Two Parsing Algorithms by Means of Finite State Transducers

Emmanuel Roche*
Mitsubishi Electric Research Lahoratories
201, Broadway, Cambridge, MA 02139, roche@merl.com

Abstract

We present a new approach, illustrated by two alpo-
rithms, for parsing not only Finite State Grammars
but also Context Free Grammars and their extension,
by means of finite state machines, The basis is the com-
putation of a fixed point of a finite-state function, i.c.
a finite-state transducer. Using these techniques, we
have built a prograr that parses French sentences with
a grammar of more than 200,000 lexical rules with o
typical response time of less than a second. The first al-
gorithm computes a fixed point of a non-deterministic
finite-state transducer and the second computes a fixed
point of a deterministic bidirectional device called a
bimachine. These two algorithms point out a new con-
nection between the theory of parsing and the theory
of representation of rational transductions.

INTRODUCTION

Finite state devices have recently attracted a lot of
interest in computational linguistics. Computational
efliciency has been drastically improved for morpho-
logical analysis by representing large dictionaries with
I'inite State Automata (FSA) and by representing two-
level rules and lexical information with [nite-state
transducers [8, 4] More recently, [11] has achieved pars-
ing with low level lexical sensitivity by means of finite
state autornata. Finite state approximation of context-
free grammars also proved both useful and eflicient for
certain application [9].

One common motivation of all this work is to tm-
prove efliciency dramatically, hoth in terms of time and

space. These results often provide programs orders of

magnitude faster than more traditional implementa-
tions. Moreover, FSAs are a natural way to express
lexical sensitivity, which has always been a requirement
in morphology and which has proved crucial in syn-
tax. The grammar we used for French, called Lexicon-
Grammar (see [6] [7] [2] [3] [10] for instance), pushes
the lexicalization very far and it 1s our helief that this
lexicalization trend will amplify itself and that it will
result in grammars several orders of magnitude larger
than today’s representations. This uncovers the need
for new methods that will be able to handle such large
scale grammars.

*Supported by a DRET-Fcole Polytechnique contract,
this work was done at the Institut Gaspard Monge and at

the LADL.

fTowever, a main drawback of the finite state ap-
proach to syntax 1s the difliculty of representing hier-
archical data; this partly explains why FSA-based pro-
grams only do incomplete parsing, 'This paper presents
a new parsing approach based on linite-state transdune-
ers, a device that has been used already in morphology
[8] but not yet in syntax, that provides both hierar-
chical representations and efficiency in a siimple and
natural way. The representation is very compact, this
allows to implement large lexical gramimars.

Two new parsing algorithms illustrate the approach
presented here. The first one uses a finitte state trans-
ducer and computes a fixed point. But finite state
transducers, unlike F'SAs, cannot be made determinis-
tic; however, a hidirectional device called a himachine
[1] can indirectly make them deterministic. This leads
Lo the second algorithm presented here. ‘The very high
elliciency ol this approach can be seen in the exper-
iments on French, Sentences can be parsed with a
gramrmar containing more than 200,000 lexical rules';
this grammar is, we think, the largest granunar ever
implemented.

PRINCIPLES
The concept of Finite-State Transducer

T'he basic concept here, since we nol only mateh but
also add markers, is the coneept of finite-state trans-
ducer. This device has alrcady proved very eflicient
in morphological analysis [8]. 1L can deal with very
large amount of data, namely morphological dictionar-
les containing more than 500,000 entries,

A linite state Lransducer is simply an FSA excepl
that, while following a path, symbols are emitted. A fi-
nite state transducer can also situply be seen as a graph
where the vertices, called states, are linked through
oriented arrows, called transitions, The transitions are
labeled by pairs (inpul Label, output label) 2.

"By lexical rule we basically mean a sentence structure,
as for example Nhum say to Nham that S, where Nhum
and S respectively stand for human nominal and sentence.
Thus the rules we deal with can roughly be seen as sentence
structures where at least one element is lexical. This will
be developed in section .

