
THE " W H I T E B O A R D " ARCHITECTURE:
A WAY TO INTEGRATE HETEROGENEOUS COMPONENTS OF NLP SYSTEMS

Christian Boitet Mark Scligman

GETA, IMAG (UJF & CNRS),
150 rue de la Chimie, BP 53

38041 Grenoble Cedex 9, Fr,'mce
Christian .Boitet@imag. fr

NI'R Interpreting Teleconununicafions Research Labs
2-2 ltikari-dai, Seika-cho, Somku-gun

Kyoto 619-02, Japan
seligman@it i. atr. co. jp

A B S T R A C T
We present a new softw,'u'e architecture for NLP systems

made of heterogeneous components, and demonstrate an
architectural prototype we have built at ATR iu the
context of Speech Translation.
KEYWORDS: Distributed NLP systems, Software
architectures, Whiteboard.

INTRODUCTION
Speech translation systems must integrate components

handling speech recognition, machine translation and
speech synthesis. Speech recognition often uses special
hardware. More components may be added in the future, for
task understanding, multimodal interaction, etc. In more
traditional NLP systems, such ,'cq MT systems for written
texts, there is also a trend towards distributing various
tasks on various machines.

Sequential ,architectures [10, 11] offer ,an easy solntion,
but lead to loss of information and lack of robustness. On
the other hand, reports on experimenls with blackboard
architectures [16, 13, 20] show they also have problems.

We ,are exploring an intermediate architecture, in which
components are integrated under a coordinator, may be
written in various programming languages, may use their
own data structures and algorithms, and may run in parallel
on different machines. The coordinator maintains in a
whiteboard an image of the input and output data structures
of each component, at a suitable level of detail. The
whitehoard fosters reuse of partial results and avoids
wasteful recomputation. Each component process is
encapsulated in a manager, which transforms it inlo a
server, commuuicating with external clients (including the
coordinator) via a system of mailboxes. Managers handle
the conversions between internal (server) and external
(client) data formats. This protocol enhances modularity
and clarity, because one needs to to explicitly and
completely declare fl~e appearance of the partial results of
the components on the whileboard.

Managers may also make batch components appear :is
incremental components by delivering outputs in a
piecewise fashion, thus taking a first step towards systems
simulating simultaneous translation.
We have prc~luced a rudimentary architectural prototype,

KASUGA, to demonstrate the above ideas.
In fl~e first section, our four main guidelines ,are detailed:

(1) record overall progress of components in a whiteboard;
(2) let a coordinator schedule the work of components;
(3) encapsnlate components in managers; and (4) use the
managers to simulate Incremental Processing. In the
second section, some high-level aspects of the KASUGA
prototype ,are first described, and a simple demonstration is
discnssed, in which incremental speech translation is
simulated. Lower-level details are then giveu on some
internal aspects.

I. T I l E W I I 1 T E B O A R D ARCHITECTURE
1. Record overal l progress in a whi t e lmard

The whiteboard ,architecture is inspired by the chart
architecture of the MIND system [8] and later systems or
formalisms for NLP [1, 5], as well as by the blackbo~u'd
architecture, first introduced in HEARSAY-II [6, 13] for
speech recognition, l lowever, there is a significant
difference: tile components do not access the whiteboard,
and need not even know of its existence.

There are 2 main problems with the sequential approach.
• Pl: loss of information

If components ,are simply concatenated, as in Asnra
[10, 11], it is difficult for them to share partial results.
Information is lost at subsystem interfaces and work
has to be duplicated. For example, the cited system
uses an LR parser to drive speech recognition; but
syntactic structures found are discarded when
recognition candidates are passed to MT. Complete
reparsing is thus needed.

• P2: lack of robustness
Communication difficulties between subsystems may
also dmnage robusmess. During reparsing for MT in
ASURA, if no well-formed sentences are found, partied
syntactic structures are discarded before semantic
analysis; thus there is no chauce to tr,'mslate partially,
or to use semantic inlonnation to complete the parse.

