LE(k) Parsing of Coupled-Context-TFree Grammars®

Gisela Pitsch

B Informatik, Universitit des Saarlandes

D-66123 Saarbriicken, Germany

Abstract

Coupled-Context-Free Cramnmars are a peneralization
of context-free grammars obtained by combining nonter-
minals to parentheses which can only be substituted si-
multaneously. Referring to the generative capacity of the
grammars we obtain an infinite hicrarchy of langnages that
comprises the context-free languages as the first and all the
languages generated by Tree Adjoining Grammars ((TAGs)
as the second clemeunt. llere, we present a generalization
of the context-free LIR(k)-notion, which characterizes sub-
classes of Coupled-Context-Free Grammars - and therefore
for TAGs — which can be parsed in lincar time. The pars-
ing procedure described works incrementally so that it can
be used for on-line parsing of natural language. Fxamples
show that important T'ree Adjoining Languages, e.g. those
modelling cross-serial dependencies, can be generated by
LR(k)-Coupled-Context-I'ree Grammars,

1 Introduction

In order io process natural languages, we first have
to model the syntax formally. Many investigations as,
c.g., [lig84] show that this cannot be done by context-
free grammars (CFGs). For context-sensitive grammars
which are powerful enough, it is known that the analy-
sis is PSPACE-complete. Thus, there is a trade-off be-
tween the power of the formalism and its analysis com-
plexity. "l'o solve this dilemma, much work has been done
to characterize language classes in between context-free
and context-sensitive languages being powerlul enough to
model the syntax of natural languages bul endowed with
a polynomial time analysis. Coupled-Context-Iree Gram-
mars represent such a formalism generalizing CI'Gs, Their
suitability to model syntactical phenomena {ollows [rom
the fact that they include the languages penerated by the
Tree Adjoining Grammars {TAGs) of [Jos87] as one sub-
class, Among other propertics, both formalisms are able
to model the linguistic phenomenon of eross-serial depen-
dencies, which is not context-free but frequently appears
in natural langnages (cf. [Shig6]).

The (ormalism of Coupled-Context-Free Grammars has
been introduced in [GTIRY2} and [(1ua92]. It belongs to the
family of regulated string vewriting systems investigated
in [DP89]. The increased generative capacity is oblained
by allowing to rewrite simultancously a certain number
of clements. Other regulated string rewriting systems as,
e.g., the Scatlered Context Grammars of [GUHEY] general-
ize CFGs by allowing stmultaneous rewriting of arbitrary
combinations ol elements. In [DP89], it is shown that this
results in languages which are not semilinear, But semilin-
earity is important since it formalizes the “constant-growth
property” of natural languages (cf. [Jos85]). In contrast to
these, all languages defined by our formalism are semilincar

*This research hias been supported by a Graduicrtenkolleg-
fellowship of the Deuntsche Forschungsgemeinschaft,

I>-mail: pitsch@cs.uni-sb.de

becanse of two restrictions, First, only those clements can
be rewritten simultancously which were produced by the
same rewriting. Second, the Coupled-Context-Iree Gran-
mars consider elements rewritten simnltancously as com-
ponents of a parenthesis. Those can only be substituted if
they form a parenthesis and they can only be substituted
by sequences of parentheses correctly nested.

When characterizing Coupled-Context-Free Gramnars
by the maximal number ol elements rewritten simultane-
ously — which we call the rank of the grammar - we get
an infinite hierarchy. The generative capacity grows with
the rank. The smallest clement of the hierarchy - the
one of rank 1 - are CFGs. The next element, namely
Coupled-Context-Free Grammars of rank 2, gencrates the
same clags of languages as the Tree Adjoining Crammars
of [JI'T75) and [Jos87). Hence, all notions and algorithms
designed for Coupled-Context-Free Grammars of rank 2
can casily be translated onto TAGs (cl. [(lua92]).

Because of the enlarped generative capacity, it is not
swrprising that the complexity of analysing languages geu-
crated by Coupled-Context-Free Grammars is larger than
iL s in the context-free case. [even tnercases with grow-
ing rank (cl. [HP94]). Therelore, we aim to characterize
subelasses of the set of all languages generated by Coupled-
Context-Free Grammars which are powerful enough to
model the important phenomena of natural languages, but
which are of a lower complexity.

