
T E R M - R E W R I T I N G AS A BASIS F O R A U N I F O R M
A R C H I T E C T U R E IN M A C H I N E T R A N S L A T I O N

Wilhelm WEISWEBER
Technical University of Berlin

Institute for Software and Theoretical Computer Science
Project KIT-FAST, Sekr. FR 5-12

Franklinstr. 28/29, D-1000 Berlin I0
E-mail: ww@kit.cs.tu-berlin.de or weisweb@tubvm.cs.tu-berlin.de

Abstract
In machine translation (MT) different levels of
representation can be used to translate a source
language sentence onto its target language equivalent.
These levels have to be related to each other. This
paper describes a declarative formalism on the basis of
term-rewriting which maps one representation onto an
equivalent adjacent one. The different levels (e.g.
represented by derivational trees, feature structures or
expressions of a knowledge representation language)
can be represented as terms. The equivalences between
them are stated as axioms which are directed to form a
non-confluent and terminating term-rewrite system. A
courplete and coherent' algorithm has been developexl
which interprets these systems and is able to handle
default rules.

1 Introduct ion
In general there are different models of machine
translation (MT). Regardless of the model used as the
basis for an MT system, the architecture looks like the
following (see [Arnold et at. 86] and [Sharp 88]):

G: G 2 Gn.: G,
I I I I

Ss --} RI -~ R2 --~ ... --} R._: -~ R. --} ST
sT: IT2 2T3 n-2Tn.l ..IT. .'IT

The Ri's are representations, e.g. derivational trees (for
example the syntactic stuetures) or directed acyclic
graphs (for example f-structures of LFG or KL-ONE
based conceptual representations), the Gi's are the
formalisms which generate these representations, e.g.
context free grammars or signatures, the Ti's are
mappings from one representation to an equivalent
adjacent one and S s, S T are the source and target
language sentences, respectively.
If the MT system is interlingua based, one of the R: is
the interlingua and if it is transfer based one of the iTi+l
is the transfer system. Usnally the first and last
mappings have different status and are realized by a
parser and a generator, respectively.
The MT system of our project KIT-FAST ~ is based on
a transfer model and i = 4, where RI is the source

GPSG structure (see [Gazdar et al. 85] and [Busemann/
Hauenschild 88]), R 2 is the source Fanctor-Argument-
Structure (FAS) 2, R3 is the target FAS and R4 is the
target GPSG structure. G: to G4 are context-free
grammars. In the current phase of our project we are
taking the first steps towards the solution of textual
phenomena, i.e. the interpretation of anaphorical
relations (see [Schmi~ et al. 91]). In order to achieve
this, the source FAS is mapped onto a conceptual
representation for the text content, which is represented
by the ABox (assertional knowledge) of the KL-ONE
like representation language BACK. The knowledge
representation system BACK has been developed by
our neighbour project KIT-BACK (see lPeltason et al.
89]). The representation for the text content is used to
determine the discourse consistency of possible
antecedents for anaphoric pronouns.
Currently sT1 and 4T 1. are realized by a GPSG parser
and a morphological synthesis component, respective-
ly. The mappings :T 2 (semantic analysis), 2T3 (trans-
fer), 3T4 (generation) and the mapping from R 2 (FAS
representations) onto conceptual representations are
realized by one algorithm on the basis of term-
rewriting. The mapping sT1 (parsing) also is intended
to be implemented with a term-rewrite system. A short
introduction to term-rewriting is given in section 3.
it seems reasonable to represent all different R~ with
the help of one data structure and to specify all iTi+l
with the help of the ~ m e formalism (including parsing
and generation). Some proposals in this direction have
already been made. Two of these systems, namely
CAT2 and TFS, and their properties are outlined in
section 2. The following .sections present an alternative
approach, which remedies some problems of these
systems. In Section 4 a term representation, which is
generated by a signature for a term algebra, is
introduced with the help of which all R i can be
represented. The representation of GPSG or FAS
derivational trees, feature structures and KL-ONE like
conceptual structures as terms is shown by example.
The algorithm, i.e. the termination condition and the
application relations, which are automatically
computed from the rewrite rules by the examination of
the interdependencies of the rules with the help of

KIT = Ktinsdiche lntelligenz und Textverstehen
(artificial intelligence and text understanding), FAST =
functor-argument-structure for translation. The project
KIT-FAST constitutes the Berlin component of the
complementary research of EUROTRA-D. It receives
rants by the Federal Minister for Research and
eehnology.

