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Abstract

We use the more abstract term "relational morphology”
in place of the usual “two-level morphology” in order to
emphasize an aspect of Koskenniemi's work which has
been overlooked in favor of implementation issues using
the finite state paradigm, namely, that a mathematical
relation can be specified between the lexical and surface
levels of a language. Relations, whether finite state or
not, can be computed using any of several paradigms,
and we present a logical reading of a notation for
relational morphological rules (similar to that of
Koskenniemi's) which can in fact be used to
automatically generatc Prolog program clausces. Like the
finite statc implementations, the relation can be
computed in either direction, cither from the surface to
the lexical level, or vice versa. At the very least, this
provides a morphological complement to logic grammars
which deal mainly with syntax and semantics, in a
programming environment which is more user-friendly
than the finite state programming paradigm. The
morphological rules often compile simply into
unification of the arguments in the generated
morphology predicate followed by a recursive call of the
said predicate. Further speed can be obtained when a
Prolog compiler, rather than an interpreter, is used for
execcution.

Introduction. Kimmo Koskennicmi's so called "two-
level model” of computational morphology (1983) in
which phonological rules are implemented as finite state
transducers has been the subject of a great deal of
attention, The two-level model is based partly on earlier
work of Johnson (1972), who considered that a set of
"simultaneous” phonological rules could be represented by
such a transducer, and of Kaplan and Kay (1983) who
thought that ordered generative rules could be implemented
as a cascading sequence of such transducers. Koskennicmi
in fact implemented the phonological rules by a set of
finite state tranducers running in parallel, rather than by a
single large finite statc machine into which many
cascading machines could be combined. Subsequent to
Koskenniemi's original work, there was a LISP-based
implementation called KIMMO (Kartunnen 1983), and
two-level descriptions of English, Rumanian, French and
Japanese (Kartunnen and Wittenburg, Khan, Lun, Sasaki
Alam 1983). A later LISP based implementation by
Dalrymple et al (1987) called DKIMMO/TWOL helped
the user by converting two-level rules into finite state
transducers: in earlicr implementations, and in the recent
PC-KIMMO system (Antworth 1990), it was the user's
task 1o generate the machines from two-level descriptions.

However one very important contribution of Koskenniemi
to morphology, namely the notion that there is a relation
between the surface and lexical "levels”, has been
somewhat overlooked by implementation issues having to
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do with the conversion of two-level rules into finite state
automata in the various KIMMO systems. The two-level
rules according to this notion, unlike the rules of
generative morphology which transform representations
from one level to representations in the other, express a
correspondence between lexical and surface levels.
Furthermore since no directionality is implicd in the
definition of a relation, unlike generative rules, the same
set of two-level rules applies both in going from surface
to lexical levels and vice versa. Rather than being
procedural rules, they are declarative. Consequently, any
correct implementation of the two-level rules is a
relational program which can be used either analytically or
generatively. We will henceforth, in order to emphasize
the fact that a relation is being defined by them, refer to
relational morphology rules rather than to the
mathematically neutral term "two-level rules”.

Despite the recognition that relational morphology rules
are declarative, the main emphasis in using them has been
obscured by the original finite statc implementation
technique. Recently, Bear (1986) has interpreted such rules
directly, using Prolog as an implementation language.
This, although an improvement on finite state
implementations from the point of view of debugging and
clarity, still misses an important aspect of relational
morphology rules as a declarative notation, namely that if
relational morphology rules define a relation between
surface and lexical levels, then that relation can be
specified and implemented using any of several different
relational programming paradigms. In this paper, we will
show that logic programming, which can be viewed as a
relational programming paradigm, can be used to give a
declarative reading to morphological rules. Further,
because of the execution model for logic programs,
embodiced in various logic programming languages such as
Prolog, the declarative reading also has a convenient
procedural reading. That is, each relational morphological
rule may be thought of as corresponding to or generating a
logic program clause. The entirc set of logic program
clauses generated from the relational morphological rules,
coupled with some utility predicates, then constitutes a
morphological analyser which can either be used as a stand
alone program or which can be coupled as a module to
other linguistic tools to build a natural language
processing system. Since the rules have been transformed
into logic program clauses, they gain in speed of
exccution over Bear's interpretive method, and further
speed can be gained by compiling these clauses using
existing Prolog compilers. At the very least, this provides
a morphological complement to logic grammars
(Abramson and Dahl 1989) which deal mainly with syntax
and semantics, in a programming environment which we
believe is more user-friendly than the finite state
programming paradigm,