The deterministic context-free parsing with LR(k)-
grammars leads to a lincar time analysis (cf. [Knu65]),
the best possible. Therefore, its generalization is very at-
tractive. A first altempt in this direction was done in
[SV90]. But there, only TACs are investigated. [ere, we
investigate the whole hierarchy of Coupled-Context-Free
Grammars, Althouph their enlarged generative capacity
scems Lo be contradictory to a linear time complexity of
the parsing algorithm, we can present an L R(k)-notion
for Coupled-Context-lFree Crammars deseribing a class of
languages, which can actually be analysed in lincar time.
T'his increase in power as to the lincar-time analysis is paid
by an expensive preprocessing. Tis taking into account
the complex relations between parentheses that involves
the increase in complexity, However, these costs are to he
paid only once for cach grammar. The subclass described
by our LIt(k)-notion for a flixed k grows with the rank.

The algorithm of [SV90] for 1 R(k)-"TAGs does not ful-
{ill the important Valid Prefix Property. This means that
for any prefix of the input already accepted, there exists a
suffix such that the whole word is in the language analysed.
It allows to detect illegal inputs as soon as possible, which
Our algorithm fulfills
this property. Additionally, the algorithm as well as the
notion defined here represent gencralizations of their con-
text-free counterparts which are natural in the sense that
they strictly contain the context-free situation as the spe-
cial case of Coupled-Context-Free Grammars of rank 1.

18 necessary for eflicient parsing.

401

An example of an important LR(k)-Coupled-Context-
Free Grammar is the one generating the language {w$w |
w € {a,b}*} which reflects the syntactical construction of
cross-serial dependencies.

The paper starts by defining the Coupled-Context-Free
Grammars. Then, we shortly recall the context-free LR-
parsing procedure. Subsequently, the deterministic finite
automaton used there to guide the analysis is modilied
such that it can handle Coupled-Context-Free Grammars,
Based on it, the parsing algorithm for LR(0)-Coupled-
Context-Free Grammars is derived. This results in the
generalized definition of the LR(0)-notion. As for CFCs,
the LR(k)-Coupled-Context-Free Grammars result {rom
the LR(0)-ones by resolving decision conflicts using a
lookahead of at most k symbols.

2 Coupled-Context-Free Grammars

Coupled-Context-Free Grammars are defined over ex-
tended semi-Dyck sets which are a generalization of semi-
Dyck sets. Elements of these sets can be regarded as se-
quences of parentheses that are correctly nested. Semi-
Dyck sets play an important role in the theory of formal
languages. To extend the family of context-free languages
by using them we consider parentheses of arbitrary finite

order defined as follows:

Definition 1 (Parentheses Set)

A finite set K = {(ki1,..., ki;m;) | {,m; € N} is a Paren-
theses Set iff it satisfies ki; # ki fort £ Lorj # m.
The elements of K are called Parentheses. All parentheses
of a fixed length r are summarized as

K[} i= {(kiny oo kim;) € K | mi =7}
where K[0] := {c}. (¢ denotes the emply word.) The set of
all (first) components of parenthesis in K is denoted by

comp(K) := {ki | (k1,... ki,..., kr) € K} resp.
comp, (K) 1= {k1 | (k1,..., kr) € K}.
Straightforward from this, we get
Definition 2 (Extended Semi-Dyck Set)

Let K be a parentheses set and T' an arbitrary set where
TNK =TnNcomp(K) = 0. ED(K,T), the extended semi-
Dyck set over K and T, is inductively defined by
(F1) T* CED(K,T).
(B2) K[1] € ED(K,T).
(£3) ut,...,ur € ED(K,TY, (kyy. .o kegr) € K[r A 1]
=> kyuy o keuckegy € ED(K,T).
(F4) w,v € ED(K,T) = v-v e ED(K,T).
(E8) ED(K,T) is the smallest set fulfilling condilions
(F£1)-(F4).
Now, we define how to generate new elements in ED(K,T)
starting from given ones.
Definition 3 (Parenthesis Rewriting Systemn)
A Parenthesis Rewriting System over FD(K, 7)) is a finile,
nonempty set P of productions of the form
{(k1yeio ke) = (o1, .0 00} |
(kr,... kY eK,ar-...-ar € ED(K,TY).
The left and the right side of p = (Xi1,...,X;) —
(a1,...,@,) € P is denoted by

e S(p):=(X1,...
e D(p):=(on,...,
Now, we can define our grammars. The term “coupled”

expresses that a certain number of context-free rewritings
is executed in parallel and controlled by K.

