DYNAMICS, DEPENDENCY GRAMMAR AND INCREMENTAL INTERPRETATION*

DAVID MILWARD
Centre for Cognitive Science, University of Edinburgh
2, Buccleuch Place, Edinburgh, B8 YLW, Scotland

davidm@cogsci.ed.ac.uk

Abstract

"The paper describes two equivalent graminatical for-
malisms. The first is a lexicalised version of depen-
dency grammar, and this can be used to provide
tree-structured analyses of sentences (though some-
what flatter than those usually provided by phrase
structure grarnmars). ‘The second is a new formal-
ism, ‘Dynamic Dependency Grammar’, which uses
axioms and deduction rules to provide analyses of
sentences in terms of transitions between states.

A reformulation of dependency grammar using
state transitions is of interest on several grounds.
Pirstly, it can be used to show that incremental in-
terpretation is possible without requiring notions of
overlapping, or flexible constituency (as in some ver-
sions of categorial grammar), and without destroy-
ing a transparent link between syntax and seman-
tics. Secondly, the reformulation provides a level of
description which can act as an intermediate stage
between the original grammar and a parsing algo-
rithm. Thirdly, it is possible to extend the reformu-
lated grammars with further axiomns and deduction
rules to provide coverage of syntactic constructions
such as coordination which are difficult to encode
lexically.

1 Dynamics

Dynamics can roughly be described as the study of
systems which consist of a set of states (cognitive,
physical c¢te.) and a family of binary trensition re-
lalionships between states, corresponding to actions
which can be performed to change from oue state to
another (van Benthem, 1990).

‘This paper introduces a notion of dynaemic gram-
mar, where each word in a sentence is treated as an
action which has the potential to produce a change in
state, and each state encodes (in some form) the syn-
tactic or semantic dependencies of the words which
have been absorbed so far. There is no requirement
for the number of states to be finite. (In fact, since
dependency grammar allows centre embedding of ar-
bitrary depth, the corresponding dynamic grammar
provides an unlimited number of states).

Dynamic grammars are specified using very sim-
ple logics, and a sentence is accepted as grammatical
if and only if there is some proof that it performs
a transition between some suitable initial and final

*This research was supported by an SERC research
fellowship.

ACTES DE COLING-92, NAN1tS, 23-28 AoUT 1992

1095

states. It s worth noting at this early stage that dy-
namic grammars are not lexicalised rehashes of Aug-
mented Transition Networks (Woods, 1973). ATNs
use & finite number of states combined with a re-
cursion mechanisin, and act essentially in the same
way as a top down parser. They are not particularly
suited to incremental interpretation.

To get an idea of how logics (instead of the more
usual algebras) can be used to specify dynamic sys-
tems in general, it is worth considering a reformula-
tion of the following finite state machine (FSM):

b
\ﬁ i@ C) [b
LI A . A
0 1 2

This accepts as grammatical any string which maps
from the initial state, 0, to the final state, 3 (i.c.
strings of the form: ab*ch). The FSM can be refor-
mulated using a logic where the notation,

State0 Str Statel

[c]
3

is used to state that the string, Str, performs a
transition from State0 to Statel. The axioms (or
atomic proofs) in the logic are provided by the tran-
sitions performed by the individual letters. Thus the
following are assumed,!
0% 1 19D 1 293 1% 2
‘I'he transitions given by the single letter strings are
put together using a deduction rule, Sequencing,?

So String, 5y Sy Stringy S
Sp String,e5tring, S,

which stales that, provided there is a proof that
String, takes us from some state, Sp, to a state
S; and a proof that String, takes us from S, to S,,
then there is a proof that the concatenation of the
strings takes us from Sy to S;. The rule puts to-
gether strings of letters if the final state reached by
the first string matches an initial state for the second
string. For example, the rule may be instantiated as:
1 “b > “e Y
T bhe 2

A string is grammatical according to the logic if and
only if it is possible to construct a proof of the state-
ment 0 Str 3 using the axioms and the Sequencing
Rule. For example, the string “abbcb” performs the
transitions,

L4y® js a string consisting of the single letter, a.