2An extensive description of this concept can be lound

in (1]

431

The parser in term of rational
transduction

In our parser, the grammar is a rational transduction
f, represented by a transducer 7. The input of the
parser is the set so containing as only element the in-
put sentence bounded by the phrase marker [P], i.e.
5o = {[P] sentence [P]}. The analysis consists in com-
puting sy = f(so), s2 = f(s1) until a fixed point is
reached, i.e. s, = f(sp). The set s, contains trees
represented by bracketed strings, this set is the set of
grammatical analysis of the sentence, it contains more
than one element in the case of syntactically ambigu-
ous inputs. Fach set s; is represented by a Directed
Acyclic Graph (DAG) A;, thus the computation con-
sists in applying the transducer 7' on the DAGs A;.
We shall write it A;4; = T(A;).

In the next section we give two complete examples
of that.

TWO SIMPLE EXAMPLES

An example of a Top-Down analysis

The graph on figure 1 describes the analysis of the
sentence:

s1 = Johun said that Mary left

The graph on this figure has to be read in the fol-
lowing way: the input sentence is represented by the
DAG Ayon the upper left corner; the subset of the
grammar required for the analysis of this sentence is
the transducer fon the right hand side of the figure 1.

The analysis is then computed in the following way:
we apply the transducer fto A4;, that is we compute
A= [(A1) , this represents one step of a Top-Down
analysis of the sentence. The box with a star inside
represents this operation, namely applying a trans-
ducer to a DAG. If we then apply fto this result (i.e.
Ap), we obtain Ag=f(Ay)= f*(A;) represented under
Aq. If this operation is applied once more, one gets
Aa=f(As)= f*(Ar). This last result, Ag, is a fixed
point of the transducer f, i.e. f{A4)=A4. Aqisa DAG
that represents a finite set Sef(A4) of strings. Here,
this set only contains one element, namely Set(A4) =

{(John)NO(said)VO(that(Mary)NO(le f1)V 0)That S}

Ilach element is a bracketed representation of an anal-
ysis. Here the analysis is unique.

An example of a simultaneous Top-Down
Bottom-Up analysis

The previous example might give the impression that
computing a fixed point of a transducer automatically
leads to simulating a top-down context free analysis.
However, we shall now see that using the flexibility of
manipulating transducers, namely being able to com-
pute the composition and the union of two transducers,
allows a context sensitive parsing which is simultane-
ously Top-Down and Bottom-up with the possibility of
choosing which kind of rule should be parsed Bottom-
Up.

Suppose one wants to analyze the sentence
sg =Maz bought a litile bit more than five hundred
share certificates. Suppose one has the following small
functions, each one being specialized in the analysis of
an atomic fact (i.e. each function is a lexical rule):

432

o [1 : walittle bit more than w' — w (pred a
little bit more than pred) w'; w,w' ¢ A*

o [2%: wilive hundred w' — w (num five hundred
num) w’'

where w € A* and w' € A* — {(NUMERAL}

o fa: w share certificates w' — w (en share cer-
tificates en) w’ where w,w' € A*

» f4: [P] w bought w'[P] — [N w N] bought [N
w' NJ] where w,w' € A*

o [5:w [N Max N} w' — w Max w' ; w,w' € A*
o fo: wy [N (predws pred) (num wy num) (en
wa en) N] ws — wy (N wy wy wy N) wy

where wy, wy, wy, wy, wg € A*
o friw——w; wE A*—(Dom{f1U [f4U f4USf5)1

Il we precomnpute the transducer representing the
rational transduction [= (fs0 fso fao fi) U ([5 0
f6)U J7 then the analysis of the senteuce is a two-step
application of f, namely

S [P] Max bought a little bit more than
five hundred share certificates [P]) =

[N Max NJ] bought [N (pred a little
bit more than pred) (mum five hundred
num) (en share certificates cim) NJj

and

J([Pls[p]) =
(N Max N) bought (N a little bit more

than five hundred share certificates N)
which is the analysis of the sentence®,

FORMAIL DESCRIPTION

The algorithm
Formally, a transducer 7' is defined by a G-uplet
(A, Q,i,F,d,8) where A is a {inite alphabet, @ is a
finite set of states, ¢ € @ is the initial state, 1" C Q
is the set of terminal states, d the transition lunction
maps) x A 1o the set of subsets of @ and & the emission
function maps @ x A x Q) to A.