The FAS is a semantic representation for sentences which
has been developed in the preceding phase of our project.
Among others it contains functor-argument-relations,
information about the thematic stxucturing of sentences
anti semantic relations (argument roles) and semantic
features. For a more detailed description see
[Hauercsclfild/Umbach 88]. [Busemann/Hauenschild 89]
and [Busemann 90].

ACTES DE COLING-92, Nhr, rrEs, 23-28 AOt]T 1992 7 7 7 PROC. OF COLING-92, NANTEs, AUG. 23-28, 1992

superposition, is given in section 5. Section 6
concludes the paper and gives an outlook for farther
research.

2 Other approaches
Several proposals in the direction of a uniform
architecture of MT systems have teen made. Within
the EUROTRA-D project the CAT2 system was
developed by [Sharp 88]. This approach uses deriva-
tional trees as representations and is characterized by
the compositionality of the mapping rules according to
[Arnold et al. 86]. The Typed Feature Structure (TFS)
system as presented in [Emele/Zajac 89] and [Zajac
89,90,91] is outlined in subsection 2. It uses typed
feature structures as representations.
Another approach, which is similar to Emele and
Zajac's, is given in [Russell et al. 91].

2 .1 T h e C A T 2 s y s t e m

The representations Ri in the CAT2 system are
derivational trees generated by context-free grammars
G i which are made up of a pair (Ci, Ai), where C is a
set of Constructors (structural rules) and A a set of
Atoms (lexical rules). The mappings from one tree to
another are called Translators, which are sets of t..rule,s.
The translators sTt and nTT are realized by a parser and
a Wee-to-string transducer, respe.ctively. The interpre-
ter for t-rules processes the input tree top-down by
matching the input tree with the left-hand side (Ihs) of
a rule and the subobjects are recursively mapped. On
the way bottom-up the subtrees are reordered according
to rite right-hand side (rhs) of the given t-rule. The
interpreter terminates when the whole input structure
has been traversed and mapped. The t-rules have the
form lhs =:> rhs. The Ihs and rhs are structural
descriptions of the source and target structure,
respectively, which are expressed by trees of the form
(node).(subtrees). The nodes are pairs (C, F), where C
is a distinguished feature and F is a set of feature-value
pairs. The subtrees of the lhs and rhs can be combined
with the help of conjunction or disjunction. Each
subtree can be labeled with a tag $N and can be marked
as optional or with the Kleene-star operator. When a
tag, which occurs on the lhs, is missing on the rhs, the
corresponding subtree is deleted, otherwise it is
replaced by its mapping (translation). The t-rules
maintain the partial compositionality 3 of the translator.
An example of a t-rule for semantic analysis is the
mapping from the surlace eases of the English verb
generate onto the corresponding deep eases:

(s,{}).[$1 :(np,{cas=nom}),
(vp,{}).[(v,{stem=generale}).[],

$2:(np,{cas=acc})]]

(_,(}).[(process,{lu=generate}),
(agent,(}).[$1],
(affected,{}).[$2]]

The advantages of CAT2 are its simplicity and

The translation of an expression consists of the trans-
lation of its subexp*essions (see [Arnold et al. 86]).

efficiency. Furthermore CAT2 is supposed to be
reversible. The efficiency is a consequence of the
(partial) compositionality of the translators. This leads
directly to an efficient slructure-driven 4 interpreter. The
disadvantage is that it does not allow for directed
acyclic graphs (DAGs) as representations. Since the
translators are compositional, the t-rules cannot express
the fact that the translation of one constituent depends
on the translation of other constituents. For example if
a predicate (verb, noun or adjective) is to be translated,
the translation typically depend.,; on the semantic roles
and featu~s (selectional restrictions) of its target
language arguments.