,Xr), the sonrce of p, and

«,), the drain of p.

402

Definition 4 (Coupled-Context-Ivee Grammar)

A Coupled-Context-Free Grammar over ED(K,T) is an
ordered f-tuple (K,T,DP, 8} where P is a Parentheses
Newriting System over KD(K,T) and S € K[1]. There-
fore, K can be regarded as a set of coupled nonterminals,
The set of all these grammars s denoted by CCI'G.

At last, we give the definition of derivation in CCRQ.
Let G = (K,T,P,8) € CCPG and V 1= comp(K)UT.
We define the relation =»¢ as a subsct of V* x V* consist-
ing of all derivation steps of rank r for ¢ with r > 1.
@ =>g ¢ holds for ¢ € V* if and only il there ox-
ist (kiyoooke) = (o0,000,00) € P wg upgr € VY and
ngy .ty € BD(K,T) such that

@ = wrkyugks - wrkyupgy and
P = U UG U WUy

r‘;»(; denotes the reflexive, transitive closure of =»¢. Ob-

viously, uy - upgy G ED(K,T) follows from $ ¢ o for

w and 1 since the result of the substitution is a sequence

of parentheses correctly nested if and only if the original

word was. The language generated by G is deflined as
LGy :={wecT | S Daw).

A sequence @y, ..., 00 With @ =q @i Tor all 1 <
< noand py = @, pn = Y is called a derivation of 4
Jrom e in (. A derivation is rightmost if and only if in cach
derivation step, the parenthesis ending at the rightinost
point is substituted. In analogy to CI'Gs, it is obvious
that for any derivation in C'CFG there exists cxactly one
rightmost derivation.

Example 1 & = ({S,(X,), {a,b,¢,d}, P,S) is in
CCFG(2) where P 1= {S — X$X,(X,X) — (a X, cXd)|
(ab, cd)}. G generates the language {a™b"c*d™ | n > 1},
e.g. S =6 XX =5 aX0$cXd =5 aa X Wb$ecX dd

> aaabbbeceddd

In order to be able to describe the generative capac-
ity of Coupled-Context-I'ree Grammars of dillerent ranks
exactly, we need the following notions:

Definition & (Rank, CCFG(l))
For any G = (K,1,P,8) € CCFG, let the vank of G be
defined as rank(G) = max {r | (ki,..., k) € K}. Then,
we define for ol 1> 1:

CCFG() = {G e CCPrd | rank(G) <1}

The following theorem proven in [Gua92] shows that

CC G builds up an infinite hierarchy of langnages and,
al the same time, represents a proper extension of CICs
not exceeding the power of context-sensitive grammars:
Theorem 1 (Hierarchy)
Let CIL be the family of all contexl-free, CS1 the fumily
of all conlext-sensilive languages, T'AL the family of ull
languages generated by TAGs and CCFL(I) the one gener-
aled by CCPG(). It holds:

(1) CFL=CCFL(), TAL = CCFL(2).

(2) cCrrL(l) 7Cé CCFL(I 1) for all I >1,

(3) CCr L) ; CSL forall 1> 1.

Sometimes, it is nscful to “neglect” the relations be-
tween the components of a parenthesis for a short time.
Then, we investigate G’ = (comp(K), T, P', S) instead
of G = (K,1,P,8) ¢ COCPG for

P = UJ (ki m i | 1<i<r).
[T T O VI &

Since G' is certainly a CFG we denote G (resp. P’
by CF(G) (resp. CF(P)) in the sequel. ()h\'muslly, '

satisfies L(G) C L(G).