It may be argued that this is a step backwards from the
linear efficiency of finite state processing. However, when
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discussing “efficiency” it is very important to be very
precise as to where the efficiency lics and what it consists
of. Finitc state processing is lincar in the sense that a
properly implemented finite statc machine will be able to
decide whether a string of length n is acceptable or not in
a time which is O(n), ie, for large enough n, a lincar
multiple of n. For small values of n, depending on how
much bookkeeping has to be done, “finite state
algorithms" may perform worse than algorithms which are
formally O(n2) or higher. Any processing in addition to
recognition may involve time factors which are more than
lincar, This entirely leaves aside the question of the user-
friendliness of the finitc state computing paradigm, a
question of how "efficient” in human terms it is to use
finite state methods. Anyone who has tried o implement
finite statc automaia of substantial size directly (as in
Koskenniemi's original implementation, the first KIMMO
systems, and KIMMO-PC) will have realised that
programming finite statc machines is distastefully akin to
dircctly programming Turing machines. A substantial
amount of software is necessary in order to provide #
development, debugging and maintenance environment for
easy use of the finite statc computing paradigm. There
also remains the theoretical question as to the adequacy of
finite statc morphological descriptions for all, or even
most, human languages. However, this is a topic we shatl
not venture into in this paper.

In our method, a relatively small Prolog program
generates logic programming clauses from relational
morphology rules. The gencrated clauses (at least in the
experiments so far) are readable and it is casy to correlate
the generated clause and the original morphological rule,
thus promoting debugging. The standard debugging tools
of Prolog systems (at the very least, sophisticated tracing
facilitics) secm sufficient to deal with rule debugging, and
the readability of the gencrated clauses should help in the
maintenance and transference of morphological programs.
Thus, from the software engincering point of view, logic
programming is a more sophisticated, higher-level
programming paradigm than finite statc methods. Also,
should finite statc descriptions in the end prove inadequate,
or even inconvenient, for all of morphology, logic
programming provides expressive power for reasonable
cxtension of the notation of relational morphology rules.
The current availability of Prolog compilers, even for
small machines, provides another increment of speedy
execution of the gencrated programs. Many of the
morphological rules produce logic progrum clauses in
which checking of the lexical and surface clements and
contexts reduce to wnification followed by a recursive call
of thec morphology predicate. Compiled Prolog abstract
machine code for such clauses is usually very compact.
Prolog compiler indexing mechanisms often make it
possible to access the correct clanse to be applied in
constant time.

Notational Aspects. Our tableau notation for
relational morphology rules is as follows:

LexLeft <= Lex => LexRight <>
SurfaccLeft <= Surface => SurfaceRight

which expresses the relation between a lexical and a
surface unit (Lex and Surface, respectively), provided that
the left and right conicxts at both the lexical and surface
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levels (LexLeft, LexRight,
SurfaceRight) are satisfied.

SurfaceLeft, and

Another kind of relational morphology rule which is
allowed is:

LexLeft => Lex <= LexRight<:>
SurfaceLeft => Surface <= SurfaccRight.

which expresses a relationship between Lex and Surface
providing that the left and right contexts at the lexical
and surface levels are different from those specified by
LexLeft, LexRight, SurfaceLeft, and SurfaceRight. This
means that either LexLeft or LexRight is not satisfied,
and also that either SurfaceLeft or SurfaceRight is not
satisfied.

More comipact notation is also accepted, for example:

LexLeft:SurfaceLeft
<=Lex:Surface=>
LexRight:SurfaceRight.

LexIeft:Surfaceleft
=>Lex:Surface<=
LexRight:SurfaccRight.

In the case where a pair of lexical and surface contexts are
identical, or if the lexical and surface clements arc
identical, they need not be repeated. Such compressed
rules as the following are also allowed:

Left <= Element => Right.
Left => Element <= Right.

Sets of symbols may be specified: set(vowel,[a,e,i,0,u]).
Lexical entries may be specified as follows:

lexicon:: {cat=noun,root= craps}.
Iexicon:: {cat=noun,root= piano}.

This feature notation is that used in the author's Definite
Feature Grammars (Abramson 1991).

Logical reading of relational morphology
rules. Corresponding to a set of relational morphology
rules, a binary predicate morphology/2 specifies the
relation between a lexical and a surface stream of
characters:

morphology(LexStream,SurfaceStream).

In order to specify the logic program clause which
corresponds to a relational morphology rule, we have to
manipulate the left and right lexical and surface contexts.
We can find the right contexts within LexStream and
SurfaceStream, but we have to provide a specification of
the left contexts, and we do this by defining the above
binary predicate morphology/2 in terms of a quaternary
predicate morphology/4:

morphology(LexStream,SurfaceStream,
LeftLexStream, LeftSurfaceStream).
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LeftLexStream and LeftSurfaceStreatu are initially ewpty
and are represented as reverse order lists of the left
contexts which have already been seen. The top level
definition of morphology/2 is:

morphology(LexStream,SurfaceStream) :-
morphology(LexStream,SurfaceSteeany,|[,[]).

