
A Logic Programming View of Relational Morphology

Harvey A b r a m s o n
Inst i tu te of Industr ia l Science, Un ive r s i ty o f T o k y o

Mina to -ku , R o p p o n g i 7-22-1, T o k y o 106, Japan
e-mai l : h a rvey@ godzi l la . i i s .u- tokyo.ac . jp

A b s t r a c t
We use the more abstract term "relational morphology"
in place of tile usual "two-level morphology" in order to
emphasize an aspect of Koskenniemi's work which has
been overlooked in favor of implementation issues using
the finite state paradigm, namely, that a mathematical
relation can be specified between the lexical and surface
levels of a language. Relations, whether finite state or
not, can be computed using any of several paradigms,
and we present a logical reading of a notation for
relational morphological rules (similar to that of
Koskenniemi's) which can in fact be used to
automatically generate Prolog program clauses. Like die
finite state implementations, the relation can be
computed in either direction, either from the surface to
the lexieal level, or vice versa. At rite very least, this
provides a morphological complement to logic grammars
which deal mainly with syntax and semantics, in a
programming environment which is more user-friendly
than the finite state programming paradigm. The
morphological rules often compile simply into
unification of the arguments in the generated
morphology predicate followed by a recursive call of the
said predicate. Further speed can be obtained when a
Prolog compiler, rather than an interpreter, is used for
execution.

In t roduct ion . Kimmo Koskenniemi's so called "two-
level model" of computational morphology (1983) in
which phonological rules are implemented as finite state
transducers has been the subject of a great deal of
attention. The two-level model is based partly on earlier
work of Johnson (1972), who considered that a set of
"simultaneous" phonological rules could be represented by
such a transducer, and of Kaplan and Kay (1983) who
thought that ordered generative rules could be implemented
as a cascading sequence of such transducers. Koskenniemi
in fact implemented the phonological rules by a set of
finite state tranducers running in parallel, rather than by a
single large finite state machine into which many
cascading machines could be combined. Subsequent to
Koskenniemi's original work, there was a LISP-based
implementation called KIMMO (Kartunnen 1983), and
two-level descriptions of English, Rumanian, French and
Japanese (Kartunnen and Wittenburg, Khan, Lun, Sasaki
Alam 1983). A later LISP based implementation by
Dalrymple et al (1987) called DKIMMO/TWOL helped
the user by converting two-level rules into finite state
transducers: in earlier implementations, and in the recent
PC-KIMMO system (Antworth 1990), it was the user's
task to generate the machine, s from two-level descriptions.

However one very important contribution of Koskeaniemi
to morphology, namely the notion that there is a relation
between the surface and lexical "levels", has been
somewhat overlooked by implementation issues having to

do with the couversion of two-level rules into fiuite state
automata in the various KIMMO systems. The two-level
rules according to this notion, unlike the rules of
generative morphology which transform representations
from one level to representations in the other, express a
correspondence between lexical and surface levels.
Furthermore since no directionality is implied ill the
definition of a relation, unlike geuerative rules, the same
set of two-level rules applies both in going from surface
to lexieal levels and vice versa. Rather than being
procethtral rules, they are declarative. Consequently, any
correct implementation of the two-level rules is a
relational program which can be used either analytically or
generatively. We will henceforth, in order to emphasize
the fact that a relation is being defined by them, refer to
relational morphology rules rather than to the
mathematically neutral term "two-level rules".