The pure blackboard approach solves P1, but not P2, and
introduces four other problems.
• P3: control of concurrent access

In principle, all components are allowed to access the
blackboard: complex protection and synchronization
mechanisms must be included, and fast components
may be considerably slowed down by having to wait
for permission to read or write.

• P4: commnnication overloads
The amount of information exchanged may I~ large. I1"
components rnn on different machines, such :is is
often the case for speech-related componeuts, and may
be the case for Example-Based MT con~ponents in the
future, commmfication overloads may annihilate the
bcuciit of using spcckdized or distributed hardware.

• P5: efficiency problems
As components compute directly on the blackbo,'u'd, it
is a compromise by necessity, and can not offer the
optimal kind of data structure h~r each component.

• P6: debugging problems
These ,are due to the complexity of writing each
component with the complete blaekbo,'u'd in mind, and
to the parallel nature of the whole computation.

In the "whiteboard" approach, the global data structure is
hidden from the components, and accessed only by a
"coordinator". (The whiteboard drawing is expanded later.)

426

"1he "Whiteboard" Architecture: a way to integrate... Boitet & Seligman, COLING-94

(.~Olllporlell[
I

(~OlllpOIl(3ll[
2

COlllpollent3,]

o l

Figure l: the "whitelmard" arc'h#ect,~re
This simple change makes it possible to a v o i d problems

P3-P6. It has also at least two good points:
- It encourages developers to clearly define andpublish

what their inputs and outputs are, at least to the level of
detail necessary to represent them in the whiteboard.

- The whiteboard can be the central place where graphical
interfaces are developed to allow for e~Lsy inspection, at
v,'u'ious l e v e l s o f det~fil.

As long as an NLP system uses a central record accessed
ouly by a "coordinator' and hidden fi'om the "comlxmeuts",
it cau be said to use a whiteboard architecture. It remains
open what dala structures the whiteboard itself should use.

As in [21, we suggest the use of a time-aligned lattice, in
which several types of nodes can be distinguished. In
stating our preference for lattices, we must first distinguish
them from grids, and then distinguish true lattices from 2
types of quasi-lattice, charts and Q-graphs (fig. 2 & 3).

Sent4
NP8

NPI NP2

]e~.~W ~ ..=..__.41~_ ~ ~ O _.._._._ii~ tornove and ~lrO und fur4 t,~k

I I NPS I I I I./pa
Senti = ' ~ = 1 [NP4 _ ,..-

I Senl2
Sent3

r~oruove tiller cap and ground fuel tank

Fig. 2: chart built on a syntactically ambiguous a'et/tence

N(l~ht,N(S),

N(can,N(P},. V(spackle,P(3pI)..,'k.=.

A(Iklht,N(S , ~ N(can, NtS}. ,.} V{spar kle, P(3sffi ...~
G{M).f} ~, - -

. V(spaflde,lnf,..)
G(M}.. /

I
4(light,N(S), N(ean, N(S), IV(sparkle,

N(PauI,PN, k(light,N(S,Pl I V(can,T(P), I lN(soa,~, ~ ' AV(slight..,L~
n ~ ~ iP"-' ~ ~ O

Nb(sfl),Poss} I GIM,F}) ~ N(S),G(M}) ,

I v(light''') ! I N~,,., l~. I IN! spark~'
I G(M),..) N(P),G{M))
N(light,N(S), V (c in,T(P~ ,=~....e V(spathle,lnf,.,)

G(M)..,] ~V(mod))

Paul ' s ligh! can(s) sparldo(s) slightty

Fig. 3: A Q-graph for a phonetically ambiguous sentence

Grids have no arcs, but nodes Co,Tesponding to time
spans. A ncxle N spanning It132] is implicitly connected
to another node N' spanning [t ' l ,t '2] iff its time span
begins earlier 01 gt'l), ends strictly earlier (t2<t'2), and the
respective sp,'ms (a) are not too far apart anti (b) don' t
overlap tc~) much (t2-max-gap_<t'l ~t2+max-ovorlap). m a x -
g a p and max-over l ap are gapping and overlapping
threshokts [12]. Because t2<t'2, there can be no cycles.

ht a lattice, by contrast, nodes and arcs are explicit.
Cycles are also forhiddcn, and there must be a unique first
node and a unique last node.