3 Context-Free I l-Parsing

Now, we shortly recall the deterministic context-free
LR(k)-parsing strategy of Knuth (cf. [Kuu65}). For sim-
plicity, we restrict ourselves on the case & = 0. The strat-
egy essentially remains unchanged if lookahead is neces-
sary. It uses a deterministic finite automaton (dfa) to
drive a pushdown stack while scanning the input from
left to right. Thus, it constructs a rightmost derivation
bottom-up. The states of the dfu for a given LR(0)-CI'G
consist of subsets of the set of all context-lree items for (7 —=

(N, T, P, 5), ie. of the set {[X -+ «.f]| X — off € P}

They result from determining the deterministic version of

the following nondeterministic antomaton for (i
¢ Ilach context-free item is a state.

o There are three kinds of state transitions:
[X —r .Y B CEV X - Y g),
- [X — «a.aff) et [X -5 wa.B], and
= ¥V o 7. X6 -5 [X 5 el

In the deterministic version, all those context-free items
are grouped in one state which can e reached from the
initial state by the same sequence of symbols, with any
possible number of e-transitions in-between,

The stack symbols are the states of the dfa. At first,
the state containing the item [$° — .S] is pushed. (The
additional production S — S serves to define exactly the
start and the end of the analysis.) Then, we iterate the
lollowing actions depending on the topmost state ¢:

(Shift) If ¢ contains [.X — «.aff] and « is the next input
symbol to be read, we push the state reached from ¢
via a. (It contains at least [X — wa.f].)

(Reduce) I g contains [X — «.], we pop the [o] topmost
states. Let ¢ be the state now on top of the stack.
Then, we push the state reached via X from ¢'. (¢
contains at least one item [¥ — v.X§] and [X — .¢]
while the new topmost state contains [Y — X 6].)

The pushdown is driven deterministically by the dfa if

this dfa contains no state where there are two difler-
ent Reduce-items {Reduce-Rednce conflict) or as well a
Shift- as a Reduce-item (Shift-Reduce conflict). A CI'G is
LI(0) il the states of its dfa show no Shift-Reduce and no
Reduce-Reduce conflict. For LR(k)-grammars, conflicts in
the LR(0)-dfs arc solved by a lookahead of k symbols.

4 The TFinite Automaton

One possibility to generalize dfa is to construct the
usual dfa for CF(G), ¢ € CCFG. In principle, this
idea is used in [SV90]. The following exammple shows
that this produces uunnccessary conflicts: Tt ¢ =
({9, (X, X), D}, {a, b, ¢,d}, P,S) € CCF(2) for P =
{S = XXD$,D — Dd | d, (X, X} = (bc) | (ab, ed))
and L(C) = {bed™8, abedd"$ | n > 1}. lts dfa is shown
in Pigure 1. ¢ is not L(0) in this way since this dfa
obvionsly has a Shift-Reduce conflict (in the box doubly
lined). This conflict cannot be solved by lookahead since
at this point, the lookahead is always d*. ‘Therclore, (7 is
not LR(k) for any k > 0. But this conflict is not neces-
sary. Ih.g., when analysing bedd bottom-up, we first have
to reduce X — b. This implies that before coming to the
conflict state, we have to chaose X —» ¢ in order {o gel
a correct derivation. This is the case becanse X and X

resulting from applying the production S — XX D§ are

S5 s
S — . XXD$ N
X - .ab

S XX.D¥
D —.Dd
D= .d

5~ X.XD§

X = :b._‘ _ D
] =
N S = XXD.$
Noab] X, D= Dd
b d $

(X] T S XXDS.

Migure 1t dfa(()

coupled and therelore have to be substituted by coupled
productions,

To avoid these conflicts, we extend the dfa. If we use the
context-free L R-parsing strategy, we know which produc-
tion we have to choose for any Xi € comp(K) \ comp, (K)
because we first encounter and redunce the corresponding
X1 € comp,(K). Suppose that we can store the informa-
tion about Xo, ..., Xo, (X1,...,X,) € K[+], when Xy is
reduced, let us say as the “Mmture”. (How to do this is
shown in Section 5.} Can we use this to avoid the conflict?
Now, our automaton necds additional transitions under
such pi ¢ CF(P) where 8(pi) ¢ comp, (K) holds, Thus,
we split ways inside the dfa which lead to conflict states.
To formalize our automaton, we need the following

Definition 6 (1-Closure)
For ol X € L'mupl()C), lel r!,'uclmbhr(‘\') v
{Y € comp (K)|3X - Yuoe cr(P)}.