The fundamental logic program clause corresponding to a
relational morphology rule such as

LexLeft <= Lex => LexRight<:>
SurfaceLeft <= Surface => SurfaccRight.

is

morphology(LexStream, SurfaceStream,
LeftLexStream,LeftiSurfaceStream) :-

LexStream = [L11LexRest],

SurfaceStream = [S1ISurfaceRest],

lexeme(Lex,1.1), surface(Surface,S1),

lex_context(LexLeft,LeftlexStream, LexRight, LexRest),

surface_context(Surfaceleft,LeftSurfaceStcam,
SurfaceRight,SurfaceRest),

NewLeftLexStream = [L1LeftLexStream),

NewLeftSurfaceStream = [S1ileftSurfaceStream},

morphology(LexRest,SurfaccRest,
NewLeftLexStream, NewLeftSurfaceSircam).

Here, LexStream and SurfaceStrcam are analysed as
consisting of the first characters L1 aind S1, and the
remaining streams, LexRest and SurfaccRest. It is
verified that L1 is the lexeme specificd by Lex, and S1
the surface character specificd by Surface. (Lex, Surface,
LexLeft, LexRight, Surfacelcft, and SurfaceRiglit are as
given in the morphology rule.) Coutexts are checked by
the subgoals iex_context and surface_context. New left
context streams are created by prefacing the old left
context streams with L1 and S1 (note again that the left
context streamns are built up in reverse order). Finally,
the predicate morphology/4 is recursively called on the
remainder of the lexical and surface streams, and with the
new left context streams.

Although the logical reading of this appears to involve
many subgoals, in fact for many relational morphology
rules, the subgoals arc compiled away into simple
unifications. See the Appendix which contains a set of
relational morphology rules dealing with simple English
plural forms and their corresponding logic program
clauses. Space does not permit us to comment on the
cxample, or how the compiler works, but the interested
reader may contact the author. Further papers will deai
with these topics.

Conclusions and future research. Wc have
provided here in the setting of logic programming a
morphological complement to the logic grammars which
mostly concentrate on syntax and semantics. However,
we have also provided a notation and a logical reading of
that notation which suggests further exploration as to
expressiveness and efficiency. If the context in a
relational rule is specified by a regular expression, the
appropriate context stream is parsed using a small logic
grammar which defines such expressions. It may
however make sense, in approaching non-concatenative
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aspects of morphology, to be able to specify lexical
contexts with more structure than regular expressions
allow. The implementation would be easy: in place of
the logic grammar used to parse regular cxpressions, a
more complicated logic grammar (context free, at least)
would be used for lexical context verification. It is also
thought that metarules (see Abramson 1988 or
Abramson and Dahl 1989) will be uscful in dealing with
nonconcatenative aspects of morphology. Since the
project is at an early stage, there is not yet an extensive
set of examples. We expect to develop a full set of rules
for English morphology, and a specification of Japanese
verb forms,
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Appendix. Elementary formation of plurals in
English.
©) X <= "+ = |8 W] <>

X <= ¢=> [8, W]

[6)) <= =[5, ] <>
7z <= e => [8,%].

2) y <=+ =>[5,#] <>
I <=e=>[s,#).

3 s <= "+ = 8, H] <>
s <=¢=>[s,'#].

()] o <= "+ =[5, W] <>
0 <=¢e=> [§,W].

& [c,h] <=+ => [s,#"] <>
[ch] <=c=>[s#]

) [s,h] o= 4" 2>
[s,#] <>
[s,h] <= e => [s,'W].

@] - <=y =
in(con) <= i=> _.

® not(set([[c,h],s.{5,h],x,2,y 1)) <= "+ 22> [8,4]
<I>
not(set(f[c,hels.cllshellxellz.clliel)
<= 0 => [5,#]

%Note negative coniext here.
) set([[c,hl,s.[8,h] x,2,y]) =2 ¢ <= [, %
set([[c,h],s,[8,h].x,2,1]) = ¢ <= {s,'#]

| <

%This is a default rale.
10)  _<=in(Xchar_¢)=> _ <>
_ <= in(X,char_g)=> .

set(char_¢,[a,b,c,d gl )k Lm,
0,0,1,4,58,L,u,v,W.X,y,2, %)
set(con,[b,c,d,f,¢,h,j kL mup,q.rs.tv,wxy, )

In addition to specifying characters such as s, «, ctc., we
can also define sequences of characters noted as lists
[s,h], not(character), not(sequence of characters). in(con)
means any member of the sct con, whereas in(X.char ¢)
is a member of the set char_e assigned to the variable X
{or unification in another part of the rule, '+ is used as &
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morpheiie boundary, 0 is used as the null symbol, ‘¥ is
used as an cidinarker, aud ' is used to specify a don't
care context. By providing a complete specification of
context we could remove any consideration of ordering of
the rules. However, it is convenient to depart slightly
from am order free formalism by allowing default rules
such as our lust one with don't care contexts which
specify what happens 10 symbols not dealt with in any
of the atorc-mentioned rules, o appear at thc end.