(;rids have often been used in NLP. l"or example, Ihe
output of the phonetic component of Kt~AL [121 was a
word grid, and certain speech recognition programs at NI'R
l~r(×luce phoneme grids 1. In gener~d, each uc~le bears a time
span, a label, and a score. Grids can also be used to
represent an input text obtained by scanning a bad original,
or a stenotypy tape [9], and to implement some working
structures (like flint of the Cocke algorithm).

l lowever, we will require explicit arcs in order to
explicitly model possible sequences, sometimes with
associated information concerning sequence probability.
Thus mw grkls am insufficient for our whiteboards.

Two kinds of quasi-lattices have been used extensively, in
two wtrietics. First, chart structures have origi,mlly been
intr(~luccd by M. Kay in the MIND system around 1965
[8] , In a ch:ut, as understood tt~lay (Kay's charts were more
general), the nodes ,are arranged in a row, so that there is
always a path between any two given nodes. The arcs bear
the information (label, score), not the nodes. Ch[u'ls are
also used by many unification-based natural hmguage
analyzers [141.

Chart structures are unsuitable for represcnting restflts on
a whiteboard, however, because they are tmable to
represent alternate sequences. Consider the alternate word
sequences of Figure 4. It is not possible to arr.'mge the
words in a single mw so that all and only the proper
sequences can be read out,

1 1 it if you came
I would like you to come emly tomorrow

earlier

Figure 4: A sentence with alternate formtdations

A second type of quasi-lattice is the Q-graphs of [15] and
their exteasiou [17], the basic data structure for text
representation in tile METI~,O [14] aud TAUM-Aviation [71
systems. A Q-graph is a loop-free graph wilh a tmique
entry node and a uni(lue exit node. As iu charts, the
inlonnalion is carried on the arcs. It cousisls in labeled or
atmotaled trees. As there may be no l)ath between two
nixies, Q-graphs can indeed faithfully represent alternate
sequences like those of Figure 4. But in this case it is
necess;uy to use, on more thau one arc, identical labels
referring to the same span of the input. For representation
on a whitcl×mrd, such duplication is a drawback.

To simplify bookkeeping and visual presentation, we
prefer a representation in which a given label referring to a
given span appeaJw in only one place. A true lattice, like
flint of Figure 5, makes this possible.

"lhe decomposition of the laltice in htyers seems natural,
aud leads to more clarity. Fach layer contains results of

1115, 16]. By contrast, tile IIWIM [20] system used a
"phonetic lattice" on which an extended ATN operated.

427

The "Whiteboard" Architecture: a way to integrate... Boitet & Seligmcm, COLING-94

one component, selected to the "appropriate level of
detail". Its time-aligned character makes it possible to
organize it in such a way that everything which has been
computed on a certain time interval at a certain layer may
be found in the same region. Each layer has three
dimensions, time, depth and label (or "class"). A node at
position (i,j,k) corresponds to the input segment of length
j ending at time i and is of label k. All realizations of label
k corresponding to this segment are to be packed in this
node, and all nodes corresponding to approximately equ,'d
input segments am thus geometrically clustered.

In other words, ambiguities are packed so that dynamic
programming techniques may be applied on direct images
of the whiteboard. Figure 6 gives an ex,'unple, Where the
main NP has been obtained in two ways.

