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1. I n t r o d u c t i o n  

The B u d a p e s t  U n i f i c a t i o n  G r a m m a r  (BUG) 
system described in this paper  is a system for gener- 
ating natural  language parsers from feature-structure 
based grammat ica l  descriptions (graamnars).  In the 
current  version, source grammars  are limited to the 
context-free phrase s tructure g rammar  format.  BuG 
compiles source grmnmars  into au tomata ,  which it 
can then use for parsing input strings. 

BUG was developed at  the ftesearch Institute 
for Linguistics (Budapest)  and at  the Theoretical 
Linguistics Program,  Budapest  University (ELTE) 
with the suppor t  of O T K A  (National Funds for 
Research) of the Hungar ian Academy of Sciences. It 
was written in C and is portable across Unix*, DOS 
and VMS. 

BUG differs from other unification-based 
grammar-wri t ing  tools in two major  respects as 
well as in a number  of minor ways. One major  
difference is tha t  nu(~ uses f e a t u r e  g e o m e t r i e s .  
The feature geometry is a (recursive) definition 
of well-formed feature structures,  which must be 
specified in the source grammar .  The other major  
difference is tha t  BUG uses a built-in performance 
restriction, called tile s t r i n g  c o m p l e t i o n  l imi t  
(SCL). Using the str ing completion limit, we can 
limit the generative power of a context-free grammar  
to regular languages.  The paper focuses on these two 
innovations as well as a third feature of huG, which 
is the separation of the structural description 
(SD, conditions of application) from the structural 
change (SC, effect of application) in source rules. 

* Unix is a t rademark of AT&T. 

2. Feature Geometr ie s  

2.1. W h a t  A r e  F e a t u r e  G e o m e t r i e s ?  

Tile term f e a t u r e  g e o m e t r y  is taken from gen- 
erative phonology, where it was introduced by 
Clements (1985). A feature geometry determines 
what  feature s tructures  are allowed by specifying 
what  (complex or atomic) values each path  in a 
feature s t ructure  can have. In this way, a fea- 
ture geometry expresses certain kinds of f e a t u r e  
c o - o c c u r r e n c e  r e s t r i c t i o n s  (FCRs, Gazdar  et 
al., 1985), namely, those FCRs tha t  are local in 
the sense tha t  they can be formulated in terms of 
path continuation restrictions. For example, we can 
incorporate the FCI t  

[TENSE ~- PAST] z:~ [FINITE] 

in a geometry by making TENSE a sub-feature of only 
FINITE (and PAST a possible value of TENSE). On the 
otlmr hand,  we cannot  encode a global F C R  like 

[SUBJ DEF : +] -:~ [INDIR_OBJ NUMBER : PLURAL]. 

Also, we cannot  encode a global FCR such as 

[TENSE = PAST] ~ [AGREEMENT] 

unless we make TENSE a sub-feature of AGREEMENT 
alone. This is impor tan t  because allowing arbi t rary 
or global constraints  on wen-fornmd feature struc- 
tures leads to undecidable systems if coupled with 
structure sharing (Blackburn and Spaan, 1991). 

Our feature geometries, jus t  like the ones used ill 
phonology, specify whether or not the continuations 
of a given path  are pairwise incmnpatible. For 
example, the a t t r ibutes  FINITE and NON-FINITE can 
be made incompatible continuations of the a t t r ibute  
VERB_FORM. As a result, in any actual feature 
structure at most one edge can lead from a node that 
a path ending in VERB_FORM leads to. What this 
mechanism allows us to express are also local FCRs, 
e.g.~ 

~([VERB..FORM FINITE] A [VERB-FORM NON-FINITE]) 

in this case. 
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2 . 2 .  H o w  A r e  F e a t u r e  G e o m e t r i e s  
U s e d ?  

The main advantage of using feature geometries 
is that it makes the unification operation and 
the unifiabi[ity test more efficient. Traditional 
unification only fails if atomic values clash, whereas 
geometry-based unification will fail if incompatible 
continuations of a path are to be unified. As a 
matter of course, this means that  an extra check is 
performed each time new continuations are created 
during unification, lfowever, if the feature geometry 
is reasonably structured (i.e., not flat), then the cost 
of this extra checking is significantly less than the 
gain from early unification failure. In the typical 
case, the growth of the comparative advantage of 
early unification failurc over traditional unification 
(i.e., the proportion of all possibilities of failure to 
the number of leaves) should grow faster than its 
comparative disadvantage, i.e., the number of checks. 

