First Results of a French Linguistic
Development Environment

L. Bouchard (cmeivL)
C. Fay-Varnier (criv)

L. Emirkanian (GIREIL)
C. Fouqueré (Liry)

D. Estival gssco)
G. Prigent (CNET-Leunion)

P. Zweigenbaum (INSERM.U194)

1 Introduction: EGL
The EGL (Environnement de Génie Linguis-
tique) project started in 1989, with the proposal
to create a linguistic software development envi-
ronment containing a computational treatment
of French grammar.! Its three main objectives
were to allow research groups working in NLP:
e to develop and test both general French
grammars and specific inguistic analyses
for that language,
« {0 test new parsers and to compare several
parsers in a uniform setting, and
e to have at their disposal an ana-
lyzer/generator for French, easy to main-
tain and to port to other domains.

1The EGL project involves 6 different partners:

o GIREIL: Université du Québec & Montréal,
Département Math-Info, Montréal Québec,
Case Postale 8888 - Succursale A - H3C3P8,
CANADA. <lhb@mipsl.info.uqum.ca>,
<le@mipsl.uqam.ca>
1SSCO: Université de Genéve, 54 rte des Aca-
cias, CI-1227 Genéve.
<estival@divsun.unige.ch>
e CRIN: Campus Scientifique, BP 239, F-54506

Vandoeuvre-lés-Nancy Cedex.

< Christine. Fay®@loria.fr >
» LIPN: Université Paris-Nord, F-93430 Villeta-

neuse. <cf@lipn.univ-parisi3.fr>
e CNET-Lannion: Route de Trégastel, BP 40,
¥.22301 Lannion Cedex.
<prigentg@lannion.cnet.fr>
INSERM-U194: 91 Bd de I'Hopital, F-75634
Paris Cedex 13. <zweig@frsim51.bitnet>

It was supported by the Aasociation pour la
Coopération Culturelle et Technigue and by the
French Programme PRC Communication Homme-
Machine. Development of the GP5G grammar of
French was also supported by grants from the SSRC
of Canada (grant #410-89-1469) and the FCAR of
Quebec (grants #:89-EQ-4213 and #92-ER-1198).

ACTES DE COLING-92, NANTES, 23-28 AOUT 1992

1177

Independently of a particular application, the
environment must be usable both as a compo-
nent in a system making use of an existing syn-
tactic database, and as a development environ-
ment for new syntactic treatments of the lan-
guage. The first phase of the EGL project was
partly based on a critical evaluation of existing
work (in particular GDE [1]), and defined a gen-
eral architecture with the following modules:

@ parser,

e basic grammar,

s test-suite database,

o lexicon,

o development management tools,

s graphical utilities.

The initial gramiatical formalism chosen was
that of unification-based gramwar and three
main linguistic frameworks are taken into ac-
count in EGL: GPSG [11], LFG [16] and FUG
[17]). The parser is based on the general princi-
ple of a chart; different analyzers for the different
formalisms can be integrated into the system by
making reference to that model and by including
specific methods for the types of objects they
manipulate. The basic analyzer is a revised ver-
sion of the GDE parser (8]; two LFG parsers are
being integrated, and a ¥UG parser is planned.

The French test-suite and the grammar are
both already fairly well developed. The basic
grammar provided with the environment is the
keystone of the whole system. It allows using the
environment directly and without further work,
and also serves as a testbench for the computa-
tional solutions to linguistic problems.

The test-suite serves as a guideline for the
coverage of (system-provided or user-defined)
grammars, to test whether they accept an in-
dependently established corpus of written sen-
tenices which exemplify the main linguistic prob-
lerns and phenomena of the language.

Proc. o¥ COLING-92, NANTES, AUG. 23-28, 1992

While defining a Irench lexicon was not one
of the main objectives of the project, having a
lexicon is an unavoidable requirement for test-
ing grammars and analyzers and the treatment
of lexical information became an important comn-
ponent of the work. The need to access a single
lexicon required a study of the normalization of
lexical information which led to interesting ques-
tions about the reusability of syntactic features.

Defining development management tools
turned out to pose challenging theoretical prob-
lems. The History component keeps track of
grammar development and iodification, and
is complementary to the Coherence component
which validates a state of the grammar. The
Generation component allows the linguist to test
limit cases in the grammar, both from the point
of view of analysis complexity and in order to
check overgeneration.