G Q III II
%

Figure 5: A word lattice (representing a sentence with alternate fornudations

Arcs may optionally be augmented with activation or realistic choice of layers, however.
inhibition weights, so that ideas from the fast-developing
lield of neural networks may be applied.

language u~q~
layers layers

Figure 6: The whiteboard as a factorizing data structure
The true lattice, then, is our preferred structure for the

whiteboard.
We said that the whiteboard could be a central place for

transp,'u'ent inspection, at suitable levels of detail. We use
the notion of "shaded nodes" for this.
- "White" nodes are the real nodes of the lattice. They

contain results of the computation of the component
associated with their layer: a white node contains at
least a label, legal in its layer, such as NP, AP,
C A R D P , VP... in the example above, and possibly
more complex information, as allowed by the
declaration of the layer in the whitelx~ard.

- "Grey" nodes may be added to show how the white
nodes have been constructed. They don't belong to the
lattice structure proper. In the example above, they
stand for rule instances, with the possibility of m-->n
rules. In other cases, they may be used to show the
correspondences between nodes ot two layers.

©-@ .?.--@
Figure 7: White and grey nodes corresponding to rule Rn:

X1 X2...Xp -> Y1 Y2...Yq
- "Black" nodes may be used to represent finer steps in

the computation of the component, e.g. to reflect the
active edges of a chart parser.

Whiteboard la rers are organized in a lc, op-li'ee dependency
graph. Non-linguist ic as well as
linguistic information can be recorded in
appropriate layers. For example, in a
multimodal context, the syntactic
analyzer might use selected information
from a map layer, where pointing, etc.
could be recorded. In te r layer
dependencies should be decl~u'ed, with
associated constraints, stating for
instance that only nodes with certain
labels can be related to other layers.
Ilere is an illustration of that idea,
wilhout any pretense to propose a

~Ot] ll|ellU
layer layer

Figure 8: A hierarchy of layers in an hypothetical
whiteboard for a nndtimodal NLP ,~'ystem

2. Let a coordin'ator schedule tile components
In its simplest form, a coordinator only transmits the

results of a component to Ihe next component(s).
l lowever, it is in a position to carry out global strategies
by filtering low-ranking hypotheses and transmitting only
the most promising part of a whitcboard layer to its
processiug component. Further, if certain components
make uselhl predictions, the coordinator can pass these to
other components as constraints, ,along with input.

3 . Encapsulate components in managers
Developers of components should be free to choose and

vary their algorithms, data structures, programming
languages, and possibly hardware (especially so lor speech-
related components). Our approach is to encapsulate
existing components in managers, which hide them and
transform them into servers. This strategy has the furlher
adv,'mtage of avoiding any direct call between coordinator
and components. To plug in a new component, one just
writes a new manager, a good part of which is generic.

428

The "Whiteboard" Architecture: a way to integrate... Boitet & Seligman, COLING-94

A m,'mager has a request box where clients send requests
to open or close connections. A connection consists of a
pair of in and out mailboxes, with associated locks, mid is
opened with certain paraneters, such as its sleep time and
codes indicating pre-agreed import and export formats. The
coordinator puts work to do into in-boxes a id gets results
in corresponding out-boxes.

As illustrated in Figure 1 above, a client can open more
than one connection with the s ane manager. For exanple,
au on-line dictionary might be called for displaying
"progressive" word for word translation, as well as for
,'mswering ternfinological requests by a human interpretcr
supervising several dialogues and l~ddng over if needed.
And a malager can in principle have several clients.
llowever, this potential is not used in KASUGA.

4. Simula t e i n c r e m e n t a l p rocess ing
In real life, simullanexms interpretation is often preferred

over consecutive interpretation: although it may be less
exact, one is not forced to wait, and one can react even
before the end of tile speaker's utterance. Incremental
processing will thus be an iinportant aspect of future
machine interpretation systems. For instance, a sem.'mlic
processor might begin working on the syntactic structures
hypothesized for early parts of an utterance while later
parts ,are still being syntactically an,'dyzed [19].

