
Minimal Change and Bounded Incremental Parsing

Mats Wirdn
Fachrichttmg 8.7, Computcrlinguistik

Universit,~t des Saarlandes
Postfach 1150

D-66041 Saarbr/icken, Germany
wiren~coli.uni-sb.dc

A b s t r a c t

Ideally, the time that an incremental algorithm uses to
process a change should be a fimction of the size of the
change rather than, say, the size of the entire current
input. Based o n a formalization of "the set of things
changed" by an increInental modification, this paper
investigates how and to what extent it is possibh~' to
give such a guarantee for a chart-ba.se(l parsing frmne-
work and discusses the general utility of a tninlmality
notion in incremental processing)

1 I n t r o d u c t i o n

1.1 Background

Natural-language computing has traditionally been un-
derstood as a "batch-mode" or "once-only" process, in
which a problem instance P (shy, a text) is mapped
as a whole to a solution S (such as air analysis of the
text). IIowever, in highly interactive and real-time ap-
plications - - for example, grammar checking, structure
editing and on-line translation - - what is required is ef-
ficient processing of a sequence of small changes of a
text. Exhaustive recomlmtation is tber, not a feasible
alternative. Rather, to avoid ms much recomputation
as possible, each update cycle must re-use those parts
of the previous solution that are still wdid. We say that
an algorithm is incremental if it rises information from
an old solution in computing the new solution.

The problem of incremental processing can be stal.ed
its follows, using a notation similar to that of All)ern et
al. [1]: Assume given a problenr instance P (a represen-
tation of the current input), a solution S (the current
output), and a modification Ap to p.2 The modifica-
tion r e s u l t s in a new problem instance P' = P • A t , ,
where • is a composition operator. The task of an in-

1I would like to t h a n k Ra lph RSnnquls t as well as Gregor
Erbach a n d o ther colleagues in Snarbrfieken for discussions on
the ma te r i a l presented here, Peter Fritzson for originally aler t ing
my a t ten t ion to R a m a l i n g a m a n d t leps ' paper , and the anony-
mous referees. This research has been flmded by the C e r m a n
Science Founda t ion (DFG) th rough the Sonderforschnngsl)erelch
314, p ro jec t N3 (BiLD).

~A terminological note: we use " inpu t change" and "modifi-
ca t ion" as well as "ou tpu t cllange" and "upda te" synonymously.

z~ p

~ P ' = P (D A p

A s
S. ~- S' -- S (I) A s

l;'igure 1: Batch-mode versus incremental cornlmtation.

cremental algorithm is then to produce an upd~te As
in the old solution such that .5' • As is a solution to
P(DAp (see figure 1). At this point, nothing is stipula-
ted about tim amount, of information it, S tlmt should
be re-used in S'.

To show properties such im correctness and comple-
xity of incremental algorithms, it is necessary to esta-
blish a formal measure of "the set of things changed".
This me,inure sllouhl capture tim minimal change re-
suiting from a modification and, moreover, should be
independent of any particular algorithms R)r incremen-
tal update. One way of achieving this is to compare
the results obtained by batch-mode processing of the
inputs before and after the change, respectively (Wirfin
and l~.Snnquist [15, 17]): By forming tile "difference"
l)el.ween the lmtch-mode soh,tions S and £,1 obtained
before ;tlt(] after a modillcation At , to P, we obtain a
parameter A s , m ' which captures tin.' minimal change
in a way which is indeed imlependent of the incremen-
tal ul)date. Given that A.s,,,i" corre.sl)onds precisely to
what any sound and complete incremental algorithm
must do, it, can be used as a blmis lbr correctness proofs
for suclt algorithms (given tl,at the batch-rhode algo-
rithm is correct).

Fnrthermore, Asmi" can be used ms a basis of com-
plexity analyses: Ideally, each update cycle of an in-
cremental algorithm slmuld expend an amount of work
which is a polynomial fimction of the size of the change,
rather than, say, tile size of tl,e entire current input.
However, making this notion precise in a way which is
independent of particular incremental algorithms is not

461

always straightforward. Two early approaches along
these lines are Goodwin [3, 4] (reason maintenance)
and Reps [11] (language-based editing). More recently,
Alpern et al. [1] and Ramalingam and R.eps [9, 10] have
provided a framework for analysing incremental algo-
rithms, in which the basic measure used is the snm of
the sizes of the changes in the input and output. This
framework assumes that the modification of the input
can be carried out in o(IAPI) time, where the generic
notation IXI is used for the size of X. Furthermore, it
assumes that]As,m,] denotes the minimal IAsl such
that S (9 As solves P (9 Ap. Alpern et al. then define