We start our description with the module
making the system usable as a development tool
for linguistic software, i.e. the set of graphical
utilities for the visual representation of the gram-
mar, the analysis process and the results.

2 User environment

EGL lets the user parameterize execution and
control commands, explore their results, and vi-
sualize and edit lexical and syntactic knowledge.
In contrast with earlier approaches such as (4],
we think that user interface standards are now
sufficiently mature to allow reasonably portable
software to be developed, and most of these func-
tions are part of a graphical user interface run-
ning under X-window Motif. The EGI, graphical
user interface is best illustrated with the parsing
tools, which are directed towards both the gramn-
mar developer and the parser developer. The
user can select a sentence, control parser exe-
cution, and explore the results. During parsing,
the user can display the chart and watch it evolve
dynamically. The agenda of awaiting chart tasks
can also be displayed and manipulated. This al-
lows the parser developer to experiment manu-
ally with chart parsing strategies before integrat-
ing them into the parser.

After parsing, the grammar developer can
display the relevant structures (derivation trees,
feature structures, rules used, etc.) and navi-
gate through them. The whole user interface be-
haves as a structure inspector, or hypertext-style
browser, with displays and links tailored to the

ACTES DE COLING-92, NANTES, 23-28 A0CT 1092

1178

linguistic needs and habits of the user.
3 Development Management Tools

Besides the test suite elaborated for the
project, three validation tools contribute to
grammar development: the History, Coherence
and Generation components. As the test suite
and the History components are described in de-
tail elsewhere [5], we will spend more time on the
Coherence and Generation components. They
are both based upon a formalism which is com-
mon to GPSG, LIFG and FUG, and thus able
to include all the data and constraints of those
three frameworks. In this way, EGL goes beyond
previous projects such as [8, 7] and provides a
common tool for various frameworks.

A grammar consists of four sets (category,
(ID-)rule, LP-rule and metarule).? Each set in-
cludes both data and principles. A principle
is a constraint that must apply everywhere and
which defines the admaissible data.

A category (I, F, A) is represented as:3

e A categorial identifier I, which is a symbol
identifying the category.

A formula ¥, which defines constraints ap-
plicable to the category. These are de-
duced from the rule that generated the
category, or from principles. The allowed
predicates are: standard D, constrained
e, default Dy deduction; standard =, con-
strained =, default =, unification; nega-
tion -1, union A and disjunction V.

An attribute-value structure A. A value
may be atomic or complex (itself an
attribute-value structure). It can be de-
clared explicitly (with constants) or im-
plicitly (referring to another value in the
structure, thus allowing data sharing).

Local trees stem from rewrite rules,* con-
strained by LP-rules and principles.® The prece-
dence constraints can be mentioned in the right-
hand side of a rule inside the rule as well as a
principle via precedence rules. This expressive
power (allowing “formalism mixing”) facilitates

2An (ID-)rule is a regular expression constructed
from an Immediate Dominance rule with Linear
Precedence constraints.

3Each element of a structure or a category can be
omitted; in that case, it is considered a variable.

*These are themselves defined with metarules.

*This is the way to express the Foot Feature Prin-
ciple, Head Feature Convention, etc. of GPSG.

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

gramnar development. Two exauples:
L¥'G (rewrite rule):
() -+ {L,(NP, $0.50J =: $1,)}
A {2,(VP, $0 - $2, [TRANS -])}
GPSG (default constraint):
(V4 N) Du(,[VFORM V, PASS -])

The main problem in the Coherence compo-
nent is that of satisfiebility: Is there any valid
parse with the user’s grammar? Besides satisfi-
ability, some questions are of great interest from
a linguistic point of view, e.g. sufficiency and
necessity of all the data. A grammar must be
structurally coherent, and we say that a gram-
mar is coherent iff it satisfies:

e non-cyclicity: there is no cyclic point.
non-redundancy: A is redundant w.r.t. B
in a grammar § iff §-A has the same
strong generative capacity as §-B.

noun-superfluity: A is superflurous in § iff' §
and $-A have the same strong generative
capacity.

