An HPSG Parser Based on Description Logics*

J. Joachim Quantz

Technische Universitiit Berlin, Projekt KI'T"VM11, FR 5-12,
Franklinstr. 28/29, D-10587 Berlin, Germany, e-mail: jjq@cs.tu-berlin.de

Abstract

In this paper I present a parser based on De-
scription Logics (DL) for a German 1psG-style
fragment. The specified parser relies mainly
on the inferential capabilities of the underlying
DL system. Given a preferential default ex-
tension for DL disambiguation is achieved by
choosing the parse containing a qualitatively
minimal number of cxceptions.

1 Introduction

In this paper 1 present a parser for HPSG based on De-
scription Logics (DL). The main motivation for specilying
such a parser relies on considerations concerning the dis-
ambiguation of NL expressions. In [Schmitz, Quantz 93]
it is shown how diffcrent types of ambiguity can be han-
dled with a homogencous approach based on the notion
of preference rules [Jackendoff 83]. A major requirement
for such a unified approach is that information usually rep-
resented rather differently (c.g. syntactic, semantic, and
encyclopedic information) is homogeneously represented
in a uniform and declarative formalism in order to express
and evaluate the complex preferences stemming [rom the
different kinds of information.

Description Logics have been developed in the
ficld of Knowledge Representation (see, for example,
[Brachman ct al. 91]). They have already been used (or the
representation of semantic and encyclopedic information,
c.g. |Allgayer et al. 89, Stock 91, Preuss et al. 92}, Dueto
their similarity to typed feature formalisms [Carpenter 921,
syntactic information is in principle also expressible inpr,
as already sketched in [Quaniz 93, Quantz, Schmitz 94},
Furthermore, Preferential Default Description Logics
(rPpDL) based on weighted defaults [Quantz, Ryan 93] can
be used to represent the preference rules in a declarative
and formally well-founded way.

In the following I will mainly show how 1PSG-style
syntactic information can be represented in DI, and how a
simple parser can be build by using the inference capabil-
itics of a DL system. Note that when specifying the parser
1 will keep the presentation as simple as possible, thereby
deliberately ignoring cfficicncy aspeets. T will also refrain
from modeling all aspects of relevant knowledge in DL, ic.
there are still picces of information which are not explic-
itly encoded in the DI modeling, but are rather implicitly
contained in the parser (¢.g. information related to lincar
precedence and to traces).

The main objective of this paper it thus neither to con-
tribute to research in cefficient parsing technology, nor (o

*The project KIT-VM11 is supported by the German Federal

Minister of Research and Technology (BMET) under contract 01
1V 101Q8.

412

develop a declarative formalism in which all aspects rele-
vant for NLP can be represented. 1t is rather to provide the
basts for an implementation of the exeeption minimiza-
tion approach to interpretation proposed in [Quantz 93].
In Section 6 1 will briefly sketch how the DL-based parser
presented in Scection 5 can be extended (o realize this ap-
proach,

2 Basic Ideas

An important distinetion made in DI, but missing in tradi-
tional feature formalisms, is the one between obyects and
types. DL formulae cither express that a type [y is more
specific than (or subsumed by) atype iz (4 1< tz) or that an
object o is an instance of a type or, using DL terminology,
aconcept (0 ¢).

Applying this schema to the task of NLP, we can say that
the objects in this domain are words or phrascs, and that
the types are syntactic categorics. Turthermore, given
a phrase o3 we have additional relations between this
phrase and its constituents oz, 03, ..., usually expressed
as “og is a daughter of 0", In DL this is modeled as
‘(()1,02) 1 dtrs’, or equivalently as ‘og i dirsiop’. ‘dirs’
thus acts as a binary predicate or, using DL terminology,
as a role. Note that roles can have more than one value
in contrast to {catures, which are functional. We can thus
write ‘oy 1 dirs:op & dirs:oy’.

Note further that the objects stand for occurrences of
words or phrases, and that different occurrences of the
same word will be represented by different objects. This
is represented by writing ‘02 1 phon:er’, for example, to
express that 0z is an occureence of the form ‘er’.