The core of the procedure consists in applying a
transducer to a I'SA, the algorithm is well known, we
give it here for the sake of readability.

ts_fized_point=ApplyTransducer(A, T}, As)

Li=0;P[0] = (4),d2);n = |;q = 0;is_fized.point = Y S

2 do {

3 (o1,02) = Plal)

4 if @y # iy then is_fized_point = NO;®
5 ifwy € I and ®g € Iy then z € &

3 - .. .
Here fa simulates a context sensitive analysis because

of w' € A* — {NUMERAL)

* Dom(f) stands for the domain of /.

®Note that it is always possible to keep more information
along the analysis and to keep track, for instance, of the
position of the determiners.

: Initial sentence

Ay

Sad o

ha
Mary N0 (

Ay =SlAg) = fHAy)
Ay isafixe pointof f: flAy) =A,

AR

S transducer representing the grammar

Figure 10 Overview of the analysis of the sample

6 foreach s € Alph | di(ay,s) # B do(zg,8) # 0
7 foreach ¥, € o) (ay,) and yy € do(y, s)
if3 p < nsuch that P[p] == (y1, y2) then
9 e =p;

10 elsePle = n+] = (n, v2);

11 add e to d(q, 6y (21, s, 22));

12 q4++;

13} while (¢ < n);

1P RUNE({A); (this line is optional)

1freturn is_fized_point;

oL

The analysis algorithm is then the following one:

ANALYSE_1(A,T)

1 fin=NO;
2 while fin # Y ES do
3 fin = ApplyTransducer(A,'l, A);

Transducers v.s. Context I'ree Grammars

It should be pointed out that, given a Context-Iree
Grammar, it is always possible to build a transducer

such that this method applies. In other words, any
context free grammar can be translated into a trans-
ducer such that the algorithm parse the language de-
seribed by this gramimar. Moreover, the operation that
transforms a CI'G into its related transducer is itsell a
rational transduction. Although this cannol he devel-
opped here due Lo the lack of place, this resnlt comes
naturally when looking at the example of sectiou 3.1,

Moreover the method has much more expressive
power than CFG, in fact computing a fixed point of
a rational transduction has the same power as apply-
ing a Turing Machine (althought there might not be
any practical interest for that).

THE SECOND ALGORITHM : A
DETERMINISTIC DEVICE

Given atransducer representing the grammar there are
two dillerent ways of obtaining new parsing programs.
The first solution is to build a transducer T cquiv-
alent to 7' from the view point ol their fixed points,

433

T ~fized—point 7", Nm“(‘-l)’ T ~ fixed—point 7" 1t for
each # € A*, T(z) = x <> T'(2) = 2. For instance,
if T is such that for each z € A*, T"(x) converges
then 7°* ~tiged-point 1+ The second approach is to
try using a diflerent representation of 7" or to apply it
differently. In this section, we shall give an algorithm
illustrating this second approach. The basic idea is to
transform the finite-state transducer into a determin-
istic device called bimachine {1]. We will detail that
latter but, basically, a bimachine stands for a left se-
quential function (i.e deterministic from left to right)
composed to a right sequential function (i.c. determin-
istic from right to left). Such a decomposition always
exists, }

The interest ol this concept appears when one
looks at how the algorithm ApplyTransducer performs.
In fact the output DAG of this algorithm has a lot
of states that lead to nothing, ie. states that are
not coaccessible, thus the PRUNE function (called on
line 14 of the ApplyTransducer function) has to re-
move most of the states (around 90% in our parser of
French).