L3

accessibility-coaccessibility: data is acces-
sible {resp. coaccessible) iff used at least
once in generation (resp. a parse).

We have shown [2] that cyclicity, redundancy
and superfiuity are subproblems of accessibility:
an accessibility algorithm can be used as a nec-
essary condition for the three other problems. In
a context-free grammmar, linguistic coherence can
be tested locally. Therefore, a first pass applies
to a context-free part of the grammar (without
data sharing nor nonmonotonic atomic formu-
las). A second, global, pass uses label propaga-
tion, where labels are defined by constraints. We
are also investigating a clique method to treat
accessibility in a tractable way [9, 2].

The inputs to the Generation component are
the following constraints:

e on the grammar: specification of obliga-

tory, forbidden or cooccurrent rules,

e on terminal nodes: specification of com-
plex structures that determine terminal
nodes types,

e on initial structures: specification of in-
complete parse trees.

These parameterizations were easily included
into the formalism, but problems occur with the
algorithm itself, which chart algorithms are in-
sufficient to deal with. Three agendas take care

Actrs bE COLING-92, NaNTES, 23-28 A0UT 1992

1179

of post-modification of nodes in incomplete trees,
thus extending Shieber’s algorithm [21, 18].

4 Linguistic Descriptions

4.1 Gramanar

The development of the GPSG grammar for
French can be traced through three steps.

First, we implemented a demonstration gram-
mar [12], patterned after the English grammar
described in the GDF User Manual [8]. In terms
of coverage, this French grammar can handle
some simple questions, whick required the def-
inition of two additional metarules. In terms of
grammar-writing style, following a suggestion of
[22, pp. 115-119], we define the person feature
in terms of two binary features, EGO and PTC
(participant). Finally, agreement is a much more
pervasive pheuornienon in French than in English,
and many more cases must be taken into ac-
count: adjective/noun, determiner/noun, adjec-
tival predicate, and the past participle.

As a sccond step, we developed a GPSG-
based French grammar along the lines of the En-
glish graminar described in [15]. Although the
linguistic coverage is similar in both of them,
the French grammar is only loosely patterned
after the English one. Its development was bro-
ken into subtasks according to the types of con-
stituents encountered (AP, NP, VP ..} as well
as to the types of specific linguistic problems to
be accounted for (e.g. agreement, comparatives
and coordination). In general, the rules in our
gramrmuar are driven by lexical information: we
thus model our computational grammar on the
results of current linguistic theory.

Our treatment of agreement is fairly complete
[18]. For example, we can handle complex color
adjectives (des robes vert bouteille, “bottle-green
dresses”), predicate APs (les robes sont vertes,
“the dresses are green”), and past participles (les
étudiantes que les policiers ont matraquées, “the
students that the police beat up”).

The treatment of VPs is extensive [14] and
includes the positioning of clitics [3] and of nega-
tion. lexical V1 items are used to handle com-
plex tenses and the positioning of negation and
certain adverhbs. We strived to minimize the
number of lexical ID-rules and tackle the prob-
lemn of “categorial distortion” (20} (in particular,
the grammar can account for complement sub-
categorization alternations in a systematic way).

The treatment of NPs was found to cause

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

more serious problems. Although we were able
to pattern our treatment of modifiers after [15],
that of specifiers is more problematic [19]. It has
rapidly become clear that semantic information
is necessary for a satisfactory solution. Thus,
the third step is to enrich our morpho-syntactic
grammar with a semantic component [6).
4.2 Lexicon

A lexical database is obviously necessary to
perform any test on grammars and parsers.
Defining a French lexicon within the GPSG for-
malism was not one of our goals but, in parallel
to the syntactic database, we had to construct a
lexicon couched in a formalism compatible with
different grammars and with enough coverage to
be useful. Like the grammar provided with the
environment, this lexicon can be taken as is, or
be replaced by the users. We eventually settled
on (automatically) transforming the information
present in an already existing dictionary (the
CNET lexicon) to serve as the lexical database.®
4.3 Normalizing Lexical Information

In building a linguistic environment which is
both French specific and usable by separate users
with independently built systems, we knew that
these would require lexical information to be pre-
sented in different ways. However, with the as-
sumption that all of the lexical information nec-
essary for the various syntactic analyses is actu-
ally present in the lexicon provided with EGL,
we make the hypothesis that the content of this
information is common to the various systems.