Even if a component (e.g., a W cun'ently existing speech
recognizer) has to get to file end of the utterance before
producing any result, its nmnager may still m;tke its
processing appear incremental, by delivering its result
piecewise and iu the desired order. I lence, this organiz'~tion
makes it possible to siintfiate future incremental
components.

11. T I l E K A S U G A P R O T O T Y I ' E

1. External level
The coordinator (KAS.COORD) is writtcn in KEK TM, au

object-oriented expert system shell with excellent interface-
building tools. The whiteboard is declared ill KEF]s object
language. KEE itself is written ill Common l isp.

Three components are inw/lved:
- speech recognition (SP.REC) providing :t 3-level grid,

progrmnmcd in C [15];
- ish'md-driven syntactic chart-parsing (SYNT.AN)

deriving words and higher-level syntactic units,
programned in C;

- word-for-word translation (WW.TRANS) at file word
level, written in C a id running on another machine.

The t anager s are written in Lisp, ,'rod run independently,
in three Unix processes. Each manager ,and the c(gmlinator
can r a t in different Unix shells. Although WW.TRANS is
already accessible as a server on a distant machine, we had
to create a manager lbr it to get the intended behavior.

With only these components, it is possible to produce a
simple demonstrat ion in which incremental speech
translation is simulated and the transparency gained by
using a whiteboard is illustrated. The phonemes produced
by SP.REC are assembled into words and phrases by
SYNT.AN. As this goes on, WW.TRANS produces
possible word-for-word translations, which are presented on
screen ,'u,~ a word lattice.

KASUGA's whiteboard has only three layers: phonemes;
source words and phrases; and equivalent target words. At
the first layer, the phoneme lattice is represented with
phonemes in nodes. At the second layer, we retain only the

complete substructures produced by SYNT.AN, that is, the
inactive exlges. Phonemes used in these slructures appear
again at that layer.

In KEE, we define a class of NODES, with subclasses
WHITE.NODES, GREY.NODES, PIlON.LAYI~P,.NOI)ES, aud
SYNT. I,AYER. NODES in tile syntactic htycr. NODES have a
generic display method, and subclasses have specialized
variants (e.g., the placing of white nodes depends on their
time interval, while that of grey nodes depends on that of
the white nodes they cermet0.

2 . Internal level
When a manager receives a Make.Conuection request

frola a client, it creates an in box and an out box (and
associated locks, used to prevent interference between
components), through which information is p.'~ssed to and
from the client. The Make.Connection request includes
codes showing in which format(s) the client is expecting
to deposit data in the iu box and read data from tile out
box, lbr that connection.

Mlhough data transfer could be programmed more
efficiently, e.g. nsing lhfix sockets, our method is more
general, as it uses only the file system, and we believe its
overhead will be negligible in comparison with tile
processing times required by the compouents.

Ikn each out box, the client (KASUGA) actbatcs a reader
process and tile relewmt mauagcr actiwttes a writer process.
Conversely, for each in box, tile client activates at writer
process and the manager activates a reader process. A zeader
process wakes up regul:uly and checks whether its mailbox
is both non-empty and nnlocked. If so, it locks the
mailbox; reads ils contents; empties tile mailbox; unlocks
it; and goes to sleep again. A writer process, by
comparison, wakes up regul:uly and checks whether its
mailbox is both empty and unlocked. If so, it locks the
box, fills it with appropriate data, unlocks it, and goes
back to sleep. For example, the writer associated with
SYNT.AN will deposit in the appropriate out box the
image of all tile inactive arcs created since the lm;t deposit.

SItI?,EC provides, lor each of 40 prerecorded bunsetsu
(elementary phrase), a set of about 25 phoneme malrices,
one for each phoneme. A malrix cell contains the score for
a given phoneme with a given begimfiug/ending speech
frane pair. These nmtrices are then compared, and 3 other
inatrices are computed. The tnp-scoring ln:llrix contains in
each cell the tnl~-scnring phone and its score for Ihe
corresponding begimliug/cnd. The 2nd-scoring a~d 3rd-
scoring matrices are computed sinfilarly. These three
mauices are used to build the first layer of the whiteboard.