This is all rather similar to standard 1IPSG notation, and
the main ditference is that in addition to the feature struc-
tures used in 1PSG, we add an additional fevel of objects,
which we see as instances of the feature structures. ea-
ture structures thus correspond (o types or more preciscly
1o DL concepts. In a way, the objects in DL are used to
make the 1PSG feature structures persistent, i.c. o have
pointers or names to refer to them.,

The additional level of objects allows a straightforward
deseription of the parsing task. We start with a number
ol objects, namely words, whose phonological value and
position is known. We want to end up with a single object
containing all these words as (not necessarily immediate)
constituents. Now the immediate dominance schemata
in an 1PSG tell us how to construct phrases from words
or other phrases. Thus the main operation for building a
phrase is 1o create a new objeet being an instance of an 1D
schema (note that 1 schemata are feature structures and
therefore concepts) and to fill in the required daughters
by using the objects available as building material. This
is achiceved by choosing the “functor-daughter’ and filling
the required arguments.

Three points are important in the following sections:

1. Obviously, objects cannot be combined in a ran-
dom way. In 11PSG the 1D schemata and the lexical
entrics contain information concerning combination
with other phrases. T will model this information in
DL and use standaed DL inferences to check consis-
tency of combinations. Thus the DI, system is used
to perform the unification task underlying 1rsG and
similar Unification Grammars.

2. Anobject can only be used as building material for a
phrase if it has not yet been used as building inaterial
for some other phrase. Furthermore, when looking
for daughters of a new phrase, we have o fill those
daughters for which a filler is required, but not yet
specified. T will use the epistemic operator K pro-
posed in [Donini et al. 92] to formalize these intu-
itions and then use standard DL retricval for checking
these constraints.

3. Yor syntactically ambiguous expressions there
is more than onc possibility to combine the
words/phrases. Since the objects and especially
the relations between them are viewed Trom diller-
ent perspectives in the alternative interpretations, we
necd a mechanism in DL to represent these different
views. I will use situated descriptions *o::¢ins'
in the following to formatize this notion of dilfer-
ent perspectives. There is a rough correspondence
between the situations used to capture the specific
interpretations and the charts created in chart pars-
ing.

3 The Underlying Descripiion T ogic

Description Logics vary wri the term-building operators
they contain. In this section T will present the syntax
of the DL which is used in the examples given in the
next two scetions. Due to space limitations T will not
specify the formal semantics for this D1. (see, for exam-
ple, Moppe et al. 93, Quantz, Schmitz 94] for a model-
theoretic semantics):

o et &ty k()

¢ - thelre)) somelr) | no() |, exactly (n,e)
O, iy

o fueat, domain{c) |, range(e) , rpag , inv(n)

o2 A § M RN SRR I (e ¢

oncins extend sit(s),s2)

When specilying the fragment and the parser in the next
sections T will use a notation based on the PROLOG inter-
face provided by the BACK system [Hoppe et al, 93], Tn
BACK a distinction is made between term introductions or
definitions, and constraint-like rules. A termt name can be
introduced cither as primitive (1, 1< 1), L.e. only necessary
conditions arc piven, or as defined (1, =+ 1), i.c. necessary
and sufficient conditions are given. A rulecy =22 ¢xneans
that cach object being an instance of ¢; is also an instance
of ¢,

The formula ‘extend sit(sy,s2)" expresses the fact that
situation s, is an extension of situation sy, This mcans
that ‘o :: cin sy’ implics ‘o 22 ¢insy’ for all objects o and
concepts c.

In order to distinguish between telling and querying
information ¥ will use ‘o ¢ ing’ for tells and ‘o 70 in §'
for querics. T furthermore assume that a tell only succeds

if it is consistent with the previously entered information;
otherwise it fails. When the object used in a query is a
variable, the system will retricve all known instances of a
coneept, i.c. ‘Object 7t in s* will return the objects known
to be instances of ‘¢’ in 's” by backtracking.

Note that the epistemic operator k will only be used
in queries. It can therclore be straightforwardly integrated
intoexisting DL systems. Sinee thisis also true for situated
descriptions, the parser presented in Section 5 is Jargely
based on standard inference capabilities of DI, systems.

4 A Small Fragment

In this section I will present examples from an HPSG-style
fragment for German modeled in DL, Due to space lim-
itations T will not specify all the information contained
in this modcling but only the one needed to illustrate the
main characteristics of the formalization and the example
sentence ‘Die schine Frau sicht sie’ discussed in the next
section,

The fragment is based on the presentation in
[Pollard, Sag 87] and its application 1o German in
(Hild 9t A main difference between my DL modeling
and standard 11°SG modeling is that T avoid leature pathes
which would introduce superfluous DL, objects. There is
thus no leature ‘*head” in my modeling since it would yicld
the introduction of head objects whose ontological sta-
tus scems controversial. Consequently, my Head Fea-
ture Principle specifics equivalence not for a single (eature
‘head”, but rather for each head feature separately.