= lapl + IzXs,~. I

as the intrinsic size of a change.
The choice of 6 is motivated as follows: IAph the size

of the modification, is in itself too crude a measure,
since a small change in problem instance may cause
a large change in solution or vice versa. IAs..,,I iv
then chosen as a measure of the size of the chauge in
the solution, since the time for updating the solution
can be no less than this. The 5 measure thus makes
it possible to capture how well a particular algorithm
performs relative to the amount of work that must be
performed in response to a change.

An incremental algorithm is said to be bounded if
it can process any change in time O(f(5)), that is, in
time depending only or, 5. Intuitively, this means that
it only processes the "region" where the input or output
changes. Algorithms of this kind can then be classified
according to their respective degrees of boundedness
(see Ftamalingam and Reps [10, section 5]). For exam-
pie, an algorithm which is linear in 5 is asymptotically
optimal. Furthermore, an incremental algorithm is said
to be unbounded if the time it takes to update the so-
lution can be arbitrarily large for a given 5.

It might seem that what has been discussed so far has
little relevance to natural-language processing, where
incrementality is typically understood ,as the piecemeM
assembly of an analysis during a single left-to-right a
pass through a text or a spoken utterance. In parti-
cular, incrementality is often used as a synonym for
interleaved approaches, in which syntax and seman-
tics work in parallel such that each word or phr~me is
given an interpretation immediately upon being reco-
gnized (see, for example, Mellish [7] and lladdock [5]).
llowever, the two views are closely related: The "left-
to-right view" is an idealized, psycholinguistically mo-
tivated special case, in which the only kind of change
allowed is addition of new material at the end of the
current input, resulting in piecemeal expansion of the
analysis. Moreover, the interleaving is just a conse-
quence of the fact that every piece of new input must,
in some sense, be fully analysed in order to be integra-
ted with the old analysis.

To distinguish this special case from the general case,
in wtfich arbitrary changes are allowed, Wirdn [15] re-
fers to them as left-to-right (Lll) incrementality and

3Strictly speaking front-to-back or beginMng-to-end.

full incremenlalily, respectively. The former case cor-
responds to on-line analysis - - that each prefix of a
string is parsed (interpreted) before any of the input
beyond that prefix is read (llarrison [6, page 433]).
The latter case has long been studied in interactive
language-based programming environments (for exam-
ple, Ghezzi and Mandrioli [2]), whereas the only pre-
vious such work that we are aware of in the context of
natural-language processing is Wirdn and R.gmlqnist
[14, 15, 16, 17].

1 .2 T h e P r o b l e m

The aim of this paper is to begin to adapt and ap-
ply the notion of bounded incremental computation to
natural-language parsing, using a method for establis-
hing minimal change previously introduced by Wir6n
and RSnnquist [15, 17]. To this end, the paper shows
how the 6 parameter can be defined in a fully incremen-
tal, chart-based parsing framework, briefly describes a
previous, unbomMed algorithm, and then shows how a
polynomially bounded algorithm can be obtained.

2 B a t c h - M o d e Chart Parsing

An incremental problem can be defined by specifying
its batch-mode version and the set of allowable modifi-
cations. We thus begin by specifying batch-rhode chart
parsing, restricting ourselves to a standard context-free
grammar without cyclic or empty productions.

D e f i n i t i o n 1 (C h a r t) A chart is a directed graph
C = (V, E) such that V is a linite, non-empty set of
vertices and E C V x V x R is a finite set of edges,
where R iv the set of dotted context-free rules obtained
from the grammar. 4

The vertices v l , . . . , v n + l G V correspond to the li-
near positions between the tokens r = tl . . . t , of an
n - t o k e n t ex t . 5 All edge e G I'; hetween vertices vl and
vj carries information al>out a (partially) analysed con-
stituent between the corresponding positions.

The algorithm makes use of an agenda (see Thomp-
son [12]). Agenda t;~sks are created in response to to-
kens being read and edges being added to the chart,
and may be ordered according to their priorities. To
define the agenda, we make use of the set of possible
tokens 7'kns and the set of possible edges Edgs.

