
APPLYING AND IMPROVING THE RESTRICTION GRAMMAR APPROACH
FOR DUTCH PATIENT DISCHARGE SUMMARIES

PETER SPYNS [1,2] GEERT ADRIAENS [1,3]
Katholieke Universiteit Leuveo

[1] Center for Computational Linguistics (ccl@et.kuleuven.ac.be)
Maria-Theresiastmat 21, B-3000 Leuven, Belgium

[2] Division of Medical lnformatics, University Hospital Gasthuisberg
Herestraat 49, B-3000 Leuven, Belgium

[3] Siemens-Nixdorf Software Center Liege
Rue Des Fories 2, 4020 Liege, Belgium

0. abs~act

This paper starts by giving a short overview of one
existing NLP project for the medical sublanguage (1).
After having presented our objectives (2), we will
describe the Restriction Grammar formalism (3), the
datastructure we use for parsing (4) and our parser (5)
enhanced with a special control structure (6). An
attempt to build a bootstrap dictionary of medical
terminology in a semi-automatic way will also be
discussed (7). A brief evaluation (8) and a short outline
of our future research (9) will conclude this article.

1. context and state of the art

In medecine, the use of natural language for compiling
reports and patient documents is a widespread habit.
The importance of the information embedded in a
patient discharge summary (PDS) has led to the
creation of various storage and retrieval programs (e.g.
Dorda 1990). Basically, these programs use pattern-
matching (enhanced' with boolean selection
possibilities) to retrieve the required information. A
more scientifically based method to extract the
information from a patient discharge summary is a
linguistically based analysis, which captures all the
subtilities of the free text. This "intelligent" approach
permits questions that imply deductive reasoning and is
therefore preferred to simple pattern-matching based
techniques (Zweigenbaum et al 1990).

A team from the New York University, directed by
Sager, has developed an NLP system that analyzes
PDSs, structures their information and stores the whole
in a relational database. The data can thus be accessed
by other programs in an organized way. This Medical
Language Processor (MLP) is an extension of the
Linguistic String Project (LSP) (Sager 1981), which
aimed at analyzing technical and specialized language
by means of String Grammar (Sager et al 1987). More
recently, the LSP-MLP was successfully imported in
Europe and it is currently functioning in the H6pital
Cantonal de Gen~ve, where it handles French patient
documents (Sager et al 1989).

2. objectives

Starting from an existing grammar for English, an
attempt was made to develop a grammar for the Dutch
language by making use of the experience gained during
the LSP. This implies the creation of a set of grammar
rules, the implementation of a interpreter/translator for
these rules and the generation of a limited dictionary.

On the basis of a set of 6 PDSs, a limited grammar has
been built. Every word constitutes a separate entry in
the dictionary; no morphologic analysis takes places.
Conjunctions are not yet handled, but the possibility
exists (Hirschman 1986). Relative clauses also fall
outside the scope of the current grammar. It is our
intention to use the grammar to analyze free input (as it
occurs in PDSs) with an eye to extracting the relevant
medical information. From there on, the system will be
used to help medical secretaries in the classification of
the PDSs with respect to medical database systems.

3. restriction grammar

3.1. historical background

Restriction Grammar (RG) is the Prolog-version of
String Grammar, which emanated during the 60s as the
grammar formalism of the distributionalism school
promoted by Harris (1962). One might wonder why
this theory is being reused. An up-to-date theoretical
formalism suffers to a large extent from the limited and
experimental character of its applications. Tile LSP-
MLP has proved to lead to large scale useful NLP
systems. That is why we adopted the same theoretical
background (distributioualism) to develop an aualogous
grammar for the Dutch language.

3.2. relation with other logic formalisms

The RG-formalism is related to Definite Clause
Grammar (DCG). A grammar consists in both forma-
lisms of a set of context-free production rules inter-
spersed with Prolog predicates that function as restric-
tions. Advantages of RG are the absence of parameters
in the rules and the separate treatment of context-

ACTES DE COLING-92, NANTES, 23-28 Adler 1992 1 2 6 4 PROC. OF COLlNG-92, NANTES, AU6. 23-28, 1992

sensitive information, which is stored in a tree-structure
that is gradually built up during the sentence-analysis.
Flexibility in creating, adapting and checking the
g rammar is thus guaranteed (Hirschman 1986,
Hirschman & Puder 1986).