Let us for instance consider the following example:
suppose the transducer 13 is the one represented fig-
ure 2 and that we want to corapute Ty (A) where A is
the DAG given figure 2.

aby o’__ci\ a:g
5 CC cl fg
N CTHE ot a c g
ok omo®o/_\©
Ty A

Figure 2: left: initial transducer; right: initial DAG

Following the algorithm described in ApplyTrans-
ducer up to line 14 excluded provides the DAG A’ of
figure 3.

b, 4 9
Qer"’\o L
A/ AI(

Figure 3: left: before pruning; right:after pruning

The PRUNE function has then to remove 3 of the
six states to give the DAG A" of ligure 3

A way to avoid the overhead of computing unnec-
essary states is to first apply a left sequential trans-
ducer Tyq, (that is a transducer deterministic in term
of its input when read from left to right) given fig-
ure 4 and then apply a right sequential transducer 71y,
(i.e. deterministic in term of its input when read from
right to left) given figure 4. We shall call the pair
Ba = (Taa, Tos) the bimachine functionally equivalent
to To, i.e. Ba ~funetion To. With the same input A
we first obtain A, = T4, (A) of figure 5 and then A, =
A" = reverse(Ty (reverse(Aq))) = T(A) = Bo(A).

434

c:d
e C:(‘g,. g\ g:gl @/ ce ol ‘9/1:9-\0
am rd “\ a:a

L% i ades
] .C N
i, e 9940 \Y\L?_I;of@/

' e
7ua Ju[l

o/".“}.

Figure 4: leftleft sequential function; right:right se-
quential function

a c 49
0/“‘\0/;\L o e

O

Figure 5: A,

It should be pointed out that both 1}, and Ty, are
deterministic in term of their input, i.c. their left la-
bels, which was not the case to Ty, Just like for FSA,
the fact that it is deterministic implies that it can be
applied faster (and sometime much faster) than non-
deterministic devices, on the other hand the size of
the bimachine might be, in the worst case, exponential
in term of the original transducer. The following algo-
rithim formalizes the analysis by mean of a bimachine?,

ANALYSE2(A, B = (11, Th))

1 Jin=NO;

2 while fin #£ Y £S5 do {

3 Jin = ApplyTransducer(A, Ty, A),
4 il fing Y ES{

0 reverse(A);

6 ApplyTransducer(A, Ty, A);
7 reverse(A);

8

9 }
IMPLEMENTATION AND RESULTS

The main motivation for this work comes from the lin-
guistic claim that the syntactic rules, roughly the sen-
tence structures, are mostly lexical. The grammar of
French we had at our disposal was so large that none
of the available parsers could handle it.

Although the implemented part of the grammar is
still incomplele, it already describes 2,878 sentential
verbs (coming from [6]), that is verbs that can take a
sentence as argument, leading to 201,723 lexical rules®;
1,359 intransitive verbs [2] leading to 3,153 lexical
rules; 2,109 transitive verbs {3} leading to 9,785 lexical
rules; 2,920 frozen expression (coming from [7]) leading
to 9,342 lexical rules and 1,213 parily (rozen adverbials
leading to 5,032 lexical rules. Thus, the grammar de-
seribes 10,479 enbries and 229,035 lexical rules. This

"The FSA reverse(A) is A wlere the transitions have
been reversed and the initial and final states exchanged.

¥For a verh like étonner the set of rules include & humg
élonner Nhuwm, as well as Nhuwmo avoir étonné Nhum,,
Nlumg étre étonné par N hum, or N humg s’élonne auprés
de Nhumy de ce QuP, which gives an idea of how these
complexe verbs generate an average of 100 rules, or sentence
structures, even if no embbeding is involved at this stage.

grammar is represented by one transducer of 13,408
states and 47,119 transitions stored in 908KE.
The following input :

Jean est agacéd par le fait que son
ami , dans la crainte d’dtre puni par
ses parents, ne lear ait pas avoud ses
manvaises notes.,
is parsed in the following way in 0.95s ¥ with a
program implementing the algorithm ANALYSIS_L,

(N Jean)N est &Vpp0 agacé par
le_fait_Qul le fait (QuP que (N son
u ami ami)N |, (ADV dans la crainte
de (VOW NO étre &Vpp0 puani par (N
ses n parent parents)N VOW) ADV)
, leur #Nhmm?2 avoir ait (op #Ene -pas
op) LVpp0o avoud (N ses manvaises n
note notes YN Qul”)

Typical time spending varies [rom 0.05 second for
a ten words sentence to 5 seconds for a hundred words
sentence under the current implementation. A key
point about this method is that the time spending is
quite insensitive to the size of the grammar, this is cru-
clal for scaling up the program to much larger prane-
mars. TFor instance the preceding example is analyzed
in 0.93s (instead of 0.95s) for a graummar of half its size
(around 100,000 lexical rules).