The fragment contains five main categories, namely
noun,np,verb, det, andady. For illustration, the definitions
of nown and np are given below:

noun == main & lexs
np o= majn & lexe

Phrase structure is represented by roles as the Tollowing:
domain(sign) & ranpe(sign)

dirs

comp_dtrs & feat

dirs & feat

dirs & feat

dirs 1
comp.dirs S
comp.durl <

head. dtr
functor_dtr

The feature “functor.dtr’ will be used by the parser 1o spee-
ify the sign acting as functor of a new phrase. Tts value
will be identical to the value of ‘head.dte’, *adj.du’, or
“iller dtr’, depending on the particular Immediate Dom-
inance (1) schema used. Note that the daughters which
are modeled as features are functional, f.e. no phrase can
have two fillers for *head dtr’.

Corresponding to these daughter roles and (catures we
have argument roles and features as ‘compoargl’ ete. 1
then distinguish the foHowing types of phrase structures:

somethead. dir) &

functor.die head dir &

noadj_dtr) & no(lillerdir)
some(adj.dir) & some(bead.dir) &
functor_dtr=adj.dir &

nofcomp.dirs) & no(filler. dtr)

some (filler_dtr) & somehead_di) &
functor.dir =filler_dir &
no(comp.dirs) & no(adj.dir)

comp.structure

adj.structure

fitler structure

Thus ina ‘comp_structure” the ‘head_dtr’ acts as a functor.
Note that it has to be explicitly stated whether a certain
feature is empty, c.g. ‘no(adj.die)’ for ‘comp_stracture’.
DL systemns assume an open world and take all descriptions

413

414

as being partial, i.e. the fact that there is currently no known
filler for a role at an objcct does not imply that there will
never be one.

The fragment contains six ID schemata, namely three
for noun phrases, one for verb phrases, one for adjuncts,
and one for topicalization.

idl = compsiructure &
the(head_dir,np & nform:comm) &
some{comp.dirl) & no(comp._args)
id2 = comp.struciure &
thet(head_dtrnoun & nform:comm) &
nolcompdirs) & some{comp_argl)
id3 = compstructure & the(headdirverb) &
no{comp_args) & me:~
id4d = adj.structure & the(adj-dtr,adjunct)
id5 = Afillerstructure &
the(head.dir,maj:v & nolcomp_args)) &
me:t+ & the(filler_dintop:+)
id6 := comp.structure &

thethead_dir,noun & nform:pro) &
no(compirs) & no(comp_args)

For the lexical entries T will use three morpho-sytntactic
features (nform, case, gen) to illustrate agreement between
nouns, adjectives, and determiners. Agreement concern-
ing case and gender between nouns and determiners is
modeled by specifying that the value of the feature ‘casc’
at a common noun is the same as the value of the feature
‘case’ at the object filling the feature ‘comp_arg]” (which
is the determiner).
Below are lexical entries for ‘frau’ and ‘sic’:

exactly (1,comp_args) &
the(comp.argl,det) &
case=comp.argl.case &
gen=comp_argl.gen)

noun & nform:comm =>

noun & nform:pro => nolcomp.args)
lexeme:fray => noun & nform:comm & gen:f
phonifrau => lexeme:frau
lexemesersic => noun & nform:pro
phonsic => lexeme:ersic & gen:l

Note the hierarchical nature of the modeling—the sub-
categorization information is specified for common nouns
and pronouns in general, and is then inherited by cach
specific common noun and pronoun. Information sharcd
by all forms of a lexeme is specified as a property of the
lexeme, whereas information specific to a particular form
is specified for this form only.