reachable’(X') denoles ils reflezive Lransitive closure. For
any q € p({[X —]| X = off € CI(P)}), we define
the 1-Closure{q) as q uniled to the set

{[X — o] X €comp(K), X — o€ CFP) and

AY € comp (K) : (A[Z - B.Y4] € ¢
and X € reachable* (V))}.
I-Closure formalizes the construction of the deterministic
version of a nondeterninistic finite antomaton as it is done
lor the dfa of CI'Gs. Us special feature is that it uses
only those X' — « € CF(P) Mallilling X € comp (K). I
X € comp(K) \ comp,(K), the expanding production is
determined by the corresponding first component.
Defluition 7 (D FA(G))
Let (= (K1, P,S) € COPG. The Deterministic Finite
Automaton for (7 is defined us DI"A(G) =
(Qa,Ya,ba, Sa, Fa)

where S¢; = 1-Closure({[S" — .S]}) iy the initial state,
La =meomp(KYUT U {p € CF(P) | S(p) & comp (K))
the input alphabet, 8 the transition function defined for
£ Ceomp(KYUT and fi € CI(P), (i) ¢ comp, (K), by

bci(q, €) 1= 1-Closure({[X; — w;€.8] |

[Xj = aj.805) € q)),
bei(a, fi) i== - Closure({[S(J1) — .P{SD]]
AX; - o S(fi)B5] ¢ ab),
Qe is the set of Lhe states given by
{¢ | Fu € (comp(KYU T UCI(P))" bei(Ser,n) = ¢},

and Vg = {4 € Qa|[X v w]Cc g, X —ag Cr(P)} is
the set of the final states.

403

[s" > 5. | o X e [Dod
S X oc__
X by
5.8 {5 5 X. X D§ — XX.D$
5 — . XXD$ T s od D»» Dd
X —.ab - A e D - d
X — .cd
c
_ s _.X\1)$
[(Xx =] [Koecd] D—;Dd

b d/ $

[X — ab. [X — cd. [S XD§,

N

PEYR

Figure 2: DFA(G)

The first difference to the usual context-free automaton
is that we allow transitions wnder fi € CF(F), if we
have S(fi) € comp,(K). The sccond point is thal we
use 1-Closure instead of the usual closure. DFA(G) for
the example grammar is shown in Figure 2. The conflict is
removed because we can now distinguish two cases by look-
ing at the information additionally stored. In [SV90], only
the first idea was realized obviously leading to a weaker
automaton.

5 The Analysis

To use DFA(Q), the usunal pushdown is extended by
a data-structure consisting in a list of partial derivation
trees. This list future collects all information determined
by Reduce’s relative to first nonterminal components and is
used to drive the transitions under p € CF(P) in DFA(G)
as soon as we have to investigate nonterminal components
Xi ¢ compy(K). The change between the two different
kinds of control leads to a new characterization of conflicts.

For better explanation, we use a list past parallel to
future where all Reduce operations performed so far are
stored. An example for the new data-structures is shown
in Pigure 3. We use it to explain how they are built up
during the analysis. The first operations on this past were
Shift(wy), Shift(ws), Reduce(A — wy). From CFGs, we
know that any Reduce takes place at the end of the sen-
tential form generated so far. ‘This remains true. Thus, we
can argue completely analogous as lar as past is concerned,

But we investigate coupled productions as, e.p.,
(Z],Z2) -—r (wlA,U1UQ), A, (Z1,Z2), (Ux,U'z) S K. We
know that coupled nonterminal components are located at
the same depth of the derivation tree and that they are
substituted by components of the same coupled produc-
tion. Therefore, when inserting any p, $(p) € comp,(K),
in past, e.g., Zy — w1 A, we additionally insert the cou-
pled productions, e.g., Z2 — Uy Us, in future. In general,

Y] <-ws <} <past fut By — By — Y,

AN

7N ws We a« D 7y O O
wy A w3 Ur U
‘uig

Figure 3: The New Data-Structures

404

there are two cases to distinguish depending on py inserted
in past. 1f D(p1) contains only symbols in K[1)U T (i.c.
only uncoupled ones), the coupled p2,...,p, arc inserted
as the first up to the (r — 1)th clement in future. (I.g. for
(Zy,Z2) — (w1 A, U1U;).) Otherwise, we behave as it is
done for (Y1,V2) — (Z1 N, Z21Q2) in Figure 3. Le. the
subtrees in future for those symbols in D(p2), ..., P(py)
coupled to first components in D(p1) become the sons of
these elements. Thus, we maintain the property that the
symbols at each fixed depth in past and future together
form an element of ED(K, 7).