*) morphology(i], L1, A, B).

(©)

morphology([+, s, #lA], [e, s, #1B], [xIC], [xID]) :-
morphology([s, #IA], {s, #IB, [+, xIC], |e, xID]).

morphology([+, s, #1A], [e, s, #IB], [2IC], [2ID]) :-
morphology(ls, #1A], [s, #IB], [+, zIC], [e, zID]).

morphology(l+, s, #1A1, [¢, s, #1B], [yIC], [iID}) :-
morphology([s, #1A], s, #iB], [+, yiC], [e, iID]).

3
morphology(l-+, 5, #IA], [e, s, #1B], [SIC], [siD]) :-
morphology(fs, #IAT, [s, #1B), [+, sIC], [e, sID]).
@
worphology([+, s, #1A], [c, s, #IB], [0IC], {olD]) :-
morphology(j's, #1A1, [s, #1B], [+, olC], [, olD}).
(&)
morphology([+, s, #1A1, [e, s, #1B], [h, cIC], [h, cID]) :-
morphology(ls, #A], s, #1B},
[+, h, ¢IC], (e, h, clD]).
©)
morphology(l+, s, #IA], [e, s, #1B, [h, sIC], [h, siD]) :-
morphology{{s, #1A], [s, #1B},
[+, b, sIC], [e, h, siDY).
o
morphology(ly, HAJ, [iB], C, [DIE)) -
con(D)morphology([+Al, B, [yIC], [i, DIE]).
@
morphology [+, s, #IA], {s, #1B], C, D) :-
not substrings(C, {[h, ¢l, s, [h, 5], x, 7z, y]),
not substrings(D, [[e, 1, ¢l, [e, s, [¢, h, s], [e, x|,
[e, 7}, le, i1D),
rsorphology([s, #IA], [s, #I1B], [+IC], D).
®
morphology([e, A, BICT, [e, D, Eli¥, G, 11) :-
not (substrings(G, fo, [h, cl, s, [h, 8, x, z, y]),
match([s, #], [A, B])),
uot (substrings(H, [o, [k, cl, s, [h, s], x, z, i),
match([s, #], (D, E)),
mophotogy([A, BIC, [D, EIE], [¢lG1, {efH]).
)
morphology([AIB], [AIC], D, E) :-
char_c(A),
morphology(B, C, [AID], [AIE]).

Clause (*) is generated o terminate morphological
processing when both the lexical and surface streams are
cpty. In this case, the left contexts are ignored.

Clauses 0-6 corresponding to rules 0-6 follow the saine
pattern in which lexical and surface symbols and contexts
are specified within the streams and are checked by
unification, tollowed by a recursive call to the
morphology/4 predicate on ihe remainder of the lexical
and surtace stecams and with new left context streams.
Such clauses involving unilication of the head and a
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body which is only a recursive call of the same predicate
arc efficicntly handled by Prolog compilers. Clause 7 is
similar cxcept that it also involves a check to sce that
the first character in the left surface context is a
consonant.

Set definitions such as:
set(con,[b,c,d.f,g.hjk.Lmnp,qrstvwxyzl).

generate unit clauses: con(b)., con(c},, ..., con(z).

In clause 7, if D in con(D) is instantiated (as it is since
the D represents a left context which has already been
seen), code gencrated for this by Prolog compilers
amounts to somcthing like an indexed table lookup
which takes place in constant time. Similar remarks
apply to clause 10 where it is checked that A is a
member of the set char_e.

Clause 8 involves a combination of a unification check
for the right context, and a check that the left context
does not consist of any of the specified strings. Here, in
order for the morphology clauses to work in both the
analytical and generating directions, the negation must be
logically safe notation, i.e., the arguments to the
negation must be grounded. Logically safe negation
involves the use of delaying evaluation of the negation
until all arguments have been grounded.

Clause 9 which involves a negative context, makes sure,
using safe negation, that either the right context is not
{s,'#] or that the left context does not match any of the
substrings in the specified set.

Sample execution:
7- morphology(P,cries).

Root =cry %nonstandard plural formation
{cat=noun, %original lexicon cntry
root=cry}
Suffix = s
{cat=noun, Ymodified feature
100t=Cry,
plural=yes}
P=cry+s; oanother solution?
fail. %on0.

7. morphology('fox+s',P).
P = foxes

?- morphology(‘piano+s',P).

P = pianoes; %one plural form for some nouns
%which end in "o"

P = pianos; %another plural form

fail. %no others

The same clauses for the predicates morphology/2 and
morphology/4 are used in solving goals in both
directions.
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