Adjectives require non-saturated noun phrases as argu-
ments and agree with them wrt case and gender:

adj => adjunct & case=mod. arg.casec &
gen=mod.arg.gen &
the(mod_arg,np & some({comp.args))
lexeme:schoen => adj

phon:schoene => lexeme:schoen

Finally, the lexical entry for ‘sicht’:

verb => thelcomp.argl,np & caseinom)
fexeme:schen => verb & exactly (2,comp._args)
the(comp_arg2,np & case:ace)
phon:sicht => lexeme:sehen

Note that for verbs taking more than two arguments we
need additional features ‘comp.arg3’ and ‘comp_arg4’.
In addition to the information modcled so far we need a
formalization of the principles underlying the combination
of signs in HPSG. Some of these principles hold only for

phrases and not for signs in general. A phrase is defined
as follows:

some(dirs)

lex:—

phrase

phrase =

phrase =>

lex:- =>

The Head Feature Principle is then defined as:

phrasc => maj=head dirmaj &

gen=hcad. dir.gen &
casc=head.dtr.case

The parsing process presented in the next section is essen-
tially triggered by signs which can act as functors, namely
signs with unsaturated subcat lists, signs with slashes, and
pronouns:

somefargs) = functor
somefslash) => functor
noun & nform:pro => functor

5 DL-Based Parsing

In this section T will present the basic structure of a DL-
based parser for the above fragment. The parser is realized
by five main predicates. T assume that the initial informa-
tion given to the parser consists of descriptions of the
words occurring in the expression (o be parsed. Consider
the ambiguous sentence
(1) Die schone Frau sicht sic.
(2) The pretty woman sees her.
(3) The pretty woman she sees.
The initial DL representation of this sentence is:
wiu phondie & start:0 & end:1 in s,
ws 1 phonsic & start:4 & end:5 in s,
Given this information the parser builds phrases from the
five words. This is done by creating new phrases until
no more combinations of signs arc possible. The parsing
succeeds if the words have been all used up and a single
phrase results:
parse.sign(Sit,Sit) -
findal(Sign,Sign 7: sign & nalk(inv(dus))) in Sitf).
parse_sign(Sit, FinSig) :-
new_phrase(Sit,NewSit),
parsesign(NewSit, FinSit.
Note that the epistemic concept ‘no(k(inv(dirs)))’ is used
1o determine whether a sign is still available for phrase
building. An object is an instance of this concept if it is
not a filler of some “dirs’ role at any other object,
The basic idea of building a new phrase is 1o look for
a sign which can act as a funclor, 1o choose an 1D schema
in which this sign is a functor, and to (ind the required
arguments of the functor. Finally, the linear precedence
rules are checked and, if necessary, traces are introduced.!
new _phrase(Sit,FinSit) <
Sign 7: functor & nolkGnv(dus))) in Sit,
select.id.schema(Sign,Sit,Phrase, NewSit),
completearguments (Sign,NewSit, NextSit),
check dps_and.continuity (Phrase, Sit, NextSit, FinSit).
Sclection of an 1 schema is realized in a rather naive and
simple way-—we just take an 1D schema and try to create a
new phrase as an instance of this schema, where the feature
‘functordir’ is filled by the functor.

"Due 10 space limitations I do not specify the predicate
‘check dps_and._continuity’ in this paper.

S (p14,id5)

/\

NP (p8, id1)
y \
die (wi) N {p7, id4)
schone (w2) N (p6, id2)
I H

frau (w3)

Figurce 1: Phrase structure of the sentence ‘Dic schine Frau sicht sic’ (The pretty woman sees her).

sieht (wd)

SINP (p13, id5)

TN

SINPIV (p12, id3)

o e
11, NP) NP (p9,id6) // (110, V)
l H
sie (w5)

‘head_dtr’, *C’ for 'comp.dtr’, ‘A’ for ‘adj_dtr’, and ‘T for ‘fillerdir’.

select_id_schema(Sign,Sit,Phrase, NewSit) :-
id_schema(ID),

extend sit(Sit,NewSit),

Phrase ;: I & functordir:Sign in NewSit.
Information about existing I schemata thus has to be
encoded as facts of the form ‘id_schema(idl)’, ete. The
predicate ‘extend.sit(Sit,NewSit)’ is used to tell the DL
system to create a new situation which is an extension of
the current situation,

Note that no further knowledge about the actual mod-
cling of ID schemata is used in the parser except for the
fact that cach 1D schema has a *functor_dtr’. Note further
that the DL tell will fail if the information known about the
functor cannot be unified with the information required by
the 1D schema for the filler of *functor_dir’,

In order to complete the arguments of the functor, the
parser checks for cach argument feature ArgFeat whether
an argument is required (some(ArgFeat)) but not yet spee-
ified (no(k(ArgFeat))). If so, ‘find_arg’ looks for such an
argument and enters it as filler for ArgFeat. Then the
remaining arguments are completed.

complete_arguments (Funclor,SitXinSit) :-
arg-feature(ArgFeat),

Functor ?: some(Arglicat) & no(k(ArgFeat)) in Sit,

!,(mdﬁtug([‘unclor, Sit, ArgFeat,NewSit),

complete_arguments (Functor,NewSit, FinSit).

complete_arguments(L,Sit,Sit).
Again we need to introduce facts specifying the arguments
used in the fragment, ¢.g. ‘arg_featurc(comp_argl)’.