Despite the recognition that relational morphology rules
are declarative, the main emphasis in using them has been
obscured by the original finite state implementation
technique. Recently, Bear (1986) has interpreted such rules
directly, using Prolog as an implementation language.
This, although an improvement on finite state
implementations from the point of view of debugging and
clarity, still misses an important aspect of relational
morphology rules as a declarative notation, namely that if
relational morphology rules define a relation between
surface and lexieal levels, then that relation can be
specified and implemented using any of several different
relational programming paradigms. In this paper, we will
show that logic programming, which can be viewed as a
relational programming paradigm, can be used to give a
declarative reading to morphological rules. Further,
because of the execution model for logic programs,
embodied in various logic programming languages such as
Prolog, the declarative reading also has a convenient
procedural reading. That is, each relational morphological
rule may be thought of as corresponding to or generating a
logic program clause. The entire set of logic program
clauses generated from the relational morphological rules,
coupled with some utility predicates, then constitutes a
morphological analyser which can either be used as a stand
alone program or which can be coupled as a module to
other linguistic tools to build a natural language
processing system. Since the roles have been transformed
into logic program clauses, they gain in speed of
execution over Bear's interpretive method, and further
speed can be gained by compiling these clauses using
existing Prolog compilers. At the very least, this provides
a morphological complement to logic grammars
(Abramson and Dahl 1989) which deal mainly with syntax
and semantics, in a programming environment which we
believe is more user-friendly than the finite state
programming paradigm.

It may be argued that this is a step backwards from the
linear efficiency of finite state processing. However, when

ACRES DE COLING-92, N^NTES, 23-28 ̂ o(rr 1992 8 5 0 PRoc. ov COI.ING-92, NANTES, AUG. 23-28, 1992

discussing "efficiency" it is very important to be very
precise as to where the efficiency lies and what it consists
of. Finite state processing is linear in the sense that a
properly implemented finite state machine will be able to
decide whether a string of length ,~ is acceptable or not in
a time which is O(n), ie, for large enough n, a linear
multiple of n. For small values of u, depending on how
much bookkeeping has to be done, "finite state
algorithms" may perform worse titan algorithms which are
formally O(n 2) or higher. Any processing in addition to
recognition may involve time factors which are more than
linear. This entirely leaves aside the question of the user-
friendliness of the finite state computing paradigm, a
question of how "efficient" in human terms it is to use
finite state methods. Anyone who has trieM to implement
finite state automata of substantial size directly (as in
Koskenniemi's original implementation, the first KIMMO
systems, and KIMMO-PC) will have realised that
programming finite state machines is distastefully akin to
directly programming Turing machines. A substantial
amount of software is necessary iu order to provide a
development, debugging and maintenance environment for
ea~y use of the finite state computing paradigm. There
also remains the theoretical question as to the 'adequacy of
finite state morphological descriptions for all, or even
most, human languages. However, this is a topic we shall
not venture into in this paper.

In our method, a relatively small Prolog program
generates logic programming clauses from relational
morphology rules. The generated clauses (at least in the
experiments so far) are readable and it is easy to correlate
the generated clause and the original morphological rule,
thus promoting debugging. The standard debugging tools
of Prolog systems (at the very least, sophisticated tracing
facilities) seem sufficient to deal with rule debugging, and
the readability of the generated clauses should help in the
maintenance and transference of morphological programs.
Thus, from the software engineering point of view, logic
progrannming is a more sophisticated, higher-level
programming paradigm than finite state methods. Also,
should finite state descriptions in the end prove inadequate,
or even inconvenient, for all of morphology, logic
programming provides expressive power for reasonable
extension of the notation of relational morphology rules.
The current availability of Prolog compilers, even for
small machines, provides another increment of speedy
execution of the generated programs. Many of the
morphological rules produce logic program clauses in
which checking of the lexical and surface elements and
contexts reduce to unification followed by a recursive call
of the morphology predicate. Compiled Prolog abstract
machine code for such clauses is usually very compact.
Prolog compiler indexing mechanisms often make it
possible to access the correct clause to be applied in
constant time.

Nota t iona l Aspects . Our tableau notation for
relational morphology rules is as follows:

LexLeft <= Lex => LexRight <:>
SarfaccLeft <= Surface => SurfaceRight

which expresses the relation between a lexical and a
surface uait (Lex aml Surface, respectively), provided that
the left and right contexts at both the lexical and surface

levels (LexLeft , LexRiglnt, SurfaceLeft , and
SuffaceRight) are satisfied.

Another kind of relational morphology rule which is
allowed is:

LexLeft => Lex <= LexRight<:>
SurfaceLeft => Surface <= SurfaceRight.

which expresses a relationship between Lex and Surface
providing that the left and fight contexts at the lexical
and surface levels are different from those specified by
LexLeft, LexRight, SuffaceLeft, and SurfaceRight. This
means that either LexLefl or LexRight is not satisfied,
and also that either SurfaceLeft or SurfaceRight is not
satisfied.

