation away from the current state 
that is limited by the size of the change. This criterion 
is very strong. It can be thought of as constituting one 

l °Thls  assmnpt ion  is considered too s t rong  in reason mainte-  
nance,  where, in the worst case, all formulas  can be  directly 
connected  (see Goodwln  [4, page  110 f.]). However, it seems ap- 
p ropr la te  here, since nmler  a context-free g r a m m a r  of the kind 
'ased here only predic ted  edges may have mu | t lp le  sources.  Mo- 
reover, the number  of these sources is l imited because  of the 
l lnearl ty of the problem ins tance (the text) .  

ll  Since we take addi t ion  a n d  removal  of edges to be the pl'i- 
m a r y  tasks of incremental  upda te ,  we d is regard  the char t -prepa-  
ra t ion  step.  A l though  a more  t ho rough  analysis  might  take this 
step into &ccotlnt bo th  in the definition of g a n d  in the complexi ty  
analysis,  we do not  believe t ha t  a n y t h i n g  fundamen ta l  would be 
al tered by this. 
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extreme point of a continuum of ways in which to mea- 
sure tile complexity of incremental algorithms. At. the 
other extreme, we have the option of using 11"1 + I,~"1, 
the cost of discarding the ohl solution and invoking 
a hatch-mode algorithm on the moditied problem in- 
stance. This measure might be used for showing that 
an algorithm with poor worst<ase incremental behavi- 
our is still practical: Poor incremental behaviour means 
that the algorithm does not respond quickly to (some) 
small changes, tlowever, it may still perform better 
than discarding the old solution and invoking a hatch- 
mode algorithm. In other words, even if the algorithm 
is unbounded in ~, it may have a lower time bound 
in IP'[ + 1,9'1 than the batch-mode algorithm, q'he un- 
bonn(led algorithm described ilk sec t ion  4 is an example 
of this: it is clearly more ellicient than the batch-mode 
algorithm for the lmrpose of incremental update. 

Several interesting topics for further research present 
themselves: One is to generalize the notions of minimal 
change and hounded incrementality to other processing 
frameworks that make use of a table or a chart, for 
example, pseudo-parallel LR. parsing (Tomita [13]) or 
taMlar generation (Neumann [8]). Another interesting 
topic is to translate the slmre notions to a unification- 
based grammar formalism. Defining minimal change 
then requires a definition of the dill'erence between two 
feature structures. An immediate observation is that 
this is itself hardly a feature structure, but rather the 
set of (suh)structnres that are not present in both fea- 
ture structures (in analogy with our delinition of the 
difference between two charts). 
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