Since an increasing number of grammatical
formalisms put a large part of the linguistic de-
scription in the lexicon, we are interested in the
nature and complexity of lexical entries, in the
division of information between grammar and
lexicon, in the representation of the syntactic in-
formation in the lexicon, as well as in the use of
lexical information in the grammar. Normalizing
this information thus became an important part
of the linguistic aspect of the project: the fea-
tures in the pre-existing lexicon had to be trans-
formed to serve as the basis for a “neutral” lexi-
con, which must be usable by grammars not writ-
ten in the same framework as that of the CNET.

8The CNET lexicon has more than 55000 entries
defined with 200 keywords. The lexicon is trans-
formed into minimal automata with quasi-linear time
complexity for access. The compactness of the au-
tomata allows them to be resident in core memory.

ACTES DE COLING-92, NANTES, 23-28 A00T 1992

1180

First, a correspondence was established be-
tween the syntactic and morpho-syntactic fea-
tures of the CNET lexicon and the features
required in systems created by members of
the project: the GIREIL grammar; the LN-
2-3 grammar (INSERM); the ELU grammar
(ISSCO). From the list of features used by each
of them, we extracted those that pertain to the
lexicon. We only considered attributes required
by the grammars at the lexical level, thus dis-
carding the features which represent information
that can only be evaluated during processing, i.e.
which cannot be present in a lexical entry (e.g.
VEUT-AUX-COMPOSE on a complex verbal
form for LN-2-3, or REL on a nominal form in
ELU). Since all three systems adopt to some ex-
tent a lexicalist approach and include a large
amount of syntactic information in the lexicon,
this division required a detailed interpretation of
their internal workings.

Conversely, although morphological analysis
is most often performed in a separate component
(i.e. inflected forms do not constitute separate
lexical entries}, morphological information is in-
cluded in our normalization, because that infor-
mation must be present on the lexemes serving
as starting points for the syntactic analysis.

We then put in correspondence the lexical fea-
tures of the various systems; here again, it was
necessary to interpret the way they are actually
used (e.g. in the representation of reflexive con-
structions). The normalization of the morpho-
syntactic features required in these three gram-
mars can now be extended to other grammatical
analyses through the more general list of features
established for the mapping which allows each
system to recover in the lexicon the information
it needs to perform an analysis.

5 Conclusion

While French has been the object of relatively
extensive research in computational linguistics,
no extensive formal description of that language
has been integrated in a linguistically motivated
development environment. The EGL project is
part of a growing trend towards a wider linguistic
coverage coupled with greater flexibility.

Designing a linguistic development environ-
ment requires making some fundamental choices
about the grammatical formalism, and the eval-
uation of competing formalisms depends on as-
sumptions imposed by the task at hand (com-

PROC. oF COLING-92, NANTES, AUG. 23-28, 1992

plexity, determinism, performance degradation
in case of unforeseen input, use and integra-
tion of semantic information). The use of NL
as a medium for communication between man
and machine renders desirable the adaptability of
an NLP system to various linguistic formalisms.
However, if automatic information processing
projects now more often include an NL compo-
nent, that component is generally “closed” and
unmodifiable: few systemns are designed to pro-
vide the syntactic analysis of natural language
texts or to be usable in various contexts.” In
EGL, several of the modules may be reused out-
side of the grammatical formalism chosen for our
own linguistic description. This basic require-
ment of system design can have important con-
sequences when we want to tailor the system to
applications where the linguistic domain is lim-
ited, which is the case in most natural language
interface applications. As a design tool, EGL
makes it possible to see simultaneously and to
manipulate easily each of its components.

References
(1] Baldy, B. and A. de Sousa (1989) ALVEY : une
étude informatique pour lo compréhension des
mécanismes de Uanalyse syntazique azés sur la

théorie des Grammaires Syntagmatiques Généralisées.

Rapport de Recherche, LIPN.

Belabbas, A. (1991) Cohérence des grammaires
décrivant le Langage Naturel. Rapport de DEA,
LIPN.