If feature geometries are used as intended, then 
the major distinctions between linguistic objects 
are made by attributes closer to the root of a 
feature structure, and minor features are in deeply 
subordinate positions. For example, the information 
that  something is a verb will be superordinate to the 
information that  it has a second person form. As a 
consequence, the most frequent reason for the failure 
of unification (which is a conflict between major class 
features) will be detected earliest. Typically, the 
opposite is true in traditional unification, i.e., only 
conflicts between terminal nodes of feature structures 
are detected. In such systems, major category clashes 
are found early enough only if the feature structures 
are very fiat, which is undesirable for other reasons. 

Moreover, the use of feature geometries assists 
the grammar-writer to develop her/his grammar in 
two ways. First, requiring the grammar-writer to 
specify a feature geometry and write rules accordingly 
forces her/him to take the semantics of features and 
feature structures more seriously than is typically 
the case. Second, since feature geometries define the 
set of possible feature structures, they also determine 
which paths can share values. The checking of 
structure sharing is not necessary during run-time 
unification, because it can be succeaqfufiy dealt with 
at compile-time, thus providing additional error 
checking on the grammar. These two by-products 
of using feature geometries should lead to better 
grammar-writing. 

3.  T h e  S t r i n g  C o m p l e t i o n  L i m i t  

3 .1 .  W h a t  I s  t h e  S C L ?  

The s t r i ng  c o m p l e t i o n  l imi t ,  which is a small 
integer parameter of BUG's compiler, expresses a 
performance limitation that  BUG incorporates into 
the automaton it produces. Imposing constraints on 
the complexity of derivation trees has a long tradition 
in linguistics. Most proposals of this sort, such as 
Yngve's (1961), which lirrfits the depth of possible 
derivation trees, or limitations on the direction of 
their branching (e.g., Yngve, 1960) are either too 
weak or too strong on their own. However, there is a 
suggestion that  we find broad enough in its coverage, 
and yet conceptually simple. This is Kornai's (1984) 
hypothesis, in terms of which any string that can 
he the beginning of a grammatical string can be 
completed with k or less terminal symbols, where 
k (i.e., the SCL) is a small integer. For example, 
consider: 

(1) This  is1 the2 dog3 that4 chaseds  thes  eat7 thats 

ate9 theto r a t l l  tha t l2  s to le l3  the l4  eheese l5  
thaq6  

In this string, each portion up to a numbered 
position can be completed with at most one word, 
as the following table illustrates (position numbers 
are on the left, completions in the middle, and the 
minimum completion length K on the right): 

(1') 1 ,5 ,9 ,  13: . . .  John .  K =  1 

2, 6, 10, 14: . . .  cheese .  K = 1 

3, 7, 11, 15: . . . .  K = 0 
4, 8, 12, 16: . . .  s t inks .  K = 1 

On the other hand, the following string, although its 
portions up to each number are grammatical, will be 
excluded if the SOL is smaller than 5: 

(2) The 1 cheese2 thats  the4 rats that6 the7 eats 

thats t h o o  dogtt ehasedl~  a te is  stolet4 

The corresponding table is: 

(2 t) 1: . .  cheese  s t inks .  

2: . .  ro~s. 

3: . .  ro ts  s t inks .  

4: . .  rat  ate  rots.  

5: . .  ate rots. 

6: . .  s t i nks  ate rots .  

7: . . .  cat chased  ate s t inks .  

8: . . .  chas ed  ate s t inks .  

9: . . .  s t i nks  ate s to le  rots.  

10: . . .  dog chased  ate  s to le  s t inks .  

11: . . .  chas ed  ale  s to le  s t inks .  

12: . . .  a te  s tole  s t inks .  

13: . . .  s to le  s t inks .  

14: . . .  s t inks .  

(This seems to show that the SCL in terms 
must be 3 or 4.) 