?Notation: capital letters will be used to denote variables
throughout this paper. 'a’ will be used to denote concatena-
tion. For example, if String, = “kI" and String, = “mn”,
then StringaeString, = “klm”.

Proc. or COLING-92, NANTES, Aug. 23-28, 1992

0&41bh145159048 3

and has the following proof, amongst others:

14”1 1”1
1“bb” 1 14”2
0 “a” 1 1bbe” 2
0 “abbc” 2 2 “b” 3
0 “abbeb” 3 -

Each leaf of the tree is an axiom, and the subproofs
are put together using instantiations of the Sequenc-
ing Rule.

2 Lexicalised Dependency Grammar

Traditional dependency grammar is not concerned
with constituent structure, but with links between
individual words. For example, an analysis of the
sentence John thought Mary showed Ben to Sue
might be represented as follows:

John thought Mary showed Ben to Sue

The word thought is the head of the whole sentence,
and it has two dependents, John and showed. showed
is the head of the embedded sentence, with three de-
pendents, Mary, Ben and to. A dependency graph is
said to respect adjacencyif no word is separated from
its head except by its own dependents, or by another
dependent of the same head and its dependents (i.e.
there are no crossed links). Adjacency is a reason-
ably standard restriction, and has been proposed as
a unijversal principle e.g. by Hudson (1988).

Given adjacency, it is possible to extract bracketed
strings (and hence a notion of constituent structure)
by grouping together each head with its dependents
(and the dependents of its dependents). For exam-
ple, the sentence above gets the bracketing:

[John thought [Mary showed Ben [to Sue]}]

A noun phrase can be thought of as a noun plus all
its dependents, a sentence as a verb plus all its de-
pendents.

In this paper we will assume adjacency, and, for
simplicity, that dependents are fixed in their order
relative to the head and to each other. Depen-
dency grammars adopting these assumptions were
formalised by Gaifman (Hays, 1964). Lexicalisation
is relatively trivial given this formalisation, and the
work on embedded dependency grammar within cat-
egorial grammar (Barry and Pickering, 1990).

Lexicalised Dependency Grammar (LDG) treats
each head as a function. For example, the head
thought is treated as a function with two arguments,
a noun phrase and a sentence. Constituents are
formed by combining functions with all their argu-
ments. The example above gets the following brack-
eting and tree structure:

ACTEs DE COLING-92, NANTES, 23-28 A0(T 1992

1096

[John thought [Mary showed Ben [to Suel]}

E A \\~\
T T
np R 5
|
x(s) L : “ -
npor np pp

Lnp)
x(np, pp) \
p

10
x(np)

The tree structure is particularly flat, with all ar-
guments of a function appearing at the same level
(this contrasts with standard phrase structure anal-
yses where the subject of showed would appear at a
different level from its objects).

Lexical categories are feature structures with three
main features, a base type (the type of the con-
stituent formed by combining the lexical item with
its arguments), a list of arguments which must ap-
pear to the left, and a list of arguments which must
appear to the right. The arguments at the top of the
lists must appear closest to the functor. For example,
showed has the lexical entry,

s
showed : | 1(np)
x(np, pp

and can combine with an np on its left and with an
np and then a pp on its right to form a sentence.

When left and right argument lists are empty, cat-
egories are said to be safurated, and may be written
X
1() | is identical to X.

()

A requirement inherited from dependency grammar
is for arguments to be saturated categories.®> LDGs
will be specified more formally in Section 4.

It is worth outlining the differences between the
categories in LDG and those in a directed categorial
grammar. Firstly, in LDG there is no specification
of whether arguments to the right or to the left of
the functor should be combined with first. Thus,

X
the category, | 1{Y)

x(Z)
(X/Z)\Y.* Secondly, arguments in LDG must be
saturated, so there can be no functions of functions.®

as their base type i.e.

, maps to both (X\'Y)/Z and

3In dependency grammar it is not possible to specify that
& head requires a dependent with only some, but not all of its
dependents.

4So called ‘Steedman’ notation.