Bes, G. (1988) “Clitiques et constructions topi-
calisées dans une grammaire GPSG du frangais”.
In G. Bés & C. Fuchs eds. Lezique et paraphrase
pp. 55-81. Lille: Presses universitaires de Lille.

2

=

(4

Bogunraev, B. J. Carroll, T. Briscoe and C. Grover
(1988) “Software Support for Practical Gram-
mar Development.” Proceedings of the 12th In-
ternational Conference on Computational Lin-
guistics (COLING), Budapest, pp. 54-57.

Bouchard, L. H., L. Emirkanian, D. Estival, C.

=

Fay-Varnier, C. Fouqueré, G. Prigent and P. Zweigen-

baum (1992) “EGL: a French Linguistic Devel-
opment Environment”. Natural Language Pro-
cessing and its Applications, Avignon 92.
Bouchard, L. H. and L. Emirkanian (1991) Se-
mantic Interpretation in the Grammar Devel
opment Environment. Working Paper, GIREIL,
UQAM.

=

"The systems developed in France which have been
studied in [10] are all concerned with more than the
syntactic treatment of the language.

AcTs DE COLING-92, NANTES, 23-28 AoUT 1992

1181

[7] Carpenter, B. and C. Pollard (1991) “Inclusion,
Disjointness and Choice: The Logic of Linguis-
tic Classification.” Proceedings of the 29th An-
nual Meeting of the Association for Compula-
tronal Linguistics, Berkeley.

(8] Carroll, J, B. Boguraev, C. Grover and T. Briscoe

(1988) A Development Environment for Large

Natural Language Grammars. Tech. Report 127,

Computer Laboratory, University of Cambridge.

Dechter, R. and J. Pearl (1989} “Ixce Clustering

for Constraint Networks.” Artificial Intelligence,

38 (3), pp. 3563-366.

[10) Fay-Varnier, C., C. Fouqueré, G. Prigent et P.
Zweigenbaum (1991) Comparaison de systémes
d’analyse syniavique du frangais : Données el
Commentaires. Journées Nationales du PRC-CHM,
Toulouse.

[11] Gazdar, G., E. Klein, G. Pullom and L. Sag
(1985) Generalized Phrase Structure Grammar.
Cambridge: Harvard University Press.

[12] GIREIL (1990a) “Bréve description de la gram-
maire “pochoir” du frangais”. Rapport de re-
cherche. UQAM.

{13) GIREIL (1990b) “Grammaire minimale de I'ac-
cord”. Rapport de recherche. UQAM.

(14] GIREIL (1991) “La structure du syntagme ver-
bal en frangais”. Rapport de recherche. UQAM.

[15] Grover, C., 'T. Briscoe, J. Carroll and B. Bogu-
raev (1989) The Alvey Natural Language Tools
Grammar (Second Release). Tech. Report 162.
Computer Laboratory, University of Cambridge.

(16] Kaplan, R. and J. Bresnan (1982) “Lexical-func-

tional grammar: A formal system for grammat-

ical representation”. In The Mental Representa-
tion of Grammatical Relations. J. Bresnan, ed.

Cambridge: MIT Press.

Kay, M. (1982). “Parsing in Functional Unifica-

tion Grammar”. In Natural Language Parsing,

D. Dowty, L. Karttunen and A. Zwicky, eds.

Cambridge: Cambridge University Press.

[18] Le Barzic, J.P. (1991) Génération paraméirée
multi-formalisme. Rapport de DEA, LIPN.

{19] Milner, J.-C. (1978) De la syntaze & l'interpréta-
tion : Quantités, insulles, ezclamations. Paris:
Editions du Seuil.

[20] Milner, J.-C. (1989) Iniroduction & une science
du langage. Paris: Editions du Seuil.

[21] Shieber, S., G. van Noord, R.C. Moore, and
F.C.N. Pereira (1989). “A Semantic-Head-Driven
Generation Algorithm for Unification-Based For-
malisins”. Proceedings of the 27th Annual Meet-
ing of the Association for Computational Lin-
guistics, Vancouver, pp. 7-17.

[22) Tesniére, L. (1988) Eléments de syntaze struc-
turale. (Deuxiéme édition revue et corrigée. Cin-
quidgme impression). Paris: Klincksieck.

19

(17

Proc. or COLING-92, NANTES, AuG. 23-28, 1992