K---2  
K = I  
K = 2  
K---3 
K = 2  
K = 3  
K = 4  
K = 3  
K = 4  
K---5  
K ~ 4  
K = 3  
K = 2  
K = I  

of words 
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As (2) shows, the SCL imposes a limit on the 
depth of center-embedding; but,  as can be seen 
from (1), it does not constrain the depth of fight- 
branching structures .  Left branching, however, is 
limited, though the effect of this limitation is less 
pronounced than in the case of center-embedding. 
The example with the highest K tha t  we could find 
in English can be accommodated if k is 3: 

(3) Aflerl  as verya 

(3') 1: . . .  walkiug~ sleep! K : 2 

2: . . .  walk, sleep! K = "2 

3: . . .  long walk, sleep! K : 3 

Although the current  implementation of BUG 
uses the context-free source grammar  format,  in 
which so-called cross-serial dependencies cannot be 
expressed, it s worth noting that  the SCL also puts 
an upper bound on tile length of these: 

(4) John, t Even  Carlos3 and4 Peters married 

respectivelys Sally, T Paul, s Susan9 andla 

lnez. 

(4') 1: . . .  sleeps. K = 1 
2,3: . . .  and Peter sleep. K = 3  
4: ._ Peter sleep. K = 2 

5: .. sleep. K : 1 

6: .. Sally, Paul, Susan and Iaez. K = 5 

7: .. Paul, Susan and lnez. K = 4 
8: .. Susan and lnez. K = 3 

9: .. and Inez. K = 2 

10: .. lncz. K = 1 

The SCL has two additional consequences (and 
maybe more). First, it excludes certain lexical 
categories, such as modifiers of adjective modifiers 
(if k < 4). If, say, shlumma were a word of that  
category, then we would need at least 4 words to 
complete Af ter  a sh lumma. . .  (cf. (3) above). Second, 
all upper limit is placed on the uumber of obligatory 
daughters of non-terminal nodes. 

3 , 2 .  H o w  I s  t h e  S C L  U s e d ?  

The way in which we can produce the biggest regular 
subset of a context-free language that  respects the 
SCL can be sketched as follows. First we produce 
an RTN (recursive transition network) equivalent to 
the source grammar ,  call it A. (An RTN is like a 
finite-state automaton,  but  its input symbols may 
be RTNs or terminal symbols.) Then we assign a 
minimum completion length (K in the tables above) 
to each node (accepting states will bare  K = 0). If B 
is an RTN accepted by the transition from state st 
to state s2 in A, then we try to replace the transition 
with B itself, so tha t  initial s tate  of B becomes st 
and its accepting states become s~. (This can be 
done with s t andard  techniques.) Since the K-value 
of s2 may be bigger than 0, assigning K values to 
some states of B may be impossible (if those values 

would exceed k). We leave out those states (and 
whatever additional states and transitions depend on 
them). 

In those cases when the above procedure would 
not terminate (i.e., when s2 is an accepting s tate  
in A and B is the same RTN as some other RTN 
C the acceptance of which takes the machine to 
s~, we eliminate the transition corresponding t o  B, 
and collapse sl  with the initial state of C (with the 
s tandard technique). So the procedure will terminate 
in all cases. In the current  implementation, we use 
the actual finite-state network so produced, but  (as 
our reviewer notes) we could as well use the RTN 
directly, and compute whether the SCL is respected 
as we go. We have not made experiments with 
this latter solution, so we cannot compare it with 
our current  solution in terms of space and time 
requirements. 

4 .  S D  V e r s u s  S C  

One of tile most impor tan t  aznong BUG's features 
is the separation of s t r u c t u r a l  d e s c r i p t i o n s  from 
s t r u c t u r a l  c h a n g e s  in source rules. Although the 
unificationalists have been asserting that  this old- 
fashioned distinction should be abandoned (arguing 
tha t  pieces of information coming from different 
sources have the same status),  many voices have 
been raised to show tha t  the origins of a piece of 
information may mat ter  (see Zaenen and Kart tunen,  
1984; Pullum and Zwicky, 1986; Ingria. 1990). 