More coutpact notation is also accepted, for example:

LexLeft:SurfaceLeft
<=Lex:Surface=>

LexRight:SurfaceRight.

LexLeft:SurfaceLeft
=>Lex:Sarface<=

LexRight:SurfaceRight.

In the case where a pair of lexical and surface contexts are
identical, or if the lexical and surface elements are
identical, they need not be repeated. Such compressed
rules as the following are also allowed:

Left <= Element => Right.
Left => Element <= Right.

Sets of symbols may be specified: set(vowel,[a,e,i,o,u]).

Lexical entries may be specified as follows:

lexicon:: {eat=noun,root= craps}.
lexicon::{cat=noun,root= pimlo}.

This feature notation is that used in the author's Definite
Feature Grammars (Abramson 1991).

Logical reading of relational morphology
roles. Corresponding to a set of relational morphology
rules, a binary predicate morphology/2 specifies the
relation between a lexical and a surface stream of
characters:

morphology(LexStrcam,S ufface Strcarn).

In order to specify the logic program clause which
corresponds to a relational morphology rule, we have to
manipulate the left and right lexical and surface contexts.
We can find the right contexts within LexStream and
SurfaceStream, but we have to provide a specification of
the left contexts, and we do this by defining the above
binary predicate morphology/2 in terms of a quaternary
predicate morphology/4:

morphology(LexS tmanLSurfaceS tream,
LeftLexStream,I.,eftS ur faceStream).

ACn'ES DE COIJNG-92, NArcri;s, 23-28 Aofzr 1902 1~ 5 1 P~toc. oF COLING-92. NANTES, A~JG. 23-28, 1992

LeftLexStream and LeftSurfaceStrcam are initially empty
and are represented as reverse order lists of the left
contexts which have aheady been seen. The top level
definition of morphology/2 is:

morphology(LexS tremn,Sur faceSt~un) :-
raorphology(LexStream,SurfaceSu'emn,I I,[1).

The fundamental logic program chmse co~reslxmding to a
relational morphology rule sneh am

LexLeft <= Lex => LexRight<:>
SurfaceLeft <= Surface => SurfaceRight.

is

morphology(LexS "tman~,S ur faceS tremn,
LeftLexStream,l.~efiSl~'aceS "Imam) :-

LexStream = lLllLexRest].
SurfaceStream = [SllSurfaceRestl,
[exeme(Lex,L1), surface(Surface,S 1),
lex context (LexLefl,Le fd.exStre,'un ,LexRight,LexRest),
sur face eontext(Sur faceLeft.lmftSurfaceStmam,

S ur f~eRight,Sur fhceRest),
NewLeftLexStreaan = [Llll~eftLexStream],
NewLeftS urfaceS "tmanl = [S 111.eftS uriaceStream],
morphology(LexRest,SurfaceRest,

NewLeftLexSlaeatm ,Newl.etiS urface£ hean 0 .

Here, LexStream and SurfaceStreanl are analysed as
consisting of the first characters LI and SI, and the
remaining streams, LexRest and SurfaceRest. It is
verified that L1 is the lexeme specified by Lcx, and S1
the surface character specified by Surface. (Lex, Surface,
LexLeft, LexRight, SurfimeLeft, and SurfaceRight are as
given iu rite morphology rule.) Contexts are checked by
the subgoals lex_context and surface context. New left
context streams are created by prefacing the old left
context streams with LI ,and S1 (note again that the left
context streams are built np in reverse order). Finally,
the predicate morphology/4 is recursively called on the
remainder of the lexical and surface streams, and with llu~
new left context streams.

Although the logical reading of this appears to involve
many subgoals, in fact tbr many relational morphology
rules, the subgoals are compiled away into simple
unifications. See the Appendix which contains at .set of
relational morphology rules dealing with simple English
plural forms and their corresponding logic program
clauses. Space does not permit us to comnlent on file
example, or how the compiler works, but the interested
reader may contact the auttmr. Further papers will deal
with these topics.