3 An extended form of LDG which allows unsaturated argu-

Proc. o COLING-92, NANTES, AuG. 23-28, 1992

3 Dynamic Dependency Grammar

Lexicalised Dependency Grammar can be reformu-
lated as the dynamic grammar, Dynamic Depen-
dency Grammar (DDG). Each state in DDG encodes
the syntactic context, and is labelled by the type of
the string absorbed so far. l'or example, a possible
set of transitions for the string of words “Sue saw
Ben” is as follows:

$
§ 5 1() § B
w | s R ET) s
x{s) (| ap |) x{np)

r{)

The statc after absorbing “Sue saw” is of type sen-
tence missing a noun phrase, and that after absorb-
ing “Sue saw Ben” is of type sentence.

States are labelled by complex categories which arc
similar to the lexical categories of LDG, but without
the restriction that arguments must be saturated (for
example, the state after absorbing “Sue” has an un-
saturated argument on its right list). A string of
words, Str, is grammatical provided the following
statement can be proven:

s
1() Str s
(s}

The initial state is labelled with an identity type i.e.
a sentence missing a sentence. This can be thought
of as a context in which a sentence is expected, or as
a suitable type for a string of words of length zero.
The final state is just of type sentence.

DDG is specified using a logic consisting of a set of
axioms and a deduction rule. The logic is similar, but
more general, than that used in Axiomatic Grammar
(Milward, 1990).% The deduction rule is again called
Sequencing. The rule is identical in form to the Se-
quencing Rule used in the reformulation of the FSM,
though here it puts together strings of words rather
than strings of letters. The rule is as foliows,”

C, String, C,, C; Strin§ Cs
o String, eStnng, C,
and is restricted to non-empty strings.®

ments has been developed, and this also can be reformulated
as a dynamic grammar (Milward, 1992).

8 Axiomatic Grammar is a particular dynamic grarmar de-
signed for English, which takes relationships between states
as a primary to be justified solely by linguisti
data (rather than by an existing formalism such as dependency
grammar).

"Here ‘o' concatenates
“*John"e“sleeps” = “John sleeps”.

strings of words e.g.

8This restriction is not actually necessary as far as the
equivalence between LDGs and DDGs is concerned. However
its inclusion makes it trivial to show certain formal properties
of DD@Gs, such as termination of proofs.

ACTES DE COLING-92, NANTES, 23-28 A0UT 1992

1097

The set of axioms is infinite since we need to
consider transitions between an arbitrary number of
categories.” The set can be described using just two
axiom schemata, Prediction and Application. Pre-
diction is given below, but is best understood by
considering various instantiations.!?

§ §

1{} 1)
Y “W” Y

r{|1Lel’ [y B! rRe(| HX)o L/ [0 R
() r{)

X
where W: {11
i

Prediction is usually used when the category of the
word encountered does not match the category ex-
pected by the current state. Consider the following
instantiation:

5

s 1)
1{) “Sue” s where Sue:np
r{s) v{| np) {)

r()

The current state expects a sentence and encounters
a noun phrase with lexical entry Sue:np. The result-
ing state expects a sentence missing a noun phrase
on its left e.g. a verb phrase.

Application gets its name from its similarity to
function application (though it actually plays the
role of both application and composition). The
schema is as follows:

s

1) §
X “W? g where W:| 1L
| 1L e R rRe R R
()

An example instantiation is when a noun phrase is
both expected and encountered e.g.

-

s
1¢) “Ben” s
| ¥(np)

where Ben:np

Given a word and a particular current state, the
only non-determinism in forming a resulting state is
due to lexical ambiguity or from a choice between us-
ing Prediction or Application (Prediction is possible
whenever Application is). Non-determinism is gen-

? An infinite number of distinguishable states is required to
deal with centre embedding.

0L L, R ﬂl;ld R’ are lists of categories. ‘e’ concatenates
lists e.g. {k1) ® {mn) = {(k,},m,n).