The structural  description in a BUG rule specifies 
the conditions under  which the rule cml be applied 
in the parsing process. Tha t  is, when parsing, it 
refers to the r ight-hand side of the rewrite rule only, 
and it is never used to update  any feature structure.  
The structural  change, on the other hand, describes 
wbat  action to take when the structural description 
is satisfied, i.e., how to build a new feature s t ructure  
(when parsing, this corresponds to the left-hand 
side of tile context-free rule). Tbus, s t ructural  
descriptions are used to check unifiability, whereas 
the application of s t ructural  changes actually builds 

structure. 

In usual unification-based grammars,  the con- 
ditions of applying a rule are satisfied if some 
unification succeeds. In BUG, what determines 
whether a rule should apply is unifiability. Unifiabil- 
ity differs from unification in a crucial respect, 
which is illustrated by the following example: 

A: [1 
B: [NUMBER = SINGULAR] 
C: [NUMBER = PLURAL] 

A is unifiable with B and A is unifiable with C, 
even though B is not unifiable with C. Therefore, 
if a s t ructural  description requires unifiability of A 
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with both B and C, it will be satisfied. IIowever, 
if we were to formulate tiffs requirement in terms of 
unification, as is currently done in unification-based 
grammars ,  then A, B and C will not satisfy this 
requirement.  A similar example from 'real life' is 
the requirement that  the auxiliary verb should agree 
with each subject  of a co-ordination: 

(5) *Is/*Are Jean leaving and the others arrzving? 

In this example, SUMNER of is is not unifiable with 
tha t  of lhe ethers, and NUMBER of arc is not unifiable 
with that  of Jean, so traditional unification-based 
g rammars  and BUG would yield the same (correct) 
result. Now, consider: 

(6) Will Jean leave and the others arrive? 

This sentence is in because will's NUMBER is unifiable 
with both tha t  of Jean and that  of the others, 
although the unification of all three NUMBEII. values 
still leads to failure. So s o u  will behave correctly in 
this case. 

5 ,  G e n e r a t i v e  C a p a c i t y  

Somewhat  misleadingly, we have avoided so far mak- 
hag a distinction between the context-free grammar 
format  and context-free grammars .  In actual fact, 
it is well-known tha t  a unification-based grammar 
in the context-free format is not  context-free unless 
the number of possible feature structures arising in 
all its possible derivations is finite. By the same 
token, the a u t o m a t a  compiled by BU~ would not 
recognize a regular language if we did not constrain 
the possible feature structures that  they give rise 
to. The separat ion of SDs from SCS allows ~IUG 
to avoid this problem. Since SDs are only used in 
unifiability tests and are never modified at run-time, 
they can be constrained in such a way that  they 
yield a finite set of equivalence classes of feature 
structures.  Moreover, carrying out SCs only affects 
the s tructures  being built and cannot interfere with 
the t ra jectory  through the automaton.  Incidentally, 
this means tha t  unification (but not unifiability 
tests!) may never fail. For tha t  purpose, we use an 
associative, idempotent  and commutative version of 
'default unification' (see Bouma, 1990), which we 
are not going into here. The automaton produced 
by BU~ is, thus, actually finite-state. We consider 
this an extremely important  benefit, if not  the most 
important  one, of separating SDs from SCs in a 
g rammar-wr i t ing  system. 

R e f e r e n c e s  

Blackburn, Patrick and Edith Spaan. 1991. 'Some 
complexity results for Attr ibute Value Struc- 
tures' .  ' ib  appear  in: Proceedings of the Eightb 
Amsterdam Colloquium. 

Bouma, Gosse. 1990. 'Defaults in unification gram- 
mar ' ,  In: Proceedings of the 28th Annum Meet- 
ing of the ACL, ACL, Pittsburgh. 

Clements, George N. 1985. 'The geometry of phono- 
logical features' .  Phonology Yearbook 2, 223- 
250. 

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum and 
Ivan Sag. 1985. Generalized Phrase Structure 
Grammar .  Harvard University Press, Cambridge 
MA. 

Ingria, Robert  J.P. 1999. 'The limits of unification'. 
In: 28th Annum Meeting of ACL: Proceedings of 
the Conference. ACL, Morristown, NJ. Pp. 194- 
204. 

Kornai, A n d r e .  1984. 'Natural  Languages and the 
Chomsky Hierarchy' .  In: Proceedings of the 
ACL Second European Chapter Conference. 
ACL, Geneva. Pp. 1-7. 