2 .2 T h e T F S s y s t e m

The TFS system uses typed feature structures (TFSes)
as representations, which can be represented as DAGs.
TFSes are defined recursively. A TFS is an atomic or
complex type. An atomic type consists of a type
symbol and a complex type of a type symbol with a set
of pairs of features and TFSes (values). The feature
structures of PATR, LFG or HPSG are examples of
TFSes. The set of type symbols P, which always
includes the special type symbols T (top) and
(bottom), is partially ordered and T _> T _>_ -L holds for
all T E P. This partial ordering defines a lattice
structure on P and can be extracted from the definitions
(axioms). Definitions have the form T = TFSt v ... v
TFS m :- C, where T is a type symbol, the TFS~ are
TVSes of type F i (T _> Fi) and C is a conditional
constraint, which may be omitted and is expressed by a
logical conjunction of TFSes. The unification of two
type symbols is their greatest lower bound. A "rewrite
step "5 on an input TFS is performed by looking for a
subTFS of type T of the input TFS and a definition of
the form T = F :- C. In that case the subTFS of the
input TFS and the TFS F are unified, the conjunction C
of TFSes is solved and the result of the unification is
inserted in place of the sub'l~'S, qlae TFS rule for the
semantic analysis rule of the previous subsection is:

SYN-S =
SEM-S[syn: S[np: NP[cas:NOM I X],

vp: VP[v:GENERATE,
np: NP[cas:ACC I Y]]

sere: REL[process: GENERATE,
agent: X',
affected: Y']]

:o SYN-NP[syn: NP[cas:NOMt X'], sere: X']
SYN-NP[syn: NP[cas:ACC IY], sem: Y']

The advantage of TFS is that all different levels, i.e. Ss,
Rt to R, and ST, are accessible for all mappings iTi+l.
The disadvantage is that the algorithm for the
application of definitions is not complete.

4 'Stxuctuse-driven' means that fire input structure is
~ in a certain suategy (in this case top-down).

crate-driven processes are normally more efficient
than dataqlriven processes, which process the input
structure according to the rules which manipulate it.

s This is not 'rewriting' in the sense of this paper, but the
input TFS is extended by unification, wlfich is a
monotonic operation, i.e. it is "blown up" with additional
information.

AcrEs DE COLING-92, NANTES, 23-28 AOfYI" 1992 7 7 8 PROC. Or COLING-92, NANTES, AUG. 23-28, 1992

Another problem of TFS can arise if the definitions arc
applied in the wrong order. Let us for example assume
that a p r~ i ca t e has alternative translations depending
on the selection',d restrictions of its target language
arguments and the definition which gives the wrong
translation is applied before the target language
arguments exist. This would lead to a wrong or no
translation, even if the correct translation wonld be
possible. This ca t only be avoided if the alternatives
are specified in one definition with the help of
disjunction, which, however, may be very inefficient if
the correct translation is the last alternative.

3 Term-rewriting
A term-rewrite system O'RS) 6 is a set of term-rewrite
rules (TR rules) ~ -4, p with left-hand side (Ills) ~ mid
right-hand side (rhs) p, in which cospecified variables
occur. The applicability of a TR rule to all input tenn t
is checked by superposing t with X.

Definition: Superposition
The term h is superposable with the term 12, iff a
subterin q/u of h attd t 2 are unifiable with minimal
unifier (or substitution) ~ ~: { }.

'rite elements of ~ are pairs of substitutions X <- t~,
where the variable X is substituted by the correspond-
ing term h. The substitution of variables occurring in
t/u and ~. according to ~ (notation: (t/n)~ and ~ ,
respectively) yields two identical terms ((t/u)~ = Lcr).
If the term t is superpo~ble with ~L at the subterm t/u
with the substitution el, the TR rule is applied by
replacing t/u in t by p~ yielding the target term t' = t[u