D e f i n i t i o n 2 (A g e n d a) W e define the agenda as
Agda C Tkns U Edgs U (Edgs x Edgs). We refer to
the three types of tasks that it contains as scanning,
prediction and combination tasks, respectively.

4For brevity, we omit a fourth edge component correspon-
ding to tile set of (partial) parse trees according to the g r ammar
and lexicon (assuming that only the topmost portion of a tree
corresponding to the (lotted rule needs to be stored in an edge).

5We shall use ~" interchangeably to denote a sequence a~td a
set of tokens.

462

Each agenda task is executed by a ste 1) of the algorithln
below. We specify two versions of batch-nmde chart
parsing - - the basic bo t tom-up (strictly speaking, left-
corner) and top-down (Earlcy-stylc) strategies - . aSSll~
ruing tha t the one or the other is chosen.

A l g o r i t h m 1 (B a t c h - m o d e c h a r t p a r s i n g)

I n p u t : A seqnence of tokens r = t1 .. • t , .

O u t p u t : A chart.

I n i t i a l i z a t i o n : If tile tOll-down strategy is used, then
add an agenda task corresponding to ail initial top-
down prediction (Vl, Vl, S --~ .c~) for each rule S --+ ~v,
where S is ttle s tar t category of tile grammar .

M e t h o d : For each token, create a scanning tm~k.
While tile agenda is not empty, remove the next task
and execute tile corresponding step below:

Scan : Given a token I at position j , lbr each le-
xical entry of the form X -> t, add all edge
(v j , V j + l , X --+ l .) . d Add restllting new t~sks to
the agenda.

P r e d i c t 1 (B o t t o m - u p) : If tile edge is of the form
(vj, v k , X --* c¢.), then, for each rule of the form
Y --+ XT, add an edge (v j i v j , Y ~-+ .XT) unless
it already exists. Add resulting new tasks to tile
agenda.

P r e d i c t 2 (T o p - d o w n) : If the edge is of tile form
(vl, vj, X--+ oe. g f l) , tlien, for each rule of the form
Y "-* 3', add an edge (v j , v j , Y -+ -7) unless it
already exists. Add resulting new tasks to the
agenda.

C o m b i n e : If tile first edge is of tim form (vi, vj, X --*
~ . Y f l } and the second is of the form (vj, vk, Y - ,
7.) , then add an edge (v i , v k , X -+ a Y . f l) . Add
resulting new tasks to the agenda.

3 Incrementa l Char t Parsing

a . 1 T h e P r o b l e m

]'lie overall incremental process can be thought of ~Ls a
cl iange-update loop, where each chalige of the input is
immediately followed by a corresponding update of the
output . To completely specify the state of this process,
we shall make use of a conliguration consisting of (a
reI)resentation of) an input text r , a cliart C and an
edge-dependency relation 79 (to be &dined in section 4).
The problem of incremental chart parsing can then be
specilied abstract ly as a mapping

f ((r , C , 79),Ar) ~ (r ' ,C' ,79')

from an old configuration and a modillcation Ar to a
new configuration. We shall allow two kinds of change,
namely, insertion and deletion of w > 1 contiguons

~We refer to the new edge as a lezical'edge.

tokens. We assume tha t a modification A~ is given as
a vertex pair vj, Vj+m G V defining the update interval
and, in the cILsc of an insertion, a seqnence of tokens
T ~ lj • • • t i t m . We fiirthernlore ;ussume tha t either the
bot tom-up or top-down strategy is chosen throughout
a change-ul)date session, and, in tile lat ter case, tha t
tile toll-down initialization is made before the session
is started.

3 . 2 A C, e n e r a l V e r t e x M a p p i n g

flow can tile minilnal change ASh, in be defined il, a
chart-b~sed framework? One way of doing this is to
colnpare the charts C = (V, E} and C' = (V', I',") tha t
are obtained by batch-mode parsing of tile texts before
and after a c h a n g e , respectively. We thereby obtain a
measure which is independent of part icular increniental
update algoril, hms. hltnitively, only those edges tha t
are in E but not in lq r e , s t I)e relnoved, and only those
elites tha t are in 1'; ~ Ilut not in E must lie generated
anew. If the change is snlall, then a large fraction of
the edges are in /q gl I'Y (I.hat is, are unchanged).

