An Efficient Parser Generator for Natural Language

Masayuki ISHIT*
Fujitsu Inc.
masayuki@nak.math.keio.ac.jp

Abstract

We have developed a parser generator for natu-
ral language processing. The generator named
“NLyacc” accepts grammar rules writlen in the
Yace format. NLyacc, unlike Yace, can handle
arbitrary context-free grammars using the gen-
eralized LR parsing algorithm. The parser pro-
duced by NLyacc efliciently parses given sen-
tences and executes semantic actions. NLyace,
which is a free and sharable software, runs on
UNIX workstations and personal computers,

1 Parser Generator for NLP

Yacc[4] was designed for unambiguous program-
ming languages. Thus, Yace can not elegantly
handle a script language with a natural lan-
guage flavor, i.e. Yacc forces a grammar writer
to use tricks for handling ambiguities. To rem-
edy this situation we have developed NLyace
which can handle arbitrary context-free gram-
mars’ and allows a grammar writer to write
natural rules and semantic actions. Although
there are several parsing algorithwns for a gen-
eral context-free language, such as ATN, CYK,
and EFarley, “the generalized LR parsing algo-
rithim [2]” would be the best in terms ol its
compatibility with Yacc and its efficiency.

An ambiguous grammar causes a conllict in
the parsing table, a state which has more than
one action in an entry. The generalized LR
parsing procecds exactly the same way as the
standard one except when it encounters a con-
flict. The standard deterministic LR parser
chooses only one action in this situation. The
generalized LR parser, on the other hand, per-
forms all the actions in the multiple entry by

*This work was done while Ishii stayed at Dept. of
Computer Science, Keio University, Japan.
o be exact, NLyacc can not handle a circular rule

like “A — A”,

Kazuhisa OHTA
Apple Technology, Inc.
k-ohta@kobo.apple.com

Hiroaki SAITO
Keio University
hxs@nak.math.keio.ac.jp

splitting the parse stack for cach action. The
parser merges the divided stack branches, only
when they have the same top state. This merger
operation is important for efficiency. As a re-
sult, the stack becomes a graph instead of a
simple linear state sequence.

There is already a generalized LR parser
for natural language processing developed at
Carnegic Mellon University [3]. NLyace differs
from CMU’s system in the following points.

e NLyacc is written in C, while CMU’s in
Lisp.

¢ CMU’s cannot handle ¢ rules, while NLy-
acc does, ¢ rules arc handful for writing
natural rules,

¢ The way to exccute semantic actions dif-
CMU’s evaluates an LFG-like se-
mantic action attached to cach rule when
reduce action is performed on that rule.
NLyacc executes a semantic action in two

fers.

levels; one is performed during parsing
for syntactic control and the other is per-
formed onto each successful final parse. We
will deseribe the details of NLyace’s ap-
proach in the next section.

Nlyace is upper-compatible to Yace. NLy-
ace consists of three modules; a reader, a pars-
ing table constructor, and a drive routine for
the generalized LR parsing. The recader accepts
grammar rules in the Yace format. The table
constructor produces a generalized LR parsing
table instead of the standard LR parsing table.
We desceribe the details of the parser in the next
section.

417

418

2 Execution of Semantic Ac-
tions

NLyace differs from Yacc mainly in the exe-
cution process of semantic actions attached to
each grammar rule. Namely, Yacc evaluates a
semantic action as it parses the input. We ex-
amine if this evaluation mechanism is suitable
for the generalized LR parsing here. If we can
assume that there is only one final parse, the
parser can evaluate semantic actions when only
one branch exists on top of the stack. Although
having only one final parse is often the case in
practical applications, the constraint ol being
unambiguous is too strong in general,

2.1 Handling Side Effects

Next, we examine what would happen if seman-
tic actions are executéd during parsing. When
a reduce action is performed, the parser eval-
uates the action attached to the current rule.
As described in the previous section, the parse
stack grows in a graph form. Thus, when the
action contains side eflects like an assignment
operation to a variable shared by different ac-
tions, that side effect must not propagate to the
other paths in the graph.