p~]. This is called a derivation step (notation: t -->
t').
Originally TRSes are used to prove rite equ',dity of
terms. In this context file Knuth-Bendix algorithm has
been developed (.see [Knuth/ Bendix 70]), which
computes the norm.,d form of a given TRS, if the TRS
is confluent and terminating.
A TRS is confluent if the application of the rewrite
rules to an input term yields exactly one target ternl, no
tnatter in which sequence the rules are applied.
In order 1o guarantee the termination of TRSes, an
ordering on the corresponding terms has to be defined
and at least one minimal term exists. Such an ordering
guarantees the termination of a derivation .~.xluence h
-~ t2 -~, ... -~ t~ l --> t,~ if and only if tl > tz > ... > t,4 >
t~, where tl is the input term, t,~ the "target term and t i ->
ti+t a derivation step, in which the resulting term t~+ t is
derived from the original term ti by the application of
one TR rule.
In order to prove the temlination of a TRS,
theoretically all possible derivation seqttences have to
be checked. Another possibility is to define a total
ordering on the teruls on the lhs and rhs of the '1~,
rules, which guarantees that in a derivation step ti -4,
ti+t the original term ti is reduced according to this
ordering (ti > ti+t), then the TRS is terminating because
alier a finite number of derivation steps either a

minimal term is rcatclted or no qR rule is applicable to
the resulting temL
In order to guarantee the termination of TRSes by
considering each single "lq~ rule, some criteria have to
be defined for rite terms on the ihs and rhs of each
single TR rule so that its application reduces file input
term according to the total ordering. The ordering may
reduce the size of the inlart term after rite application of
a rule (a qnantitative ordering, i.e. deleting a subterul
on tile rhs) or substitute a snbtenn of the intmt term in
such a way that this substitution is never reversed by
another rewrite rule (a qualitative ordering, i.e. na
operator precedence ordering). For the use in MT we
assume a qualitative ordering (see section 5.5). For
details about the terufination of TRSes see [Dershowitz
82 and 85].
TRSes in normal form are complete attd coherent. They
can efficiendy be applied to deduce rite normal form of
an input tenn. In order to prove the equality of two
terms, their normal forms are deduced and compared
htr literal equality.
In order to use TRSes for mappings between a source
anti a target representation ill MT, the source
representation Call be viewed as an input term for a
TRS and the target represenlatiou as its normal form.
For this reason a term algebra liJr each representation
R i tins to be dclined which generates the eotlcsponding
lerms for the given representation. The mapping rules
ate considered as TR rides. But using TRSes for the
ntappiugs in MT c a u l s a problem. Normally analysis,
transfer attd generation of natural languages in MT
may have ntore than one result, i.e. TRSes used for
mappings ill MT usually are not confluent. For this
reason an interpreter for +lRSes has been developed in
our project (sec section 5, [Weisweber 89] and
[Weisweber/Hauensehild 901), which is complete anti
cohereal and applies terminating ,and non-continent
TRSes in a very efficient way.

4 The term representation
ill order to have one process for the interpretation of
the mapping roles of file different ,,To+l, all structures
R,, have Io be represented with the help of one &ata
stracttwe. The data structure used by the ~IRS
interpreter consist,'; of terms which represent directed
acyclic graphs (DAGs) wilh complex categories as
node labels. Derivational Irces are special instances of
DAGs in which no m-eutrancy of nodes is allowed and
the edges leaving one ntv..le arc ortlered. The ternts are
generated by the fltllowing signatureV:

Signature for DAGs

dag: CA7 L I S T -) DAG
list: DAG LIST ~ LIS1
[]: --> LIST

At present this signatule is fixed for the interpreter, bnt
if more exlm'essive represenhqtions are necessary for

In the following a notation according to [tluet/Oppen 80 I
is used, which gives a detailed introduction to TRSez.

Signatures are very simihtr to context-flee roles. The
operator definitions '()p': $1 ... S,, i -~ S,, can be viewed as
the context-tree rule S,, -) 'op(' S t '.' ...'.' S~4+)'. where the
sorts S i are interpreted as nt) l l - tel l r l ina]s .

ACRES DE COLlNG-92, NANTES, 23-28 Ao~rr 1992 7 7 9 PROt:. OF COLING+92, NANTES, AUO. 23-28, 1992

MT, the interpreter can be adapted. The sort CAT,
which represents complex categories, is also generated
by a signature which has to be specified for the
particular representations.