llowever, to be able to colnpare the edge sets in the
two ('harts, we nmst first establish a one-to-one map-
ping between their vertices, l,et us consider the case in
wlfich a single token ti is (Meted from an n-token text.
The probleln is that , becanse of tile remove(l token, the
two vertices vl and vi+l would seem to correspond to a
single w~rtex in V ~. llowever, we can regard this single
vertex as consisting of a "left half" and a "right half",
which we assign diffe.rent indices. In other words, af-
ter having increase(l each index of v~_l.1,... , v~, G V' by
one, we "split" vertex v~ and assign the index i+1 to its
"right half". The incoming non-predicted edges ms well
as (looping) top-down predictions at tile split vertex
are then associated with its left half, and tile ontgoing
non-predicted edges as well ~us (looping) bo t tom-up pre-
dictions are associated with its right half. 7 q'he reason
for dividing the pre(licted edges in this way is tha t a
tOll-down prediction is made at (,tie ending vertex of
the i,riggcril, g edge (tha t is, froln tim left), wllereas a
/)ol.toln-up pre(liction is lnade at tim starting veri,ex of
the triggering edge (that is, from the right).

The lnapping Call I)e geIieralized to tile cruse ill whil:]l
Ill COlitiguoiiS tokelis are deleted. Ttl is is done by iil-
c.reasilig the index of eax:h w~rtex froin the "right half"
of tile split wn'tex an(I oilwards by m (instead of one).
Fnrtherinore, by nsing the salile lnlq)ping but in the
opposite direction, we can ills() cover insertion of m
contiguous toke[is. To express this generalized inal)-
ping, m'-ISlliln~ tha t !) is the set of vertices of the larger
chart and V is tha t of the smaller chart. A deletion of
m contiguous tokens then involves a mapping frona
to V and an insertion of rn tokens involves a real/ping
from V to V. In terms of tile indexing tha t holds before
the vertices in V are renumbered, and assuniing tha t l)

7A,u l l lent lo i led above, we aSsulne t ha t only the one or the
o the r st, i 'ategy is i lsed, so tha t ii, is k l l ow l i l lefOl 'ehl lnd wh ich
k ind of predi<:t lons the cltal ' t COlttliillS,

463

,m3m

'" r . _ _ ~ 2
wls =17

- " ' . I I t , '
. ~ /r -',l l i t , r

. ' : : : z c - : - _.. : - 1 ¢ : .
~a wx~ ~al vea l
. ,] wx~ ~aa vP}0

Figure 2: Chart of the sentence "The old man the tall
ships" under bottom-up parsing. Inactive edges are
drawn using continuous lines, active edges using dashed
lines, and predicted (looping) edges are depicted below
the vertices.

,S36

~';,; i ~- .

l , I i

.r""" ~ f-"~'--\ / ,--'~'~'-

~a wla Ne2a ve2~
slooP3 Vel4 N~] V~2B

Figure 3: Chart of the sentence "The old man tile
ships" under bottom-up parsing.

has n + 1 vertices, we obtain the following bidirectional
mapping:

• Vertices v l , . . . , vi-1 C V correspond to
vl, • • . , vi-1 G V, respectively.

• Vertex vi corresponds to the "left half" of vertex
Vi.

• Vertices v i+ l , . . . ,V i+m- t E ~" do not correspond
to any vertices in V.

• Vertex ~i+m corresponds to the "right half" of
vertex vl.

• Vertices 91+re+x, • •., ~.+1 correspond to
vi+l, • • . , vn+l -m , respectively.

The mapping is thus established with respect to inset-
tion or deletion of an arbitrary number of contiguous
tokens, s

3 . 3 M i n i m a l C h a n g e

Assume that E and E ' are the sets of edges of the
charts C and C' obtained by batch-mode parsing of a
text before and after a modification Ar, respectively.

8 P r e s u m a b l y , i t is p o s s i b l e to g e n e r a l i z e t h e m a p p i n g to m o r e

c o m p l e x (n o n - c o n t i g u o u s) o p e r a t i o n s s u c h a s r e p l a c e m e n t s o r r e -

v e r s a l s . H o w e v e r , we d o n o t p u r s u e t h a t h e r e .

S --~ N P VP the *-- Det

N P ---* Det N old ,--- N, A
NP ~ Del A N man ,--- N, V
VP --* V ships +-- N, V
171) --~ V NP

Figure 4: Example grammar and lexicon.