The coverage of this grammar still has to he ex-
tended, not all data we had at our disposal are yel en-
coded in the transducer (around 50% remain). ‘Thus,
given an arbitrary text, whereas most of the simple
short sentences (five to filteen words) are analyzed, the
probability of having all lexical descriptions for longer
sentences decreases rapidly. However, sinee all the lex-
ical rules have been checked by hand one by one, the
accuracy of the analysis is higher than what can be
expected with less lexicalized grammars. This means
two things:

s whenever the analysis is found and unless the
sentence s syntaclically ambiguous, the analysis
Is unique,

e incorrect sentences are systematically rejected.
Thus the set of sentence defined by the parser
is a subset of the set of correct sentences. This
property is very difficult to achieve through non
or less lexicalized grammars.

CONCLUSION

We have introduced two different parsing algo-
rithrns based on Finite-State ‘Iransducers illustrating
a method capable of handling extremely large gram-
mars very efficiently. We have shown how Finite-State
Transducers can handle not only finite slate grammars
but also hierarchical descriptions expressed by context-
free based formalisms.

2Omn an HP720, this is the unigne parsing, in other words
the input is found not to be ambiguous. The time spending
includes a morphological analysis by mean of a dictionary
look-up. This inflected form dictionary coutaius 600,000

entries [5].

‘I'he method has been successfully implemented for
a Irench Lexicon-Grammar consisting of 200,000 lexi-
cal rules. The use of Finite-State Transducers yields a
Lypical response time of a fractions of a sccond.

We have also introduced a bidivectional parsing al-
gorithm which further improves response Lime,

These investigations have, we believe, important
implications for the tmplementation of large grammars.
Moreover, it should he possible to improve these results
appreciably by exploring different representations and
different decompositions ol the grammar transducer
with tools [rom the theory of Fiuite-State Transdue-

ors,

References
1] Berstel, Jean, 1979, Transduclions and Contexi-
Free Languages. Stuttgart, B.GL Teubner 277,

2] Boous, Jean-Paul; Alain Guillet; Christian
Leclore 1976, La structure des phrases simples cn
frangais. | Conslructions intransilives. Gendve:
Drouw:377Tp.

[4] Boons, Jean-Paul; Alain Guillet; Christian
Leclere 1976, La structure des phrases samples en
Srangars. 11 Constructions transilives. Technieal
Report LADL. Université Paris 7. Parls.

(1] Clemenceaun, David; Emmanuel Roche, 1993, Fn-
hancing @ morphological dictionary with two-level
rules. KACL93, Proceedings of the Conference.
Utrecht.

(6] Courtois, Blandine, 1989, DELAS : Dictionnaire
Electronique du LADL pour les mols simples du
Sfrangais. Rapport technique du LADIL, Paris:
Université Paris 7.

[6] Gross, Maurice, 1975, Méthodes en synlaze,
régime des conslructions complétives. Paris: Her-
mat, 415p.

(7] Gross, Maurice, 1986, Grammaire transformalion-
nelle du frangais : 3) Syntave de Padverbe. Paris:
Cantilene, 669p.

[8] Karttunen, Lauri; Ronald M. Kaplan; Annic Za-
enen 19920 Two-Level Morphology with Composi-
tion. COLING92, Proceedings of the conference.
Nantes,

(9] Peireira, Fernando C. N., Rebecea N, Wright,
1991, Pimide~State Approzimation of Phrase
Stracture Grammars. 29th Annual Meeting of the
ACL, Proceedings of the conference. University of
California, Berkeley.

[10] Roche, limmanuel, 1993, Analyse Synlazigue
Transformationnelle dw Frangais par Transduc-
teurs el Lexique-Clrammaire, PhD dissertation,
Université Parts 7, Paris.

[11] Tapanainen, Pasi; Atro Voulilainen, 1993, Ambi-
guily vesolution i a reductionistic parser. Sixih
Conference of the Furopean Chapter of the ACY,
Proceedings of the Conference. Utrecht, April
1993.