To build the whilcboard's second layer, an ishmd-driven
clmrt parser is used, where the matrices are cousklered as
initialized charts. The over:dl best-scoring cell in the top
matrix is established as the only anchor, and hi-directional
searching is carried out wilhin the (handset) limits set by
max-gap and max-overlap. A CFG written by J. llosaka
for tile ASURA demos is now used as is. Parsing results
are convertcd to s y n t a c t Jc:.] a t< 5 ce . N (by Olt[c h a r t -
t o - la t t i c e filter) and brought into KEF~.

Then an image lattice, ww. l a t t] c e. N, is comptlted as
the whiteboard's third layer, using a C-based ou-tine J-l{
dictionary. Each lexieal syntactic node gives rise to oue
Fmglish word for each meafing. For example, ~ gives
yes, yes-sir, the-lungs, ashes, etc.

Layers of the whiteboard are represented by KEF,
"planes". We can move planes rehtlive to e[ich olher; ztx~m

429

The "Whiteboard" Architecture: a way to integrate... Boitet & Seligman, COLING-94

in various ways; put various information in the nodes
(label, rule responsible, id, time span, score); exp,'md the
nodes; open & close the nodes selectively. And we can
color the nodes according to their score. It is possible to
show or hide various parts of the whiteboard. In Figure 9,
the first layer, the time grid, the lattice lines, and the
initial/final lattice nodes have been hidden. Alternatively,
we could hide constnlction (dotted) lines, rule boxes, label
boxes, etc. The view of any part of the whiteboard can he
changed for emphasis: one can for instance interactively
select only the nodes above a certain confidence threshold.
Overall processing can be inten'upted for examination.

WW.lattice,N

| ,~. ~ I start II

I , I I ? I',,,,ose,s.,l
II I
I I " - - " o I ~ . I

o ~ # %%

O'
Figure 9: a view of KASUGA ' s whiteboard

If this architecture is to be further developed in the future,
one could use instead of KEE a general-purpose, portable
interface building toolkit in order to avoid the oved~ead ,'rod
overspecialization ,associated with using a complete expert
system shell.

KAS.COORD writes and reads data to and from the
managers in a LISP-l ike format, and handles the
transformation into KEE's internal fornmt. Each manager
translates back ,and forth between that format and wbatever
format its associated component happens to be using.
Ilence, formats must be precisely defined. For inst,'mce, the
edges produced by the speech recognizer are of the form
(begin end phoneme score). The nodes and edges of the
conesponding phoneme layer in the whiteboard are of Ihe
form (node-id begin end phoneme score (in-arcs) (out-arcs)),
with ares being of the form (are-id origin extremity weight).

C O N C L U S I O N

Although the concept of the whiteboard architecture Ires
emerged in the context of rese,-u'ch in Speech Translation,
it can be useful in other areas of NLP. It has already been
used, in a prelimin,'u'y form, in dialogue-b~sed MT [3]: the
tasks are distributed between the authoring stations and an
MT server, m~d the coordinator maintains in a unique data
structure all intermediate stages of processing of all units
of translation.

The whiteboard ,architecture might be used with profit in
all situations where it is important to integrate new or
existing components, e.g. to build generic environments
for developing heterogeneous NLP systems. Researchers
would thereby gain twice: by getting a clearer view of
what they (and others) ,are doing; and by being able to use
generic interlace tools provided by the coordinator for
debugging and illustrating purposes.

A C K N O W I , E D G M E N T S

We are grateful to M. Fiorenthm from Intellicorp, Inc.
and K. Kurokawa from CSK, Inc., for providing a demo
copy of KEE TM and valuable technical support; to Dr.
Y. Yamazaki, President of ATP,-IT, and T. Morimoto,
l lead of Dept. 4, for their support and encouragement; to
II. Singer, T. ltayashi, Y. Kitagawa, I[. Kashioka, and
J. Hosaka, for their help in developing the components;
and to K. II. Loken-Kim, for sfimtflating discussions and
proposing the term "whitelx~ard".