3.3. some type definitions

The RG-grammar contains different types of structures.

Alinc, uistic strine is a single option definition which
consists of a sequence of "required" elements in direct
correspondence with an elementary word in the
sentence, interspersed with elements of the adjunct set
type. For instance, the definition for an affirmation is
the following:

affn-mation ::= np, sa_rec opt, vp, saree_opt .

This rule states that the affirmation consists of an np
and vp-string (both required) as well as optional
sentence adjunct strings.

An ailjll.q£,l...~l definition has several options, which are
the names of string definitions or sets of string
definitions. The strings of the adjunct set are optional
additions to the sentence. In opposition to Sager and
Hirschman, the optionality and recursivity of some
strings (sa, rn, rv) is embedded in our grammar and no
special parser mechanisms are needed (see below).

sa ::= prate; ptime; pn; nstgt;csstg; dstg.

The rule states that a sentence adjunct can consist of
prepositional strings (indicating a date or moment in
time), an expression of time (nstgt), a subordinate
sentence-structure (csstg), or an adverbial suing (dstg).

Structures of the ~ consist of a word class "X",
which is the core or head of the structure, occurring
with optional left and right adjuncts (Sager 1981).

lnr ::= In, nvar, rn_rec opt .

Here, a nominal constituent is surrounded by its left
and right adjunct strings.

Positional variant,5 are auxiliary definitions which
group together linguistically related classes of strings.

nvar ::= lnamer; {d_nvar}, *n; {d_inf},lo_vinf_ro;
{dnl}, *nulln; *pro, {w pro2}.

The core of a nominal constituent can be formed by a
proper name with its adjuncts, a noun, a nominalized
verb string, a null noun and a pronoun. Note the
existence of the zero noun (*nulln), which is only
justified for reasons of the economy principle applied to
the grammar rather than on purely linguistic grounds.

New omional and recursive structures are created and
included in our grammar. This was useful to skip the
extra machinery needed by Sager and Hirschman to cope
with the "empty" and repeated adjunct strings (Sager
1972). These new strings allow the parser to adopt a
uniform strategy for the complete grammar. All the
strings of the adjunct set have a corresponding optional
and recursive structure.

sa rec_opt ::= sa_rec; [l. (optional definition)
sa_rec ::= sa, sa_rec_opt. (recarsive def'mition)

These constructs allow a transparent treatment of an
optional recursive sentence-adjunct.

Sometimes, the theoretical frontiers between the
different structures are slightly blurred in grammar
rules, but this will be cleaned up during the further
development of the grammar.

As opposed to non-terminal categories (the structures
already mentioned), a ternlinal cater, try constitutes a
leaf of the parse tree. The variable Word (see below) of
every leaf is instantiated. In the grammar, a terminal
category is marked by an asterisk.

nvar ::= lnamer; [d nvar}, *n; {d inf} ,lo vinf ro;
{dnl], *nulln; *pro, {w_pro2}.

are words which are directly integrated in the
grammar and function more or less as fixed ex-
pressions. The example shows the definition of a left-
adjunct to a proper noun. The literals appear between
square brackets.

lname ::= [Prof, '.', dr, '.'l; [dr,'.'] .

3.4. restrictions

The application of the grammar rules to a sentence can
result in various parse trees. These are not necessarily
correct from a pragmatic-linguistic point of view.
Thus, the need emerges to distinguish the acceptable
analyses from the bad ones. The restrictions prune the
combinatorial explosion of parses permitted by the
context-free grammar rules. When a restriction fails, the
next positional variant of the category which functionts
as the head of a g rammar rule is considered.
Restrictions appear between curly brackets.

nvar ::= lnamer; {d_nvar}, *n; {d inf},lo_vinf ro;
{dial}, *nulln; *pro, {w pro2}.