If an environment, which is a set of value of
variables, is prepared to each path of the parse
branches, such side effect can be encapsulated.
When a stack splits, a copy of the environment
should be created for each branch. When the
parse branches are merged, however, each en-
vironment can not be merged. Instead, the
merged state must have all the environments,
Thus, the number of environments grows expo-
nentially as parsing proceeds. Therefore this
approach decreases the parsing elliciency dras-
tically. Also this high cost operation would be
vain when the parse fails in the middle. To
sum it up, although this approach retains com-
patibility with Yacc, it sacrifices efficiency too
much,

2.2 Two Kinds of Semantic Actions

We, therefore, take another approach to han-
dling semantic actions in NLyacc. Namely, the
parser just keeps a list of actions to be exe-
cuted, and performs all the actions after pars-
ing is done. This method can avoid the problem

above during parsing. After parsing is done,
the semantic action evaluator performs the task
as it traces all the history paths one by one.
This approach retains parsing efficiency and can
avold the execution of useless semantic actions.
A drawback of this approach is that semantic
actions can not control the syntactic parsing,
because actions are not evaluated until the pars-
ing is done. To compensate the cons above, we
have introduced a new semantic action enclosed
with [] to enable a user to discard semantically
incorrect parses in the middle of parsing.

Namely, there are two types of semantic ac-
tions:

o An action enclosed with [] is executed
during parsing just as dome in Yacc. If
‘return 0; is exccuted in the action, the
partial parse having invoked this action
fails and is discarded.

o An action enclosed with { } is exccuted al-
ter the syntactic parsing.

In the example below, the bracketed action
checks if the subtraction result is negative, and,
if true, discards its partial parse.

number : number ’—’ number
[$¢ = $1-$3; if($$ < 0) return 0;]
{ ¢ = $1-83; print("-", $1, $3, $%);)

2.3 Keeping Parse History

Our generalized LR parsing algorithm is differ-
ent from the original one [2] in that our algo-
rithm keeps a history of parse actions to exe-
cute semantic actions after the syntactic pars-
ing. The original algorithm uses a packed forest
representation for the stack, whereas our algo-
rithm uses a list representation.

The algorithm of keeping the parse history is
shown as follows.

1) If the next action is “shift s”, then make
< s > as the history, where < s > is a list of
only one element s.

2) If the next action is “reduce r: A — By Dy
=-13,”, then make append(Iy, Hq, ..., Hy,[—1])
as the history, where H; is a history of B;, r
is the rule number of production “A — By B,
<+ B,", and the function ‘append’ concatenales
multiple lists and returns the result.

Now we describe how to execute semantic ac-
tions using the parse history. First, before start-
ing to parse, the parser calls “yyinit” function
to initialize variables in the semantic actions.
Our system requires the user to define “yyinit”
to set initial values to the variables. Next, the
parser starts parsing and performs a shifl ac-
tion or a reduce action according to the parse
history and evaluates the appropriate semantic
actions.

2.4 FEfficient Memory Management

We use a list structure to implement the parse
stack, because the stack becomes a complex
graph structure as described previously. Be-
cause the parser discards failed hranches of the
stack, the system reclaims the memory allo-
cated for the discarded parses using the “mark
and sweep garbage collection algorithm [1]” to
use memory efficiently. This garbage collection
is triggered only when the memory is exhansted
in our current irnplementation.

3 Distribution

Portability
Cuarrently, NLyacc runs on UNIX worksta-
tions and DOS personal computers.

Debugging Grammars

For grammar debugging, NLyace provides
parse trace information such as a history of
shift/reduce actions, execution information of
‘[actions.’

When NLyace encounters an error state,
“yyerror” function is called just as in Yace.

Distribution

NLyace is distributed through e-mail (please
contact nlyacc@nak.math.keio.ac.jp). Dis-
tribution package includes all the source codes,
a manual, and some sample grammars.

References

[1} J. McCarthy. Recursive functions of symbolic
expressions and their computation by machine,
part 1. Communications of the ACM, 3(4), April
1960.