We can then define the minimal ontput change on the
b ~ i s of two edge sets as follows:

D e f i n i t i o n 3 (M i n i m a l o u t p u t change) We define
the set of missing edges as tile set difference M = E \ E j

and the set of new edges as tile set difference N =
E ' \ E. We then define the minimal output change as

A c , , i , = M U N.

Next, we can define the size of tile minimal change as
follows:

De f in i t i on 4 (Size of m i n i m a l change) We define
the size of the minimal change as/~ = [A~I +]Ac , , , , I ,
the sum of the number of inserted or deleted tokens
and the number of edges in Ac, , , i , .

3 . 4 A n E x a m p l e

As an illustration, tile chart in tigure 2 is obtained un-
der (batch-mode) bottom-up parsing, given the gram-
mar in figure 4 and the sentence 'q 'he old man the
tall ships". If the token "tall" is removed, the chart
in figure 3 is obtained. Vertex v~ in figure 2 then c o l
responds to the left half of vertex v~ in figure 3, and
vertex v6 corresponds to the right half of vertex v~.
Furthermore, v7 corresponds to v~. Clearly, tile input
change A~ consists of the token "tall". The output
change A ¢ , , i , consists of the missing set M, which
contains the three edges A26, NP27 and NPa4 in fi-
gure 2, and the new set N, which contains the singh.
edge NPau in figure 3. ']'he size of the change is then
6 = I~Xrl + IZXC,,,.,I := t + a + l = 5 .

If instead "tall" is inserted before the last word in
the sentence in figure 3, then the input change still
eonslsts of the token "tall".]lowever, the two sets ma-
king up the output change are reversed: the missing
set contains the single edge NPa2 in figure 3 and the
new set contains the three edges A26, NP2r and NP34
in figure 2. Thus, the size of the change is again 5.

4 A n U n b o u n d e d A l g o r i t h m

A key idea of the incremental chart-parsing algorithm
put forward by Wir&, [14, 15] is to use edge dependen-
cies for keeping track of edges that]lave to be removed
in response to a change. An edge e' is said to depend
upon another edge or token e if it is formed (derived)
directly on the b~usis of e. Furthermore, if e' is redun-
dantly proposed by an edge f , then d can be said to

464

15 14

01 " ,

1 l*

Figure 5: Edge-dependency graph induced by 1). q'he
nodes of tl|e gral)h correspond to the chart edges in
figure 3. A dummy root node 0 is shown instead of
nodes corresponding to the tokens.

depend (also) on f . By e' being "redundantly propo-
se(l", we mean that the parser at tempts to add an edge
that is equivalent to # to the chart, but thai, that edge
is rejected by the standard redundancy test in chart
parsing. In effect, f provides an additional "justifica-
tion" for #.

Given a chart C = (V, E) and a set of tokens r, these
conditions correspond to the following dependency re-
lation on E a n d r:

D e f i n i t i o n 5 (E d g e d e p e n d e n c y) We define 79 as a
binary relation on the set of chart edges and the set
of tokens E U r such that 79(s, d) hohts if and only if
d G E is formed, or is redun(lantly proposed, directly
using s C E U r according to a chart-l)arsing algorithm.
We say that d is a dependent (or derivative) edge of s,
and tl |at s is a source edge (token) of d.

7) can be ilh|strated by a graph. The dependency graph
corresponding to the chart in figure 3 is shown in [i-
gure 5.

On the basis of the dependency relation, WirSn and
RSnnqnist [15, 17] define different disturbance sets, gi-
ven as fimctions t'rom tokens to sets of edges, and con-
taining edges that need to be removed from the chart
in response to a token-level change. The simplest such
set is 7)*(tj), the transitive closure of 79(tj). Wirdn
and Rfnnquist [15, 17] discuss this and other alterna-
tives and show completeness of 79* with respect to the
missing set.

The algorithm performs an update essentially by re-
moving the entire disturbance set an([then generating
all possible edges. The latter set includes not only
the new edges, but also disturbed, non-missing edges,

which have to be generated anew. q'he coml)lexity ana-
lysis of the algorithm yields that it is unbounded incre-
mental in both its botto |n-up and top-down version (see
Wir6n [16]). The source of this is that the algorithm
removes the entire disturbance set, whose size depends
on n, the size of the entire input.