Thereby, in addition to Shift’s which are handled as
usual, we know what to do during a sequence of Reduce
operations relative to clements of compy(K). Now, let us
be in the situation that we have to use the information
in future, e.g. a transition under By — a =: p; from the
topmost state, Then, we create a pointer presence walking
on fulure. We push 8¢ (qiop, pi) and make presence point
onto the first son £ of D(p;). Let ¢ be the new topmost
state. We have to distingnish three cases:

£ 1 € is the next input symbol, we push 6g(q, £).
Otherwise, the whole inpnt is rejected. presence now
points on the brother of €.

& € comp(K)\ comp (K): fulure already stores the expan-
sion & —» . We push ba(g,& -~ B). presence now
points on the first symbol in 6.

£ € comp, (K): future does not store information about
&, but £ and its coupled components rvepresent a
complete independent analysis problem which has to
be solved recnrsively. I.g., this is the case for D,
(Ur,U2), and (Qq, Q2). The recursive call of the pro-
cedure starts with the topmost state since it contains
all items [€ —» .o]. Each rccursion needs separate
data-structures. Details are described in [P1193].

If presence encounters no brother, we have to reduce. Let
Y — 4 be the production at whose last symbol presence
points. We pop |y] 4- 1 states. The additional pop com-
pared to the context-lree case results from the transition
under ¥V — . presence walks to the brother of Y iu future
and we push é¢(¢', Y)Y il ¢' is the new topmost state, 11 Y
is the root of the first tree in fulure, its complete subtree
is moved [rom fulure to past and presence is deleted.

We ouput p € P when reducing its last component.
Thus, our result is a rightmost derivation in inverse ovder.

G The Definition

So far, we did not discuss the situation Lhat there are
distinct transitions fitting for the same state in D A(G).
Shift-Reduce and Reduce-Rednce conflicts are forbidden as
they are for CI'Gs. The new conflicls result if we have to
decide whether we push 86 {qeop, f5), J; € CF'(L), or Shift
resp. Reduce as usual. 1f a state ¢ shows such a “new”
conflict, it contains two items of the kind {Z; — ;. Yjui)
and [X7 — a8, € ¢ T, or [X; — «p). This is easy to
decide as far as we are walking on fulure, since the infor-
mation necessary is stored there. Thus, we only have a
real conflict if 7 = 1 and [= 1 holds for the above ilems.
Obviously, this cannot be decided deterministically, since
we would lhave to know abont the structnre of the deriva-
tion tree ot constructed so far, g, in the first conllict,
we would have to say whether € is a son of ¥} (choose
Scilq, Y5 -» D(J7))) or whether £ is a son of X, (choose
8ci(q,€)). Tt follows that we need a modified definition of
“conflicts” compared to CICs.

Definition 8 (Conilict)

For any G = (K,1,P,8) ¢ COPG, DFAC) shows «
conflict if at least one of its stutes contains a subset of the
Jollowing kind:

(B-RY{[X - a,[Y > A X, Y G comp (K),
X o, Y - fell(P))

(S5-R) {[X — a,[V - fuy] | X,V ¢ comp, (K),
X —a,Y = paye Cr(P),acT)
(S-1) {[X -~ w.ap),[7 - v Vi) | X, Z € comp, (K},
X —rewafl, Z — yYin € CF(P),
a €1,Y; C comp(K)\ comp, (K})}
(R-EY{{X =+ @), [7 — v Yju] | X, Z € comp (K),
Y; € comp(K) \ comp (K),
X v a7 - Vi € CF(PY,)

Definition 9 (LR(0) in CCF)

G e COPG is LR(0) ¢ DFA(G) has no conflicts.
Theorem 2 Let @ ¢ CCEG be LR(0). Our algorithm
deterministically solves the wordproblem for any w ¢ T°,
n = |w|, in time O(n) by constructing a rightmost deriva-
tion relative lo G if w ¢ L(GY), and, if w ¢ L((7), by
rejecting the tnput. In addition, the olgorithm shows the
Valid Prefiz Property.