Conclus ions and fu tu re research . We have
provided here in the setting of logic programming a
morphological complement to the logic grammars which
mostly concentrate on syntax and semantics. However,
we have also provided a notation and a logical reading of
that notation which suggests fi~rther exploration as to
expressiveness and efficiency. If the context in a
relational rule is specified by a regular expressimt, the
appropriate context stream is parsed using a small logic
grammar which defines such expressions. It may
however make sen~, in approaching non-concatenative

aspects of morphology, to be able to specify lexical
contexts with more stnmtt~re thml regular expressions
allow. The implementation would be easy: in place of
the logic grammar used to parse regular expressions, a
more complicated logic grammar (context free, at least)
would be used for lexical context verification. It is also
thought that metarnles (see Abramson 1988 or
Abramson and Dahl 1989) will be u~ful in dealing with
nonconeatenative aspects of morphology. Since the
project is at an early stage, there is not yet an extonsive
set of examples. We expect to develop a full set of rules
for English morphology, and it specification of Japanese
verb forms.

Ackunwledgment.The author wishes to acknowledge
the support of Ricoh Corporation as a Visiting
Information Fusion Professor at the University of
Tokyo's Institute of Industrial Science. The author "also
wishes to thank Prof. Akira Ishikawa of Sophia
University, Tokyo, for comments on this work. Also,
thanks to Profs. lshizuka and Ishikawa for help in
translating the abstract.

R e f e r e n c e s .

Abramsou, tl. 1988. Metarules and an approach to
conjunctiou in Definite Clause Translation Grammars.
Proceedings of the Fifth International Conlerence and
Symposium on Logic Programming. Kowalski, R,A. &
Bowen, K.A. (editors), MIT Press, pp. 233-248, 1988.

Abramson, H. 1991. Definite Feature Grammars for
Natural and Formal Languages: An Introduction to the
Formalism. Natural Language Understanding and Logic
Programming, III, edited by C.G. Browu and G. Koch,
North-I Iolland, 1991.

Abranlson, H. and Dahl, V. 1989. Logic Grammars,
Symbolic Computation Series, Springer-Verlag.

Antworth, iLL. 199(I. PC-KIMMO: A two-level
processor for morphological analysis. Summer Institute
of Linguistics, Dallas, Texas.

Bear, J. 1986. A morphological recognizer with syntactic
and phonological rules. In Proceedings of COLING '86,
272-276. Association for Computational Liuguistics.

Dalrymple, M. et al. 1987. DKIMMO,cTWOL: a
development environment lor morphological analysis.
Stanford, CA: Xerox PARC and CSLL

Johnson, C.D. 1972. Formal aspects of phonological
description. The [[ague: Mouton.

Kaplan, R.M. and Kay, M. 1981. Phonological rules and
finite state transdt, cers. Paper presented at the 1981
Winter meeting of the ACL/USA.

Kartmman, L. 1983. KIMMO: a general morphological
processor. Texas Linguistic Formn 22:163 - 186.

Kartammn, L. and Wittenburg, K. 1983. A twoqevel
morphological analysis of English. Texas Linguistics
Forum 22:217-228.

ACRES DE COLING-92, NANt'ES, 23-28 AOI]: 1992 8 S 2 1';~.O{:. OI, COI,ING-92, NANI'ES, AUG. 23-28, 1992

Khan, R. 1983. A two-level morphologica l analysis of
Rumanian. Texas Linguist ics Forum 22:253+270.

Kos kenu i e m i , K. 1983. Two- l eve l m o r p h o l o g y : a
general computa t ional model for w o r d q b u n recognit ion
and production. Publicat ion N o . 11 Helsiuki: University
of Helsinki Department of General Linguistics.

Lun, S. 1983. A two-level morpho log ica l ana lys is of
French. Texas Linguist ics Forum 22:271-278.

Sasaki A l u m , Y. 1 9 8 3 . A two- level mo lpho log i ca l
analysis o f Japanese . Texas Linguist ics Forum 22:229-
252.