Pullum, Geoffrey K., mad Arnold M. Zwicky. 1986. 
'Phonological resolution of syntactic feature 
conflict'. Language 62, 751-773. 

Zaenen, Annie and Lauri Kart tunen.  1984. 'Morpho- 
logical non-distinctness and co-ordination'.  In: 
ESCOL 84, pp. 309-320. 

Yngve, Victor II. 1961. 'The depth hypothesis' .  
Language 61, 283-305. 

Yngve, Victor It. 1960. 'A model and an hypothesis 
for language structure ' .  Proceedings of the 
American PhilosophicM Society 104, 444 466. 

ACTES DE COLING-92, NANTES. 23-28 AOt3"r 1992 9 4 8 PROC. OF COLING-92. NANTES. AUG. 23-28, 1992 



A p p e n d i x :  E x a m p l e  B U G  source  files 
and  run 

;c,eometry for simple categorial grammar 

; Major features: category and semantics, 

• both of them may be present 

• at the same time 

< > = {cat sem} 
; Category is simple or complex 

; (but not both): 

<cat> = [simple complex] 

; Simple category is np, s or n: 

< c a t  simple> = Lap s n] 

; A complex category consists of an input, 

• a result, and a slash: 

<cat complex> = {inp res slash) 

; The input must be a simple category here: 

<cat complex inp> = <sat simple> 

; The result may be any category: 

<cat complex res> = <cat> 

; The slash is either forward or backward: 

<cat complex slash> = [forw back] 

; SemaJ1tics is analogous to category: 

<sem> = [sim cam] 

; (no constraint on simple values) 

<sere cam> = {fun arg) 
<sem cam fu~> = <sem> 

<sem cam art> = <sem> 

;End of geometry 
; ................................ 

;Start category: 

; Name of start category: 

Sentence 

; SD: 

; it has to be o5 category s: 

<Sentence cat simple s> 

; SC:  

; only the semantics is kept: 

<sem> = <Sentence sem> 

;End o5 start category 
; ................................ 

;Rules: 

; The name o5 forward application rule: 

"Forward application" 

; Production schema: 

RES -~> FUN ARC, 

; SD: 

; FUN must be a complex category 
; with forward slash: 

<FUN cat complex slash forw> 

; ARC, must have a simple category: 

<ARG cat simple> 

; FUN's input must b e  ARG's category: 

<FUN cat complex inp> == <ARG cat simple> 

; SC:  

; RES's c a t e g o r y  is FUM's result: 

<cat> = <FUN c a t  complex res> 
; RES's semantics is as expected: 

<sam cola f u n >  = <FUN sam> 

<s am cam a r g > =  <ARC, s am>  
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Backward application is very similar: 

"Backward application" 

RES --> ARC, FUN 

<FUN cat complex slash back> 

<ARC, cat simple> 

<FUN cat complex inp> == <ARC, cat simple> 

<cat> = <FUN cat complex ~es> 

<sem cam fun> = <FUN sem> 

<sem cam arg>= <ARG sem> 

;End of rules 
................................ 

;Sample lexical items: 

• '-' indicates the beginning of a lexicon: 

"Joe" ; np 'JOE' 

<cat simple up> 

<sere sire JOE> 

"hit" ; (s\np)/np 'HIT' 

; Note how parentheses can be used 

• for abbreviation: 

<cat complex> ( 

<inp np> 

<res complex> 

<lap up> 

<res simple s> 

<slash back> 
) 

<slash ~oru> 
) 

<sere sire HIT> 

"the" ; np/n 'THE' 

<cat complex> ( 

<inp n> 
<res simple up> 

<slash foru> 
) 

<sere sire THE> 

"ball" ; n 'BALL' 

<cat simple n> 

<sere sim BALL> 

;End of lexical items 

#Example run: 

Y, bug -i cat cat 

(Re-)compiling cat.gs --> c a t . g o .  

( R e - ) c o m p i l i n g  l e x i c o n  c a t . l s  - - >  c a t . l o .  

J o e  

h i t  

t h e  

b a l l  

Loading lexicon cat.lo. 

==> Joe hit the ball. 

sem cam art sim JDE 

fun cam fun sire HIT 

art cam fun sire THE 

a r t  sire BALL 
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