If an argument is required it has 10 be filled, therefore
the Cut. Thus the recursion terminates success(ully only
when all required arguments are actually filled. Note that
the only information about zlrgumem structure needed by
the parser are facts of the form ‘arg_feature(comp_arg1)’
for all argument features.

To find an argument the parser looks for a sign which
has not yet been used for phrase building and asserts it as
filler for the argument feature. Again, if unification is not
possible due to conflicting constraints (c.g. agreement),
the DL tell will fail.

find_arg(Functor,Sit, ArgFeat, FinSit) :-

Arg 7 sign & nolk(inv(dirs))) in Sit,

extend_sit(Si,FinSit),

Functor i Arglieat:Arg in FinSit,
find_arg(Functor,Sit, ArgFeat, FinSi) -

new. phrase(Sit,NewSit),

find_arg(Functor,Sit, ArgFeat, FinSit).

The second clause is needed to create a required argument
which has not yet been build up. In this case ‘new.phrase’
is called to create a new potential argument,

For the sentence ‘Die schone Frau sicht sic’ we obtain
two different parses, since both ‘die schoene frau’ and
‘sic’ arc. ambiguous between nominative and accusative
sase. The reading according (o which ‘die schoene frau’
is subject is shown in Figure 1 as a phrase structure tree.
Some of the corresponding information contained in the
DL situation representing this reading is given below:

wi o phon:die & casernom & star:0 & end:1

ps o 1dl & head diepy & compdirt:wy &
start:0 & end:3

po o id6 & head dtriws & start4 & end:5

Lo trace & tracing:wy & compoargl:ty &
comp.arg2:py & start:5 & end:5

i race & tracingzpy & start:4 & end:4

priz o id3 & headdtrityg &
comp.dirl:ty & comp.dirZ:py &
slashowy & stashipg & startzd & end:5

pry o id5 & head.dirpry & filler_diriwy & slash:pg &
start:3 & end:5

pa o id5 & headdiripyy & filler_diripy &
start:0 & end:s

In the sceond parse tyy and py swap places, i.c. py is the
‘comp.dtr]” of pi2 and tyy is the ‘comp.die2’.

The result of the parsing process illustrates the objeet-
centeredness of DL representations. The constituents of
the utterance are explicitly modeled and can be used
for extracting or specilying further information. Thus
we can choose to introduce a feature ‘subject’ and
add the act ‘pyg o subject:pg’, or we can retrieve atl
the saturated noun phrases (Phrase 20 np & nolargs)).
This object-centeredness is uselul for disambiguation,
for example for anaphora resolution, as illustrated in
[Quantz, Schmitz 941,

‘H’ stands for

415

416

6 Interpretation as Exception Minimization

Co .
I will now briefly sketch how the parser presented in
the previous section can be extended to perform dis-
ambiguation by cxception minimization as proposed in
[Quantz 93]. In case of ambiguous expressions the parser
will return more than one situation. The basic idea of inter-
pretation as exception minimization is to model additional
preference rules needed for disambiguation as DL defaults,
and to choose the interpretation violating a qualitatively
minimal set of defaults.

A Preferential Default Description Logic (ppDL)
based on weigthed defaults has been developed in
[Quantz, Ryan 93]. A weigthed default § has the form
€1~ €2, Where ¢; is called the premise of 8 (6,), ¢z the
conclusions of § (6.) and n the weight of § (w(6))—the
higher the weight, the more relevant the default. For this
PDDL a formally well-bchaved preferential entailment re-
lation “ v, is presented, which is based on an ordering
on DL models “Cy. The basic idea of this preferential
semantics is to compute a score for cach model by sum-
ming up the exceptions to the defaults. Models with lower
score are then preferred because they qualitatively mini-
mize the exceptions. It is straightforward to carry the idea
of scoring and ordering over from models to situation. To
do so, we compute for each situation s and cach default
the exceptions—those objects for which *Object ?: 6, in
s' succeeds and ‘Object 7: 6. ins” fails.