Proc. oF COLING-92, NaNTES, AUG. 23-28, 1992

erally kept low due to states being labelled by types
as opposed to explicit tree structures. This is easiest
to illustrate using a verb final language. Consider a
pseudo English where the strings, “Ben Sue saw” and
“Ben Sue sleeps believes” are acceptable sentences,
and have the following LDG analyses:

8 \
np np s

1{np, np)
x()
S
np \
(s, np)
x(}

np s

L(np)
x{}

Despite the differences in the LDG tree structures,
the initial fragment of each sentence, “Ben Sue”, can
be treated identically by the corresponding DDG.
The proof of the transition performed by the string
“Ben Sue” involves two applications of Prediction
put together using the Sequencing Rule. The transi-
tions are as follows:

s s
s 1 1
Ben Sue
1} — 8 —+ s
x{s) x{(1inp) () x{| (np, np) |}
x(} ()

The transitions for the two sentences diverge when
we consider the words saw and sleeps. In the former
case, Application is used, in the latter, Prediction
then Application.

Efficient parsing algorithms can be based upon
DDGs due to this relative lack of non-determinism in
choosing between states.!! The simplest algorithm
is merely to non-deterministically apply Prediction
and Application to the initial category. Derivations
of algorithms from more complex logics, and the use
of normalised proofs and equivalence classes of proofs
are described in Milward (1991).

4 LDGs — DDGs

An LDG can be specified more formally as follows:
1. A finite set of base types Tp, .. Ty (such as s,
np, and pp)
HDeterminism can also be increased by restricting the ax-
ioms according to the properties of a particular lexicon, For

example, there is no point predicting categories missing two
noun phrases to the left when parsing English.

ACTES DE COLING-92, NANTES, 23-28 AOUT 1992

1098

2. An infinite set of lexical categories of the form,
X
1L | where X is a base type, and L and R. are
rR
lists of base types. When L and R are empty, a
category is identical to its base type, X
3. A finite lexicon, L, which assigns lexical cate-
gories to words
4. A distinguished base type, To. A string is gram-
matical iff it has the category, To
5. A combination rule stating that,
X
ur,., Ty
r(Tig1,e Tigs)
and String; has category Ty, String; has cate-
gory T, ete.
then the string formed by concatenating

if W has category,

Strings, .. ,String;, “W”, Stringi41, .. ,Stringiy;
has category X

The corresponding DDG is as follows:

X
1. A set of categories of the form, | 17
rR
where X is a base type, and L and R are lists of
categories
2. Two axiom schemata, Application and Predic-
tion
3. The lexicon, L (as above)
4. One deduction rule, Sequencing
To
5. A distinguished pair of categories, | 1() y To
r(To)

where Ty is as above. A string, Str, Is grammat-
ical iff it is possible to prove:

To

1{} Str 7o

x(To)

A proof that any DDG is strongly equivalent to its
corresponding LDG is given by Milward (1992). The
proof is split into a soundness proof (that a DDG
accepts the same strings of words and assigns them
corresponding analyses'?), and a completeness proof
(that a DDG accepts whatever strings are accepted
by the corresponding LDG).

5 Incremental Interpretation

1t is possible to augment each state with a semantic
type and a semantic value. Adopting a ‘standard’ A-
calculus semantics (c.f. Dowty et al, 1981) we obtain

the following transitions for the string “Sue saw”:

12For this purpose, it is convenient to treat an analysis in a
DDG as the transitions performed by each word. Each anal-
ysis is a label for an equivalence class of proofs.

Proc. or COLING-92, NANTES, AUG. 23-28, 1992

s
5 S 10 $
g | s =10
r{s) (| L{np} |) r(np}
r(}
-1 (e—t)—1 e—1
AQ.Q AP.P(sue’) AY saw’(sue’)Y)

The semantic types can generally be extracted from
the syntactic types. The base types s and np map to
the semantic types { and e, standing for truth-value
and enlity respectively. Categories with arguments
map to corresponding functional types.

Provided a close mapping between syntactic and
sctnantic types is assumed, the addition of semantic
values to the axiom schemata is relatively trivial, as
is the addition of semantic values to the lexicon. For
example, the semantic value given to the verb saw is
AYAX.saw’(X,Y), which has type e—(e—1).