5 A B o u n d e d A l g o r i t h m

5.1 Intuitive Idea

Intuitively, a bounded incremental algorii.hm only pro-
cesses the region where the input or output changes
during an update cycle. In our c~se, the problem in
achieving this is that the missing and new edges are
not a priori known - - when the incremental update
begins, only a set of potentially missing edges (the di-
sturbance set) is known. Ilowever, the ul)date can be
limited by using a change-prol)agation algorithm (com-
pare Itamalingam and l{.eps [10, page 21]): By initially
retaining the disturl)ance set, new and old edges can be
coml)ared during reparsing. If a new edge e' is different
from the corresponding old edge e (if this exists), then
the dependants of c are regarded ms disturbed (poten-
tially missing). If # is equivalent to e in the sense of
giving rise to the sltme derivative edges, then the de-
pendants of c are known not to be missing, and hence
tim reparsing process does not have to proceed beyond
this point in the search sl)ace, in order to avoid extra
computation, the disturbed edges should be visited in
the order given by the dependency graph.

llow can the points aL which a change "(lies out"
be characterized? Since we are interested in characte-
rizing the conditions under which two edges give rise
to the same derivtLtive edges, the contents part of an
edge (that is, the rigltt-hand side before the dot of the
dotted rule) is irrelevant. For example, we want to say
that the new edge Nl):~2 in fig||re 3 to be reparsing-
equivalent with edge NP:~4 in figure 2 although their
dotted rules and parse trees are different: the dotte(I
rule of the former is N P -~ Dcl N . and that of the
latter is NI" ~ l)cI A N . . We can summarize this in
t i le following delini t ion:

D e f i n i t i o n 6 (R e p a r s i n g - e q u i v a l e n t edges)
Assume given a proposed edge e and a disturbed edge
e' C- C. Wesay that e = (v i , v j ,X - .*o~ . f l) and # =
(v , , vt, Y - * t t . v) are equivalent from the point of view
o f r e p a r s i n g i f i = s , j = t , X = Y a n d f l = v .

Inactive (combined or lexical) edges and predicted ed-
ges are special cases under this definition. Ill the former
case, fl and u are empty, and thus two inactive edges
are reparsing-equivalent if i = s, j = t and X = Y. In
the latter case, (v and i t are empty, and thus two pre-
dicted edges e and c' are reparsing-equivalent if e = d.

465

5.2 The A l g o r i t h m

We now specify a bounded incremental chart-parsing
algorithm that handles one update cycle. 9 In compari-
son with the unbounded algorithm, the differences are
in the reparse and remove steps.

A l g o r i t h m 2 (I n c r e m e n t a l C h a r t P a r s i n g)

I n p u t : A configuration (r,C,:D) and a modification
Ar corresponding to insertion or dcletlon of m tokens
ti , . . •, ti+m.

O u t p u t : An updated configuration (r', C ~, D').

M e t h o d : Do the following steps:

M o d i f y t h e p r o b l e m i n s t a n c e :
Insert or delete the modified tokens given by A~
into or from r.

P r e p a r e t h e char t : Do one of the following steps in
the case of insertion or deletion, respectively:

Insertion: Renumber edges as follows: First, re-
place each edge (vj,v~,r} where j _> i and k
i with an edge (vj+m,vk,r}. Secondly, replace
each edge (vj ,v~,r) where k > i with an edge
(vj, vk+m, r). Looping edges at the "modification
vertex", which have the form (vi, vi, r), are dealt
with differently depending on where their sources
are located, which in turn depends on the predic-
tion strategy:

• Bottom-up case: If the looping edge depends
on an outgoing, non-looping edge ((vi, vj, r)
such that j > i), then the looping edge is re-
placed with an edge (vi+,n, Vi+m, r) (in effect,
it is moved).

• Top-down case: If the looping edge de-
pends on an incoming, possibly looping edge
((vi, v~, r) such that k < i), then do nothing.

Finally, update the depemlency relation 79 so that
any edge (vj ,vk,r) such that j < i and k > i is
made dependent on ti.

Deletion: Renumber edges ms follows: First, re-
place each edge (vj, vie, r) where j > i with an edge
(Vj-m,vk,r) . Then replace each edge (vj, vk, r)
where k > i with an edge (vj, vk r).

R e p a r s e : Do the following steps:

In the ease of insertion: create a scanning task for
each new token; create a combination tmsk for each
active-inactive edge pair meeting at vl and vi+m.

In the case of deletion: create a combination task
for each active-inactive edge pair meeting at vi.

Reparse while visiting the disturbed edges in the
order given by the dependency graph and treating
the disturbed edges as "sleeping" (that is, they do
not play any role in the parsing process ms such).