A p p e n d i x . E l e m e n ta ry fo rma t ion o f pl t t rals in
English.

(0) x < = '+' = > [s, '#'l < : >
x < = e = > [s,'#']+

(1) z < = '+' = > [s, '#'l < : >
z < = e = > [s , '#' l .

(2) y < = '+' = > [s , '#' l < : >
i < = e = > Is,'#'].

(3) s <= '+' => [s,'#'l <:>
s < = e => [s,'#'],

(4) o < = '+' = > [s,'#'l <:>
o < = e = > [s, '#'] .

(5) [c ,h] <= '+' => [s, '#'l <:>
[c,h] <= e => Is,'#'l.

(6) Is,hi <= '+' =>
Is,'#'] <:>

Is,h] <= e => Is,'#'].

(7) <= y => '+' <:>
in(con) <--- i = > .

(8) not(set([[c,h],s,[s,hl,x,z,yl)) <~: '+' ~:> Is,'#'l
<7>
not(set([[c,h,e],Is,eJ,[s,h,el,lx,e I,[z,el,[i,e] 1))
<= 0 => Is,'#'].

%Note negative context here,
(9) set([[c,hl,s,[s,h],x,z,y]) => e <= [s,'#'l <:>

set([[c,h],s,[s,h],x,z,il) =.- c <~ [s,'#'l.

%This is a default tale.
(10) ._ <= iu(X,char_ e) => _ <:>

_ <= in(X,char e) => .

set(char e,[a,b,c,d,f ,g,h,i , j ,k,l ,m,
u,o,p,q,r ,s , t ,u ,v,w,x,y,z , '# ' I).

set(con,[b,c,d,f ,g,h, j ,k, l ,m,u,p,q,r ,s , t ,v,w,x,y,zl) ,

In addition to specifying characters such as s, x, etc., we
can also de l iue ~ q n e n c e s o f characters noted aS lists
Is,h], not(characte0, uot(sequeuce o l characters), in(con)
means any member of the ~ t con, whereas iu(X,char c)
is a member o f the set char e ~ssigncd to the variable X
for unification in another part of the talc. '+' is used as a

mnrphenle lamm 'lary, 0 is used as the null symbol , '#' is
used as an e a d m ~ k e r , and ' ' is used to specify a don' t
care context. By providing a complete specification o f
context we cnnld remove any consideration o f ordering o f
the rides, l Iowever , it is convenient to depar t sl ightly
l'i~m ~m order free formalism by a l lowing default rules
such as ou r last one with don ' t care contexts which
SlW.cify what happens to syuubols not dealt with in any
of the atore-menlioned rules, to appear at the end.

(*) moqfl |ology([l , [1, A, B).
(0)
morphology([+, s, #[A], [e, s, #1B], [xlC], [xlD]) :-

morphology(Is , #1AI, Is, #1B], [+, xlC], [e, xlD]).
(1)
monf~hology([+, s, #1A], [e, s, #1B], [zlC], [zlD]) :-

morphology(Is , #1A], Is, #1B], [+, zlCI, [e, zlD]).
(2)
ntorphology([+, s, #1A], It, s, #1B], [ylC], [ilD]) :-

mnq>hology([s, #IA], Is, #1B], I+, ylC], [e, ilD]).
(3)
morphology(l+, s, #1AI, It, s, #[B], Isle], [slD1) :-

men phology(Is, #1AI, Is, #1B], [~, slCI, [e, slD]).
(4)
moq>hology(l+, s, #1A], [e, s, #1B], [olC], [oiD]) :-

moq~hology(I s, #1AI, Is, #1BI, [+, olC.1, [e, olD]).
(5)
nlorphology(l+, s, #1A], [e, s, #1B], [h, clC], [h, clD]) :-

movpholngy([s , #1AI, Is, #1BI,
[+, h, clC], [e, h, clD]).

(~,)
moq)hology(l+, s, #[AI, le, s, #1B], [h, siC1, [h, slD]) :-

utorphology([s , #1A.I, [s, #Ill/,
[~-, h. sIC], [e, h, s lD]).