[2] M. Tomita. Efficient Parsing for Natural Lan-
guege. Kluwer Academic Publishers, Bostou,
MA, 1985.

[3] M. Tomita and J. G. Carbonell. The universal
parser architecture for knowledge-based machine
translation. In Proceedings, 10th Inlernational
Joint Conference on Artificial Intelligence (1J-
CAI), Milan, August 1987.

[4) yace - yet another compiler-compiler: parsing
program generator. in UNIX manual.

Appendix — Sample Runs —

A sample grammar below covers a small set of
Iinglish sentences. The parser produces syntac-
tic trees of a given sentence. Agreement check
is done by the semantic actions.

/% grammar.y */

A

#include <stdio.h>
#include <stdlib.h>
#include "grammar.h"
#include "proto.h"
3,

%token NOUN VERB DET PREP

A
SS : 8§ { pr_tree($1); }
S : NP VP [return check1($1, $2); 1]

{ $% = nk_tree2("s”, $1, $2); }
$: S PP { $% = mk_tree2("s", $1, $2); }
NP : NOUN [$¢ = 8$1; 1

{ $$ = mk_treel("NP", $1); }

NP : DET NOUN [$$ = $2; return check2($1, $2);]
{ $% = mk_tree2("NP", $1, $2); }

NP : NP PP [$¢ = ¢$1; 1]

{ $¢ = nk_tree2("NP", $1, $2); }

PP : PREP NP { $% = mk_tree2("PP", $1, $2); }

VP : VERB NP [$¢% = $1; 1

{ $% = mk_tree2("VP", $1, $2); }

wh
FILE* yyin;
extern int yydebug;

int main(arge, argv)
int argc;
char *argv[];

int result;

yydebug = 1;

}

yyin = stdin;

read_dictionary("dict");
yyinitialize_heap();
result = yyparse();

printf("Result = %d\n", result);
yyfree_heap();

return O;

void yyinit()

{3

int yyerror(message)
char* message;

{

int

fprintf(stderr, "%s\n", message);

exit(1);

checkil(seml, sem2)
SEMPTR seml, sem2;

return (semil->seigen & sem2->seigen);

check2(seml, sem2)

SEMPTR seml,

return (semi->seigen & sem2->seigen);

/* grammar.h */
#define SPELLING_SIZE 32
#define HINSHI_SIZE
#define BUFFER_SIZE

typedef struct word

{

} WORD;

typedef enum tag

{

TLEAF, TNODE
} TAG;

typedef struct node

{

420

TAG tag;

union {

WORD* _leaf;
struct {

char *_pos;

sem2;

32
64

struct word *next;
char *spelling;
int hinshi; /*
int seigen; /%

parts of speech */

constraints */

struct node *_left;
struct node *_right;

} _pair;
} contents;
} NODE, *NODEPTR;

#define leaf contents._leaf

#define pos contents._pair._pos
#define left contents._pair._left
#define right contents._pair._right

typedef WORD SEM, *SEMPTR;
#define YYSTYPE NODEPTR
#define YYSEMTYPE SEMPTR

/* dict */
I:NOUN: 01
You:NOUN:22
you:NOUN:22
He:NOUN:04
he:NOUN:04
She:NOUN:04
she:NOUN: 04
It:NOUN:04
it :NOUN:04
We:NOUN:10
we:NOUN:10
They:NOUN:40
they:NOUN: 40
see:VERB: 73
sees:VERB:04
a:DET: 07
the:DET:77
with:PREP:00
telescope:NOUN:07
man:NOUN:07

Sample Runs

sentence no.1
He sees a man with a telescope ~D
parse 1
S:(S:(NP: (NOUN:He)
VP:(VERB:sees
NP:(DET:a NOUN:man)))
PP:(PREP:with NP:(DET:a
NOUN:telescope)))
parse 2
S:(NP:(NOUN:He)
VP:(VERB:sees
NP:(NP: (DET:a NOUN:man)
PP:(PREP:with
NP: (DET:a NOUN:telescope)))))

sentence no.2

He see a man "D

The semantic actions prune syntactically-
sound but semantically-incorrect parses.