9The a lgor i thm is cur ren t ly being implenlented.

Whenever a new edge is proposed, check if an equi-
valent edge exists in the disturbance set according
to definition 6. If so, install the new edge, update
2) by letting the new edge inherit the dependencies
from the old edge. Do not add any agenda items
for the new edge (thereby discontinuing reparsing
along this path). Mark the new edge as re-created
(with respect to a reparsing-equivalent one).

R e m o v e edges: Remove each edge that is in the di-
sturbance set but not in the dependency set of any
re-created edge.

5 . 3 I n c r e m e n t a l C o m p l e x i t y

For the purpose of analysing the incremental comple-
xity of algorithm 2, we assume that adding or removing
an edge takes unit time. We also assume that no edge
h,'~ m o r e than a cons t an t munber of sources or depen-
dants and, hence, that the time required to install or
examine the depemlencies of k edges is O(k). t°

We first focus on the reparsing step. 11 Consider the
case of a deletion within a text. The set of new edges N
are generated ;ks a result of joining two subcharts, which
we assume have length i and j and contain O(i 2) and
O(j 2) edges, respectively (disregarding the grammar
constant]G D. The joined chart thus has length i + j
and consists of O((i + j)'-') edges. The number of uew
edges resulting from joining the subcharts is then INI --
O((i + j)2) _ (O(i 2) + O(j2)) = O(i. j) cages. Since the
algorithm generates these edges by invoking a O(n 3)
reparsing algorithm, the new edges require O((i+j)a) -
(O(i a) + O(jJ)) = O(i . j . (i+ j)) = O(i ~. j2) = O(IN2[)
time. The insertion case can be obtained in a similar
way and gives the same result. In the remove step,
the missing edges are found by following dependency
chains originating from tokens until a reparsing-equi-
valent edge is found or the chain ends. This step can
therefore be executed in O(IM]) time. The algorithm
as a whole then requires 0(/~ 2) time.

6 C o n c l u s i o n s

The boundedness criterion used here provides a gua-
rantee that tile next update state is never more than
an amount of computation away from the current state
that is limited by the size of the change. This criterion
is very strong. It can be thought of as constituting one

l °Thls assmnpt ion is considered too s t rong in reason mainte-
nance, where, in the worst case, all formulas can be directly
connected (see Goodwln [4, page 110 f.]). However, it seems ap-
p ropr la te here, since nmler a context-free g r a m m a r of the kind
'ased here only predic ted edges may have mu | t lp le sources. Mo-
reover, the number of these sources is l imited because of the
l lnearl ty of the problem ins tance (the text) .

ll Since we take addi t ion a n d removal of edges to be the pl'i-
m a r y tasks of incremental upda te , we d is regard the char t -prepa-
ra t ion step. A l though a more t ho rough analysis might take this
step into &ccotlnt bo th in the definition of g a n d in the complexi ty
analysis, we do not believe t ha t a n y t h i n g fundamen ta l would be
al tered by this.

466

extreme point of a continuum of ways in which to mea-
sure tile complexity of incremental algorithms. At. the
other extreme, we have the option of using 11"1 + I,~"1,
the cost of discarding the ohl solution and invoking
a hatch-mode algorithm on the moditied problem in-
stance. This measure might be used for showing that
an algorithm with poor worst<ase incremental behavi-
our is still practical: Poor incremental behaviour means
that the algorithm does not respond quickly to (some)
small changes, tlowever, it may still perform better
than discarding the old solution and invoking a hatch-
mode algorithm. In other words, even if the algorithm
is unbounded in ~, it may have a lower time bound
in IP'[+ 1,9'1 than the batch-mode algorithm, q'he un-
bonn(led algorithm described ilk sec t ion 4 is an example
of this: it is clearly more ellicient than the batch-mode
algorithm for the lmrpose of incremental update.

Several interesting topics for further research present
themselves: One is to generalize the notions of minimal
change and hounded incrementality to other processing
frameworks that make use of a table or a chart, for
example, pseudo-parallel LR. parsing (Tomita [13]) or
taMlar generation (Neumann [8]). Another interesting
topic is to translate the slmre notions to a unification-
based grammar formalism. Defining minimal change
then requires a definition of the dill'erence between two
feature structures. An immediate observation is that
this is itself hardly a feature structure, but rather the
set of (suh)structnres that are not present in both fea-
ture structures (in analogy with our delinition of the
difference between two charts).