There exist two kinds of restrictions. The well-
formedness restrictions check if the parse tree meets
syntactic and semantic constraints imposed on the
leaves or on the syntactic relations between various
nodes of the parse tree (e.g. w_pro2). Disquali fy
restrictions consider the input stream (e.g. d inf fails if
no infinitive is present in the remaining input stream)

ACRES DE COLING-92, NANTEs, 23-28 Ao~r 1992 l 2 6 5 PROC. OF COLING-92, NANTEs. AUG. 23-28, 1992

and enhance efficient parsing by blocking directions
which lead to failure. The restrictions are implemented
by means of special functions (locating routines) that
allow navigating from one node in the tree to another.

Currently, the still limited grammar for the Dutch
language consists of some 157 RG-clanses completed
with 41 restrictions. As already mentioned, con-
junctions are not yet covered; neither are relative
clauses or interrogatives sentences. This grammar was
the result of confronting a larger theoretically built
grammar with the linguistic reality of 6 patient
discharge summaries.

4. the data structure of the parse Iree

The data structure used for the parse tree is the one
proposed by Hirschman and Puder (1986). The parse
tree together with its operators are defined as an abstract
data type. The abstraction function can be defined as
follows:

F: Node -> [TreeTerm,Path] :
TreeTerm = tt(Label,Child,Sibling,Word),
Word = [Item,lnfo].

The representation invariant is:
V k E {Nodes} :

Item is a Dutch word or punctuation sign,
Info is one of the grammatical categories,
Item = [] <=> Label = *nulln,
Word is instantiated <=>

Label = (literal v terminal),
Label is always ground.

The first relation of the abstraction function states that
a TreeTerm contains linguistic (Label,ltem) as well as
positional information (Child,Sibling). The second
relation links a node to the path in the parse tree that
must be traversed to reach the root starting from that
node. Movements in the parse tree are executed by
means of the up /2 , d o w n / 2 , r i gh t / 2 and lef t /2
operators. As subtrees are successfully generated, the
path gradually shrinks during the movement upwards in
the tree.

5. the implementation of the parser

Basically, an RG translator-interpreter does not differ
substantially from a DCG translator-interpreter. The
main difference resides in the handling of the parameters
needed for the construction of the parse tree (absent in
RG-rales). The translator-interpreter takes care of the
parameter bindings instead of the grammar rules as is
the case in DCG. An example of the output after
parsing a sentence can be found below.

I
u m c _ ~

{
a,! rQc

" 11 {
ilr (> I

i
u t g rec_opt

{ { ,>

mmtl~,~c,i

cofller

{ { i
0

petrr~tatlon

{ { { { I
W~V~p subject ma rec opt porto oblact sa rec opt

{ { { I I
kvr perm s ~ l ma me object ()

(1

°~ J

(() =w ()

{ { [~ { - - i
In, at () In "m rn m c o p t I

{ I I , - - I } { , - ,,

I
l)

6. the control structure

6.1. general outline

The interpreter/translator mechanism as it is described
in Hirschman 1986 or Dowding & Hirschman 1988
works in a depth-first fashion that backtracks when
necessary. We added a control structure that records the
options that are unsuccessfully tried as well as the
options that have led to a null-node.

The sentence to be analyzed is logically considered as a
graph where the words of the sentence function as arcs
between the vertices. The arcs will be labeled with
grammatical categories. An arc can span various
vertices. The "sentence-arc" e.g. spans all the vertices.
An arc is uniquely identified by its label and coordinates
in the tree (number of the starting vertex and tree-
depth). The fourth characteristic of a arc, its mode,
serves to distinguish a void from an empty arc. A void
arc means that a grammatical category under a certaiu

ACTES DE COLING-92, NANTES, 23-28 Aotrr 1992 1 2 6 6 PROC. OF COLING-92, NANTEs, AUG. 23-28, 1992

vertex leads to no success, whereas an empty at~c only
leads to success if it is realized as an empty string. In
opposition to a chart parser that remembers which
grammatical structure spans which vertices, the only
function of the control structure is to record which
grammatical category leads to failure or realization as
an empty string under a certain vertex (= a word).

6.2. the data structure of the control mechanism

The backbone consists of a kind of sparse matrix, of
which each element is a stack of grammatical labels.
The stack contains all the grammatical labels of the
arcs that were (or still are) considered on the current
depth in the parse tree under the current vertex. The
Last In First Out ordering principle provides the
advantage that arcs recently added below a vertex under
construction can be modified or discarded without the
need for time-cousuming search-routines.