Scheme for signatures for complex categories

C: LANG F1 ... Fn --~ CAT
g-gpsg, g-fas, e-las, e-gpsg, g-atl, ...: -~ LANG
Vi: .--4 F i

The C are the main categories (in the sense of the
distinguished features of [Sharp 88]). LANG is a
special sort which represents the language to which a
category belongs. With the help of the instances of this
sort the categories occurring in terms can be
distinguished to belong to the source or target
representation. This fact is used to allow the TRS
interpreter to process the input structure in a flexible
strategy (see section 5.4) and to guarantee its
termiantion (see section 5.5).
The sorts F i represent the features which are associated
to the main category. The Vi are 0-ary operators
(constants) which represent the values for the features
represented by F i (Vi E Fi). Nodes N of a DAG which
have no oat-going edges (in trees terminal nodes) are
represented by dag(N,~).

Example signature for German nominal phrases

np: LANG PER PLU GEN CAS --> CAT
g-gpsg: --~ LANG
1,2,3: ---> PER
+,-: ~ PLU
fem,masc,neut: --> GEN
nom,gen,dat,acc: ~ CAS

An example of a term for a German nominal phrase is
np(g-gpsg,3,- , fem,nom).
The TRS interpreter uses the signature for DAGs to
traverse the input representation in order to find a
subterm which is unifmble with the Ihs of a TR rule.
Our TRS editor uses the signature for DAGs to produce
terms from a graphical input and to perform consist-
ency checks on the input.
In order to show, for example, how conceptual
structures can be represented as temls, a small
fragment of the syntax of the ABox tell language
(ATL) of the knowledge representation system BACK
(see [Peltason et at. 89]), which is used in the
experimental MT system of our project, is given:

Context-free rules for a fragment of the ATL:

(abox-tell) --> (obj-ref) = (atl-conc)
I (variable) = (atl-conc)

obj-ref) --> ucl
atl-conc) ---> (concept)

I (concept) wi th (all-role)
(atl-role) ---> (role) : ((abox-tell))

I (atl-role) anOwlth (all-role)

The non-terminal (concept) represents the concepts
used in a discourse and (role) represents the semantic
roles of the arguments of a predicative concept.
(variable) represents variables which are instantiated
with a new unique discourse object reference ucl, if
there is no object reference in the ABox for the given
concept.

In order to represent ATL expressions as terms the
following signature is used:

Signature for ATL categories:

equal: LANG OBJ-REF ~ CAT
with: LANG ROLE ~ CAT
g-all: --~ LANG

The ATL expressions are represented by trees and
since terms represent DAGs, a context-free syntax is
needed to check whether the target terms of the
conceptual analysis represent ATL trees or not. The
context-free syntax of ATL trees is given in the
following.

Context-free syntax for ATL trees

atl(g-atl) --, equal(g-atl,_) with(g-all,_)"
with(g-atl,_) ~ equal(g-atl,_) with(g-atl,_)"
equal(g-all,_) ~ (concept) (lexical rules)

For example the German ATL expression UCl =
generate with agent : (uc2 = generator) andwith
affected : (uc3 = sentence) is represented by the
following ATL term:

Example for an ATL term

dag(atl(g-atl), I
dag(equal(g-at l ,ucl) , [

dag(generate, [])1),
dag(wit h(g-atl,agent), [

dag(equal(g-atl,uc2), [
dag(generator, [])])]),

dag(with(g-atl,affected), [
dag(equal(g-atl,uc3), [

dag(sentence, [])])])])

At the end of this section we give the TR rule of the
semantic analysis which corresponds to the rules of
CAT2 and TFS presented in the sections 2.1 and 2,2,
respectively:

dag(s(e-gpsg), [
dag(v-pred(e-fas,nom-acc,active), [

dag(genetate, [])]),
dag(term(e-fas,nom), X),
dag(term(e-fas,acc), Y)])

dag(clause(e-fas), [
dag(v-pred(e-fas,ag-at,active), [

dag(generate, [])]),
dag(term(e-fas,agent), X),
dag(term(e-fas,affected), Y)])

The TR rule contains the cospecified variables X and
Y. Additionally some conditions on variable feature
values can be defined with the help of the operators =,
¢, < and _> which can be combined with the logical
operators and or or.
In order to handle for example the long distance
dependencies of GPSG or LFG conveniently, the
expressive power of TR rules has been increased. The
categories occurring on the lhs and rhs of a rule may be
labeled with the +-operator, which is similar to the
Kleene-star operator. The occurrence of the category
C ÷ means that C is the root node of the corresponding
subDAG, which may dominate another category C,
which again may dominate another category C and so

ACRES DE COLING-92, NANTES, 23-28 AOO'r 1992 7 8 0 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

on. This is similar to functional uncertainty in LFG.