R E F E R E N C E S
[1] Barnett J., Knight K., Mani I. & Rich E.
119901 Knowledge and Natural Language Processing.
Comm. ACM, 33/8, 50-71.
[2] Boltet C. (19881 Representation and Computation
of Units of Translation for Machine Interpretation of Spoken
Texts. Comp. & AI, 6, 505--546.
[3] Baiter C. & Blanchon 11. (1993) Dialogue-Based
MT for Monolingual Authors and the LIDIA project. Proc.
NLPRS'93, Fukuoka, 208--222.
[4] Chandloux J. & Gu~rard M.q*'. (1981) METEO:
un sysltSme ?t l'tCpreuve du temps. META, 1, 17--22.
[5] Co lmeraner A. (1970) Les systdmes-Q, un
formalisme pour analyser et synthdtiser des phrases sur
ordinateur. TAIJM, Univ. de MontrSal, dec. 1970.
[61 Erman L. D. & Lesser V. R. (19801 771e Hearsay-
H Speech Understanding System : A Tutorial. ht "Trends in
Speech Recognition", W.A. Lea, ed., Prcntice-lhdl, 361-381.
[7i lsabelle P. & Bourbeau L. (1984) TAUM-
A VIA770N: its technical features and some experbnental
results. Comp. Ling., I1/I, 18 27.
[8] Kay M. (1973) 77~e MIND system. In "Courant
Computer Science Symposium 8: Natural Language
Processing", R. Rustin, ed., Algorithntics Press, 155-188.
[9] M6rlaldo 1|. (1988) Multilevel decoding for Vety-
Large-Size-Dictionaly speech recognition. IBM Journal of
R&D, 32/2, March 1988, 227-237.
[101 Morlmoto T., St, zuki M., Takezawa T., Klknl
G.-(., Nagata M. & Tnmokiyo M. (19921 A Spoken
Language Translation System: SL-TRANS2. Proc. COLING-
92, Nantes, vol. 3/4, 1048--1052.
[11] Morlmoto T., Takezawa T., Yato F.,
Sagayama S., Tashlro T., Nagata M. & al. (1993)
ATR's Speech Translation System: ASURA. EuroSpeecb'93.
[12] Qnlnton P. (19811) Contribution h la
reconnaissance de la parole. Utilisation tie mdthodes
heuristiques pour la reconnaissance tie phrases. TbSse d'Etat,
Univ. de Rennes, 239 p.
[13] Reddy R. (19811) Machine Models of Speech
l'erception. In "Perception and Production of Fluent Speech",
Cole, ed., Erlbaum, N.J., 215-242.
[141 Schleber S. M. (19861 An it, troduction to
unification-based approaches to grammar. CSLI Lect. Notes 4.
[15] Singer II. & Sagayama S. (19921 Matrix Parser
and its Application to 11MM-based Speech Recognition.
IEICE, 111/SP92-76, I)SP92-61, 21-26.
[16] Singer I1. & Sagayama S. (1992) Matrix
Parsing applied to TDNN-based Speech Recognition. Japanese
Journal of Speech Processing, 1992/3, 89-90.
[17] Stewart G. (1975) Manuel du langage REZO.
TAUM, Univ. de Montrfal, 120 p.
[18] Tomlta M. (19911) 77~e Generalized LR
Parser/Compiler V8-4 : a Software Package for Praclical NL
l'rojects. Proc. COLIN(;-90, vol. 1/3, 59-63.
[19] Waldster W. (1993) Planning Multimodal
Discourse. Proc. ACL-93, Columbus, Ohio, 95-96.
[20] Wolf J. J. & Woods W. A. (19811) 771e IIWIM
Speech Understanding System. In "Trends in Speech
Recognition", W. A. Lea, ed., Prentice-llall, 316-339.

- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

430