Proof: The linear time complexity lollows since we only
need a constant amount of additional steps per context-
free step lor past and fulure. DI A(C) is determined only
once for each ;. The VPP holds since it holds for the
context-free algorithm and future additionally ensures that
the coupling is correct. B

L R(k)--Coupled-Context-I'ree Grammars resuli lrom
the above by resolving conflicts in DIFA(G) by adding a
lookahead set to the items which are involved in & con-
flict. Ior this purpose, we use the mappings FIRSTy
aud FOLLOWy as defined for L L{(E)-Coupled-Context-
free Grammars in [Pit94]. There, these mappings are
generalized such that they take the coupling between the
components of cach nonterminal into account instead of
working simply on CF(G). Thus, we treat only complete
parentheses as a context-free nonterminal and the result
is much more exact as, e.g., in [SVO0]. This results in an
adequate generalization of the L R(k)-notion for CCFC.

*r”—] X - rz\'@r
tj;" -+ (f(l \

a

X aXb Kol R

X -~ ab S

X — .aXb _ - .

(X -2 ab X = eX .}I]
I»I d

(X b, [¥ = eXa)

figure 4: 1, == {a™8"c*d" | n > 1}

Example 2 The language {o™b"c¢”d™ | 0 > 1} generated

by the grammar in Fxample | shows the LR(0)-property.
DEA(G) is shown in Figure J.

Example 3 The language {(whw | w & {a,b}"} modelling
cross-sertal dependencies can be generated by the LR(1)-
grammar ({5, (',}\',;\'7)}#{?5, @, b}, P,S) € CCPrG(2) where
Po={5 - X$X (X, X) = (aX,aX) | (0X,0X) | (,¢))}.

References
[D1P89] J. Dassow, G. Pitun: Regulated Rewriting in For-
mal Language Theory, Springer 1989
[CiN69) S.A. Greibach, J.I5. Mopcroft: Scaltered Con-
text Grammars. J. Comput, Syst. Sci. 3 (1969),
pp. 232-247
[GHRI?2] Y. Guan, G. otz, A, Reichert: Tree Grammars
with multilinear [nterpretation. Technical Re-
port, Univ. Saarbriicken 1992
[Gua92] Y. Guan: Klammergrammatiken, Nelzgramma-
tiken und Inlerpretationen von Nelzen, PhD
thesis, Univ. Saarbricken 1992
[lPad] G. Hotz, (. Pitsch: Fast Uniform Analysis of
Coupled-Contexl-Free Clrammars, In Proc. ol
[CALP 94
[Hig84] 1. Uigginbotham: Fnglish is not a Context-Free
Language. Ling. Inquiry 15 (1984), pp. 225-235
[JL175] ALK Joshi, .S, Levy, M. Takahashi: Tree Ad-
Junel Grammars.). Comput. Syst. Sci. 10
(1975), pp. 136-163
[Jos85] AK. Joshi. Tree Adjoining Crammars: IHow
Much Context-Sensitivily is Required to Provide
Reasonable Structural Descriptions. In Natural
Language Parsing, Cambridge University Press
1985, pp. 206-250
[Jos87] ALK, Joshi: Introduction to Tree Adjoining
Grammars. In Mathematics of Language, John
Benjaming Publishing Company 1987
[Knu65] D.F. Knuth, On the Translation of Languages
Jrom Left 1o Right. Tuformation and Control 8
(1965), pp. 607-639
[Pit93] G. Pitsch: Analyse von Klammergrainmatiken.
PhD thesis, Univ, Saarbriicken 1993
[Pitad] G. Pitsch: LL(K) Parsing of Coupled-Contexl-
Free Grammars, 1o appear in Computational
Intelligence 1994
[ShiBG) S. Shicher. Puidence against Context-Freeness
of Natural Lunguage. Linguistics and Philoso-
phy 8 (1986), pp. 333-343
[SV90] Y. Schabes, K. Vijay-Shanker: Deterministic
Left to Right Parsing of Tree Adjoining Lan-
guages, ACL’90, pp. 276-283

405