5 I n t e r p r e t a t i o n o f T R S e s

As mentioned in section 3, the TRSes for the mappings
in NIT are not usually confluent. For this reason the
Knuth-Bendix algorithm cannot be used. In order to
apply non-confluent TRSes efficiently, the inter-
dependencies between their TR rules have to be
determined. The rewrite process is data-driven and in
order to check each TR rule only once for application,
an order is computed (subsection l). The rewrite
process should be complete and coherent. Therefore
more general TR rules should be checked for
application after more specific ones and sub~ction 2
shows an order for some kind of default TR rules. As
the TRSes are not confluent, the interpreter has to
control the branching of the derivation sequence. This
is done with the help of alternative rules (subsection 3).
The TRS interpreter is outlined in subsection 4. Since
the rewrite process is data-driven, the termination of
the interpreter cannot be guaranteed by the interpreter
itself. Subsection 5 gives an adequate termination
condition for TRSes used in MT systems.
In the following subsections, the existence of two TR
rules (nl, ~.1 --~ Pl) and (n2, 2%-2 --~ P2) in the TRS is
assumed, where {n~, nz} C: R N (the set of numbers of
all TR rules), k~, 7% are the left-hand sides (lhs) and Pl,
p~ are the right-hand sides (rhs) of the TR rules.

5 .1 T h e a p p l i c a t i o n order

In order to check each TR rule for application only
once, an order has to be computed. Generally there are
cycles in the application order and the TR roles of a
cycle have to be checked more than once.

Definition: Application order relation >~,
I f pl is superposable with 2% or

L~ is superposable with p~
then n~ >,pp n 2, where > ,~ (S R~ × R N.

The relation >,pp is transitive and n~ :>lpp II2 means that
TR rule n t has to be applied before rule nz. This
relation may have cycles n I >~pp .,. >~pp n m >~pp n 1. [u
order to compute the cycles of >*w' the transitive
closure >,+p~ is computed, which may contain an
equivalence relation >~y~ (>¢y~ is reflexive, symmetric
and transitive, >¢y~ ~ >~+pp and >~y~ ~ Rc × Pc, where
Rc ~ RN is the set of numbers of cyclic TR rules).

Definition: Cycles of >~,t,
A cycle of >,+~ is an equivalence class [n] = {m]n >~yo
m} and >~y~ is the greatest equivalence relation in >,~.

The cycles (equivalence classes) are either equal or
disjoint and constitute a partition of Re. The efficiency
of the rewrite process crucially depends on the number
and size of the cycles.

5 .2 D e f a u l t T R r u l e s

In some situations it is useful to have some kind of
default TR rule. For example if there ate several
different translations for one source language terminal
which depend on certain (structural) conditions and
there is a "default" translation, if none of these
conditions holds, e.g. if the German verb schwimmen
has an inanimate argument, it has to be translated into

the English float and if there is no information
available, it has to be translated into swim.
These default TR rules can be computed by
superposing the lhs of two TR rules and one lhs occurs
completely in the other lhs. In that case the more
special TR rule has to be checked for application first
and the more general one last.

Definition: Default relation >dcf
If ~1 is superposable with ~z with substitution ff and

~-1 and ~ are not identical and
all variables X of (X ~ t) E ff occur in 2%

then n I >da n2, where >da ~ RD × Ro.

The relation >ca is reflexive, anti-symmetric and
transitive, i.e. a (partial) order relation in R o (the set of
numbers of default rules) and nl >an n2 means that the
lhs of role n 1 is more special than the lhs of rule n2 and
Ul has to be checked for application before n2, even if
they are part of a cycle. If ~4 and ~ are identical
without the names for variables, the TR rules are
alternatives (see next subsection).
The set R O contains subsets C i ~ Ro, which are called
chains, because for every x,y ~ Ci either x >da Y or y
> ~ x. Every chain has an infimum (the most special
TR rule) and a supremum (the most gemerul TR rule).