R e f e r e n c e s

[1] llowen Alpern, Roger [loow'.r, Barry K. Rosen,
Peter F. Sweeney, and 1". Kenneth Zadeck. In-
cremental Evaluation of Computational Circuits.
In Proc. First Annual A CM-SIA M Symposium on
Discrete Algorithms, l)ages 32 42, San l"rancisco,
California, USA, 1990.

[2] Carlo Ghezzi and Dino Mandrioli. Incremental
l'arsing. ACM 7)'ansaclions on Prv qramming Lan-
guages and Systems, 1(1):58-70, 1979.

[3] James W. Goodwin. An hnproved Algorithm for
Non-Monotonic l)ependency Net, Update. Re-
search Report LiTII-MNI'-R-82-23, Department
of Computer and lnfornaation Science, Link6ping
University, Link/3ping, Sweden, 1982.

[4] James W. Goodwin. A 'l'heory and Systom for
Non-Monotonic Reasoning. LinkSping Studies in
Science and q'eehnology, l)issertation 165, l)epart-
ment of Computer and Information Science, Lin-
kgping University, LinkSping, Sweden, 1987.

[5] Nicholas a. Iladdock. Comlmtational Models of In-
cremental Semantic Interpretation. l, angnage and
Cognitive Processes, 4(3--4):aar-a68, 1989.

[6] Michael A. Ilarrison. introduction to l"ormal Lan-
guage Theory. Addison-Wesley, Reading, M~ssa-
chuset, ts, USA, 1978.

[7] Christopher S. Melllsh. Computer lnlerprelalion
of Natural Language Descriptions. Ellis llorwood,
Chiehester, England, 1985.

[8] G/inter Neumann. A Tabular Uniform Algorithm
for Parsing and Generation. Chapter of forth-
coming Ph.l). thesis, Universit~[t des Saarlandes,
Sitarbriicken, Gerrnany, 1994.

[9] O. l{amalingam. Bounded Incremental Computa-
tion. Technical l~.eport (Ph.D. Thesis) 1172, Com-
puter Sciences l)epartment, U'niversity of Wiscon-
sin, Madison, Wisconsin, USA, 1993.

[10] (]. l~.amalingam and 'l'hom~. W. l/.el)s. On l, he.
Comlmtational Complexity of Incremental Algo-
rithms. Technical li.eport 10a'.l, Computer Sci-
ences I)epartmeut, University of Wisconsin, Ma-
dison, Wisconsin, USA, 1991.

[1 I] Thomas W. Reps. Optimal-Time Incremental Se--
mantle Analysis lbr Syntax-Directed Editors. ILk
Proc. Ninth ACM Symposium on Principles of
Programming Languages, pages 169-176, Alhu-
querque, New Mexico, USA, 1982.

[12] IIenry S. Thompson. MClIAItT: A Flexible, Mo-
(htlar Chart l'arsing System. In Proc. Third Na-
tional (;onfeTvnce on Artificial Intelligence, pages
408--410, W~kshington, I).C., USA, 1983.

[I 3] Masaru qbnfita. An EIficient Context-l,'ree Parsing
Algorithm for Natural Languages. In Proc. Ninth
International Joint Conference on Artificial Intel-
ligence, pages 756-764, Los Angeles, California,
USA, 1985.

[14] Mitts Wirdn. lnteractiw'~ Incremental Chart Par-
sing. In Proc. Fourth Co,ferenee of the Euro-
pean Chapter of the Association for Compnlalio-
nol Linguistics, pages 241-248, Manchester, li}ng -
land, 1989.

[15] Mats Wir6n. Stutlies in lncrenmntal Natural-
Language M,alysis. l,ink6ping Stndies ilk Sci-
ence and q~chnology, Dissertation 292, l)epart-
ment of Computer and Information Science, Lin-
kSping University, LiukSping, Sweden, 1992.

[16] Mats Wirdn. l/ounded Incremental Parsing. In
PTvc. 6th 7'wente Workshop on Language 7'echno-
logy, pages 145--156, I,'mschede, the Netherhmds,
1993.

[17] Mats Wir(n and Rall)h Rgnnquist. l"ully In-
cremental Pro'sing. In Proc. Third International
Workshop o11 Parsing 7~chnologies, Tilburg, the
Netherlands and Durlmy, IMgium, 1993.

467