Here again tile control structure is conceived as an
abstract data type. There exist only five public
predicates: c h e e k o p t i o n / 3 , t r e a t mos t r egen t -
a r e / 4 , e m p t y _ a r c / 3 , in i t i a l i ze c-ontroi-/i an t i
r emove c o n t r o l / 0 .

6.3. the parsing algorithm

When the parser tests if an arc can span two vertices
(cheek-op t ion /3) , the control structure is checked
first to see if the sanle grammatical category is not
already present under the starting vertex. If this is the
case, a failure blocks this option aud the parser will
consider the next category in the grammar rule as the
new candidate arc. In the other case, the arc is included
as a void arc in the control structure. This prevents the
parser from ending up in an inf'mite loop, by trying to
satisfy a grammatical category already functioning as a
candidate are but on a higher level of the parse tree.

If a ca t egory is present as an empty arc
(e m p t y _ a r c / 3) in the control structure, this means
that all the other underlying grammatical categories
have already been tried, but only the empty string can
satisfy this category. When the parser backtracks and
retries this category under the same vertex, useless
search paths can be pruned as the previous parsing
attempt only allowed the empty string.

On successful completion of a parsing attempt by a
terminal element or a literal, the grammatical category
is either removed from the control structure to allow
the same category to be retried on backtracking, or
marked as an empty arc (treat most recent are/4).
Backtracking does not affect the control structure, as it
is implemented by menus of global Prolog "record
keys".

7. semi-automatic dictionary buildup

As was noted by Wolff, file major lexical category of a
word is deterolined by its final coostituent part (Wolff
1984). In order to semi-antomatically build up our
dictionary (currently only coutainiug word class
inl0rmadon), we ordered a set of technical medical
terms alphabetically starting from their ends. This
allowed us to distinguish relevant suffixes and
determine the associated grammatical category (e.g. file
suffix -tara is an adjectival suffix. The data about rile
link between suffix and word class can be entered into
the system by means of a short interactive program.
Some words belonging to a closed grammatical
category (e.g. articles) are al.~ integrated in the suffix
file. A distinction is made between the real suffixes and
tile closed t~Ltegory words. "the latter are stored uudeL
the form of a closed Prolog-list while tile ti~rmer arc
entered as open eaded Prolog-lists.

The suffix entrie,q are alphabetically classified, whereby
the ending character functions as the sort key. The
"ending groups" created by this process contain two
subgroups: the real morphemes versus the real suffixes.
The fonner have a higher ordering value than the hitter.
The latter are in addition ordered according their
decrca~sing length. Concerting the suffixes, this means
that the principle of the longest match is applied. "lqhe
general strategy can be stumnariz~ed it,; follows:

(...) the table is Iool,:ed at slatting with tile most
specific entry, ,and ending with tile least specific
one (Adrhtens & Lemmens 1990).

The output of the classifying program is a (primitive)
dictionary file that must be completed, e.g. by adding
semantic le, atures. Some words of the dictionary file can
be marked as "category unknown" or carl be attributed
the wsong category. To cope with this problem, all
interactive program was added to allow corrections to be
carried out. Despite the fact that tile semi-automatic
classification of words proved to be highly eflectivc and
time-saving (l~jrtly due to file high degree of regularity
in medical terminology), it still filnctions on a ton
limited basis to be fully integrated in an NLP system.

8. evaluation and results

The most serious problem for our parsing approach
appears to be structnral ambiguity. A branch is
attached to the first IX~ssible node in the parse tree
instead of a subsequent node on the same or higher
level. This is due to the depth-first mechanism of tile
parser. The generation of more than one parse tree does
not provide a solution, because then the question on
which basis a final parse tree will be selected remains
unanswered. The LSP-MI,P dkl also encounter this
problem, but allows tile "adjuncts to be integrated freely
(Sager 1981). Subsequently, the parse tree. is passed to
a "sublangnage selection module" aud re- arranged on
the basis of lists of allowed syntagmatic combinations

ACRES DE COLING-92, NANI~:S, 23-28 AOI3T 1992 1 2 6 7 PROC. OF COLING-92, NANIES, AUG. 23-28, 1992

of semantic classes of the medical language as they
appear in the distribution pattern of a word.