(7)
morphology([y , +IA], lilB], C, IDLE]) :-

con(D),morphulogy([+lA], B, lylC], [i, DIE]).
(8)
mcnphology([-t., s, #IA], Is, #IB], C, 1)) :-

not subslxings(C, [[h, el, s, [h, s], x, z, y]),
not substrings(D, lie, h, e], le, s], [e, h, s], [e, xl,

[e, zl, It, ill),
morphoh~gy([s, IliA], Is, #1BI, I+IC], D).

(9)
moqfl~ology([e, A, BIC], [e, D, Ell;I, G, |1) :-

not (subsUiugs(G, [o, Ih, el, s, [h, si, x, z, y]),
match(Is, #1, IA, BI)),

uot (substrings(H, [u, lh, el, s, [h, sl, x, z, i]),
umteh([s, #], ID, El)),

moq)hology([A, BIC], [D, ELF], [elG1, [elHl).
(10)
moqfltology([AIBI, [AICI, f), E) :-

char c(A),
utorpholngy(B, C, IAIDJ, [AIE]).

C lause (*) is genera ted to te rmiuate morpho log ica l
l)ft~cssing whcu bofll tile [exical and surface streams ~Ue
empty. In this case, tile left contexts are ignored.

Chmses 0-6 cotrcslx)ndiug to rules 0-6 follow the same
pattern in which lcxicat and sud~lcc syml~Jls and contexts
are specified within tile s t reams and m'e checked by
un i f ica t ion , fo l lowed by a r ecur s ive cal l to the
moqfl iology/4 predicate on file remainder of tile lexical
illl(l surface stfcums and wiflt new left context streams.
S/IC[I clauses involving ani l ica t iou o l the head attd a

AcrEs DE COl,ING-92, NANI~S, 23 28 Aoi)r 1992 8 S 3 l'l¢oc:. O|; COl,IN(;-92. NANIES, A/JC+. 23-28, 1992

body which is only a recursive call of the same predicate
are efficiently handled by Prolog compilers. Clause 7 is
similar except that it also involves a check to see that
the first character in the left surface context is a
consonant.

Set definitions such as:

set(con,[b,c,d,f,g,h j,k,l,m ,n,p,q,r,s,t,v,w,x,y,zl).

generat~ unit clauses: con(b)., con(c) con(z).

In clause 7, if D in con(D) is instantiated (as it is since
the D represents a left context which has already been
seen), code generated for this by Prolog compilers
amounts to something like an indexed table lookup
which takes place in constant time. Similar remarks
apply to clause 10 where it is checked that A is a
member of the set char e.

Clause 8 involves a combination of a unification check
for the right context, and a check that the left context
does not consist of any of the specified strings. Here, in
order for the morphology clauses to work in both the
analytical and generating directions, the negution must be
logically safe notation, i.e., the arguments to the
negation must be grounded. Logically safe negation
involves the use of delaying evaluation of the negation
until all arguments have been grounded.

Clause 9 which involves a negative context, makes sure,
using safe negation, that either the right context is not
[s,'#'] or that the left context does not match any of the
subslxings in the specified set.

Sample execution:
?- morphology(P,cries).
Root = cry %nonstandard plural formation
{cat=noun, %original lexicon entry

root=cry)
Suffix = s
(cat=norm, %modified feature

root=cry,
plural=yes}

P = cry+s ; %another solution?
fail. %no.

?- morphology('fox+s',P).
P = foxes

?- morphology('piano+ s',P).
P = pianoes; %one plural form for some nouns

%which end in "o"
P = pianos; %another plural form
fail. %no others

The same clauses for the predicates morphology/2 and
morphology/4 are used in solving goals in both
directions.

Japanese S u m m a r y .

~," h, 6 og fL-.)i

KoskemtiemiO96J[~ {,:- ~ 5 ~ L~,~ '~ © ~ t/.,-tOP

5o }J~4, l~t (Koskenniemi~9~o09~L~Jf :) I~/t~-~

Harvey Abramson

ACI~S DE COLING-92, NANTES, 23-28 AOfJ'r 1992 8 5 4 Pl~OC. oi: COLING-92, NANTES, AUG. 23-28, 1992