It is worth contrasting the approach taken here
with two other approaches to incremental interpre-
tation. The first is that of Pulman (1985). Pulman’s
approach separates syntactic and semantic analysis,
driving semantic combinations off the actions of a
parser for a phrase structure grammar. The ap-
proach was important in showing that hierarchical
syntactic analysis and word by word incremental in-
terpretation are not incompatible. The second ap-
proach is thal of Ades and Steedman (1982) who
incorporate composition rules directly into a catego-
rial grammar. This allows a certain amount of incre-
mental interpretation due to the possibility of form-
ing constituents for some initial substrings. How-
ever, the incorporation of composition into the gram-
mar itself does have some unwanted side effects when
mixed with a use of functions of functions. For examn-
ple, if the two types, N/N and N/N are composed to
give the type N/N, then this can be modified by an
adjectival modifier of type (N/N)/(N/N). Thus, the
phrase the very old green car can get the bracketing,
{the [very [old green]] car]. Although the Applica-
tion schema used in DDGs does compose functions
together, DDGs have identical strong generative ca-
pacity to the LDGs they are based upon (the cov-
crage of the grarmmars is identical, and the analyses
are in a one-to-one correspondence).!3

6 Applications

So far, Dynamic Dependency Grammars can be seen
solely as a way to provide incremental parsing and in-
terpretation for Lexicalised Dependency Grammars.
As such, they are not of particular linguistic signifi-
cance. However, it is possible to use DDGs as subsets
of more expressive dynamic grammars, where extra
axioms and deduction rules are used to provide cov-
erage of syntactic phenomena which are diflicult to

13This is also true for dynamic reformulations of extended
versions of LLDG which allow functions of functions.

Actes DE COLING-92, NANTES, 23-28 AoU1 1992

1099

encode lexically (e.g. coordination, topicalisation and
extraposition). For example, the following deduction
rule (again restricted to non-empty strings),

Cy, C, String, C,

«String, C,

Co Strin
o Otring e “an
provides an account of the syntax of non-constituent
coordination {Milward, 1991). The sentences John
gave Mary « book and Peler a paper and Sue sold
and Peter thinks Ben bought a painting are accepted
since “Mary a book” and “Peter a paper” perform
the same transitions between syntactic states, as do
“Sue sold” and “Peter thinks Ben bought”

The grammars described in this paper have been
implemented in Prolog. A dynamic grammar based
upon the extended version of I.DGs is being devel-
oped to provide incremental interpretation for the
natural language interface to a graphics package.

References

Ades, A. and Steedman, M. (1972) On the Order of
Words. Linguisiics and Philosephy 4, 517-558.

Aho, A. and Ullman, J. (1972) The Theory of Pars-
ing, Translation and Compiling, Volume I:Parsing.
Prentice-Hall Inc, New Jersey.

Barry, G. and Pickeriug, M. (1990) Dependency and
Constituency in Categorial Grammar, In Barry, G.
and Morrill, G. (eds), Studies in Categortal Gram-
mar. Centre for Cognitive Science, University of Id-
inburgh.

van Benthem, . (1990) General Dynamics. ITLI re-
port, Amsterdam (to appear in Theorctical Linguis-
tics).

Dowty, D.R., Wall, R.}'. and Peters, S. (1981) In-
troduction lo Moniague Semantics. D.Reidel, Dor-
drecht.

Hays, DD.G. (1964) Dependency Theory: A Formal-
ism and Some Observations. Language 40, 511-525.
Hudson, R. (1988) Coordination and Grammatical
Relations. Jouwrnal of Linguistics 24, 303-342.
Milward, D. (1990) Coordination in an Axiomatic
Grammar, In Coling-90, Helsinki, vol 3, 207-212.
Milward, 1. (1991) Axiomwatic Grammar, Non-
Constituent Coordination, and Increinental Interpre-
tation. PhD thesis, University of Cambridge.
Milward, 1. (1992) Dynamic Grammars. Technical
Report, Centre for Cognitive Science, University of
Edinburgh. In preparation.

Pulman, S. (1985) A Parser That Doesn’t. Iu 2nd
European ACL, Geneva.

Woods, W. (1973) An Experimental Parsing Sys-
tem for Transition Network Grammars. In Rustin,

R. (ed.), Natural Language Processing, Algorithmics
Press, New York.

Proc. or COLING-92, NANTES, Auc. 23-28, 1992