9. further research

Farther research will be oriented towards the integration
of conjunction handling, which implies the use of a
meta -grammar (Hirschman 1986). The existing
grammar will be continously extended in two phases.
After a survey of various grammar books, theoretically
sound grammar rules will be developed. These rules
will subsequently be checked against a corpus of PDSs,
to see how well the paper grammars fare when
confronted with random inpuL
A more elaborated grammar requires more and refined
restrictions, which need to eliminate more accurately
dead ends during the parsing process. A sublanguage
module must be added to account for the syntactic
specificities of the medical language as well as to
rearrange some branches of the parse tree. To transcend
the prototype status, a large scale dictionary should be
developed, including a morphological analyzer.

Furthermore, as the ultimate goal is to represent the
meaning of the sentence, the syntactic analysis needs to
be completed by a semantic counterpart. A distinction
should be made between general purpose and medical
sub language concepts . The a l ready mentioned
rearrangement of the parse tree by the sublanguage
component uses semantic classes, but these are created
on the basis of a syntactic analysis of the distribution
of the various texical terms. This does not include any
modeling of the medical domain nor any deductive
reasoning as is pointed out by Zweigenbaum (1990). In
the long run, these two aspects need to be included in
an intelligent information retrieval system.

note.' For reasons af space limitations, only a restricted
set of grammar rules was shown. Tile complete
grammar as well as the full Prolog code can be found in
(Spyns 1991).

References

Adriaens G., & M. Lemmens (1990): Ih.g....~s.fd~-
extendint, lexicon: off-line and on-line defaulting 0f
lexical information in the METAL MT Svstem. In
Proceedings of the 13th COLING Conference, Vol 3,
305-307.

Dorda W.G. (1990): Data-screening and Retrieval of
Medical Data by the System WAREL, in
Informatiorl in Medeciq~, 29, 1:3 - 11.

Dowding J. & L. Hirschman (1988): A Dynamic
Translator for Rule Pruning in Restriction Grammar, in
Natural Language Understanding and Logic Pro-
~rammint~ lbi, Dahl V. and Saint-Dizier P. (eds.),
Elsevier Science Publishers, North-Holland, pp. 79 -
92.

Grishman R., N.Sager, C.Raze, & B.Bookchin (1973):
The Linguistic String Parser, in AFIPS 427 - 434.

Harris Z. (1962): Str ing Analysis of Sentence
S~c tu re , The Hague.

Hirschman L. (1986): Conjunction in meta-restriction
grammar, in Journal of Logic Programming 4 :299 -
328.

Hirschman L. & K. Puder (1986): Restriction
Grammar: A Prolog Implementation, in L o g i c
Proc, rammin~, and its Annlications M. van Caneghem
and D.H.D. Warren (eds.), Ablex Publ ishing
Corporation Norwood, New Jersey, pp. 244 - 261.

Sager N. (1972): A Two-Stage BNF Specification of
Natural Language, in Journal of Cybernetics 2,3:39-50.

Sager N. (1981): Natural Lan~,uage Information
Processing. a Comuuter Grammar of English and its
Annlications, Addison-Wesley Publishing Company,
New York.

Sager N., C. Friedman & M. Lyman (1987): Medical
Language Processing: Computer Management of Narra-
tive Data, Addison-Wesley Publishing Company, New
York.

Sager N., M. Lyman, L.J. Tick, F. Borst, N.T. Nhan,
C. Reveillard, Y. Su, & J. R. Scherrer (1989):
Adapting a Medical Language Processor from English
to French, in MEDINFO 89:795 - 799.

Spyns P. (1991): A orototvoe of a semi-automated
encoder for medical discharge summaries. University of
Leuven Master of Computer Science Thesis [in Dutch].

Wolf f S. (1984): The use of morphosemantic
regularities in the medical vocabulary for automatic
lexical coding. In Methods of Information in Medecine.
23 :195 - 203.

Zweigenbaum P. et al (1990): Natural language
processing of patient discharge summaries (NLPAD) -
extraction prototype, in Noothoven van Goor J. (ed.),
AIM Reference Book. IOS, Amsterdam, 1991

ACRES DE COLING-92, NANTES, 23-28 AOt~q" 1992 1 2 6 8 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