If there are scveral possible interpretations for an ex-
pression we choose the interpretation given by the situa-
tion with the lowest score. (Note that there may be truely
ambiguous expressions which yield situations with iden-
tical scorcs.) Thus taking the above example, we might
use a preference for topicalization of subjects to prefer the
parse shown in Figurce 1. This can be achieved by simply
introducing a default

np & toprt ~g case:nom
Obviously, this default is a rather weak one and can be
overwritten by information stemming from sclectional re-
strictions [Schmitz, Quantz 93].

In principle, it is possible to use preferences stemming
from weighted defaults already in the parsing process-—
situations whose score is higher than a specified threshold
are not processed any further, Thus instead of producing
all parscs in the first step and ordering them in a second
step, the parser would then only produce the preferred
reading.

7 Conclusion

I have presented a DL-based parser for a small HPSG-style
fragment of German. Most aspects of the grammar and
the parser have been modeled in a highly declarative way.
Since the main motivation for my presentation has been to
show how an HPSG parser can be implemented in principle
by using the inference functionality of a DL system, T have
deliberately ignored any efficiency issues. It should be
obvious, however, that the parser can be further optimized
to increase its performance, for example by intcgrating
chart parsing techniques. We arc currently testing the
performance of alternative implementations of both the
parser and the underlying DI, system.

One advantage of using DL as underlying formalism is
that in addition to the syntactic information modeled in
this paper, semantic and encyclopedic information can be

casily integrated into the presented framework. Further-
more, Prefcrential Default Description Logics can be used
to model preference rules as weighted defaults, thereby
obtaining interpretation as exception minimization. The
parser presented in this paper thus provides the basis for
an homogencous and formally well-founded approach to
disambiguation based on Preferential Default Description
Logics.

References

[Allgayeret al, 89] J. Allgayer, R. Jansen-Winkeln,
C. Reddig, N. Reithinger, “Bidirectional Use of Knowl-
edge in The Multi-Modal NL Access System XTRA”,
in IJCAI'89, 14921497

[Brachman et al. 91} R, Brachman, D.I.. McGuincess,
PF. Patel-Schneider, L. Alperin Resnick, A. Borgida,
“Living with CLASSIC: When and How to Use a K1.-
ONE-like Language”, inJ. Sowa (Ed.), Principles of Se-
mantic Networks: Fxplorations in the Representation
of Knowledge, San Matco: Morgan Kaulmann, 1991,
401-456

[Carpenter 92] B. Carpenter, The Logic of Typed eature
Structures, Cambridge: Cambridge University Press,
1992

[Donini et al. 92} FM. Donini, M. Lenzerini, D, Nardi,
A. Schaerf, W, Nutt, “Adding Epistemic Operators to
Concept Languages”, KR-92, 342-353

[THHEO1] W, HilY, B HPSG-Entwurf fiir das Deutsche
und seine Implementierung, Diplomarbeit Universitiit
Koblenz-Landau, 1991

[Hoppe et al. 93] T. Hoppe, C. Kindermann, JJ. Quantz,
A. Schmiedel, M, Fischer, BACK. V5 Tutorial & Manual,
KIT Report 100, Technische Universitiit Berlin, 1993

IJackendoff B3] R.Jackendofl, Semantics and Cognition,
Cambridge: MIT Press, 1983

[Pollard, Sag 87| C. Pollard, LA. Sag, An Information
Based Syntax and Semantics, Vol. 1 Fundamentals,
Stanford: CSLI Lecture Notes 13, 1987

[Preuss et al. 92] S. Preul3, BB. Schmitz, C. Hauenschild,
C. Umbach Anaphora Resolution in Machine Trans-
lation, X1T Report 104, Technische Universitit Berlin,
1992

[Quantz 93] JJ. Quantz, “Interpretation as Exception
Minimization™, JJCAI-93, 13101315

{Quantz, Ryan 93] JJ. Quantz, M. Ryan, Preferential De-
Jawlt Description Logics, KI'T-Report 110, Technische
Universitiit Berlin, 1993

[Quantz, Schmitz 94| JJ. Quantz, B. Schmitz, “Know-
ledge-Based Disambiguation for Machine Translation™,
Minds and Machines 4, 39--57, 1994

[Schmitz, Quantz 93] B. Schmitz, JJ. Quantz, Defaults
in Machine Translation, KIT Report 106, Technische
Universitiit Berlin, 1993

[Stock 91] 0. Stock, “Natural Language and Exploration
of an Information Space: the ALFresco Interactive Sys-
tem”, in LJCAI'91,972-978