5 . 3 A l t e r n a t i v e T R r u l e s

In order to get alternative solutions the derivation
sequence has to branch at certain points which can also
be computed by superposing the lhs of two TR rules.
This is just the situation, in which the Knuth-Bendix
algorithm computes a critical pair.

Definigon: Alternative relation V,,~,
If ~q is superposable with 2% at subterm ~ / u with

substitution o and
Pl is not superposable with ~ and
if ~.l/u = ~.1 then ~qis not unifiable with t32

then {(n i, ~.lo --> p i t) , (n~, ~1o -~' ~t[u ~ p2t~])} C
"IRS and n~ v,l ~ n' 2, where v.l t ~ R A X R^.

The relation v,I, is reflexive, symmetric and transitive,
i.e. an equivalence relation in R^ (the set of numbers
of alternative rules), n~ v,lt n~ means that everytimc
TR rule nl is applicable to an input term, then n½ is
applicable and vice versa and the derivation sequence
branches at this point. The additional condition that
the rhs Pl of one rule is not superposable with the lhs
Lz of the other is necessary to exclude brunches caused
by rules in which the subterm ~,l/u is used us structural
condition. The other condition is needed for the same
reason in the special case when k~ and Lz are unifiable.
The rules ni or n~ may already exist in the TRS. In that
case either the lhs of n~ and n 2 have been identical and
nl = nl and n~ = n 2 or nl >d~ n2 and n I = nl or n 2 > ~ n 1
and n~ = n2.
If the rules n~ or n~ are not in the TRS, they are added
and all other relations are computed. In most cases the
new lhs is more special than the two other ths and the
corresponding default relations hold.
The lhs of the new TR rules n[and n~ is the
"superposition" of lhs of the rules nl and n2. The rhs of
n i is the rhs of hi, in which the variables are replaced
according to the substitution o. The rbs of n~ is the lhs
of n l, in which the subterm ~,jhl is replaced by the rhs
of n 2, the variables of which are replaced according to

AcrEs DE COLING-92, NANTES, 23-28 Attar 1992 7 8 1 PROC. OF COLING-92, NANTES. AUG. 23-28, 1992

the superposition. The efficiency of the rewrite process
crucially depends on the number and size of the
equivalence classes of RA.

5 .4 T h e T R S i n t e r p r e t e r

In order to apply the TR rules in an efficient order, the
ordered set APP is precomputed:
APP= R N - R e - R o - R A

U {nl[n] ~ R e }
LJ {hi n is inflmum of a chain C C: RD}
k) {n[[n] ~RA}

The set APP is ordered in the way that the sequence
does not contradict to >,pp. The interpreter for TRSes
takes an input term t and checks all TR rules (n, 7~ -~
p} in the order of APP.
If n ~ R c, then all TR rules m ~ [hi ~ R c trove to be
checked for application in an arbitrary order as long as
one rule of the cycle [n] is applicable, otherwise if t is
superposable with ~., then the corresponding TR rule is
applied else the next TR rule is checked for
application.
If the applicable TR rule n is a default rule (n ~ Ro),
then the TR rules m (n ->ae~ m) of the chain C ~ R o are
applied in the order of >aa.
If the applicable TR rale n is an alternative rule (n E
R^), then all the TR rules m c In] ~ R^ are applied
alternatively. Every alternative is a new branch in the
derivation sequence.
If a TRS has a normal form, the algorithm interpretes it
as efficiently as nomlalized TRSes.
The interpreter strategy of processing the input term,
which represents a DAG, is flexible, i.e. the TR rule
writer determines whether to proceed top-down,
bottom-up, from left to right or vice versa. For example
if the daughter categories of the lbs of the TR rules are
target language (TL) categories and the mother catego-
ry is a source language (SL) category which is to be
translated into a TL category by the corresponding rule,
then the interpreter will process the input structure
bottom-up (see example of the TR rule in section 4).

5 .5 T e r m i n a t i o n

For the use in our TRSes a quantitative ordering has
been defined that guarantees the termination of all the
TRSes used in our MT system. This ordering uses the
different vocabularies of the SL and TL terms and
requires that the number of SL categories occurring in
the input term has to be reduced. This means that either
a SL category has to be deleted or it has to be replaced
by one or more TL categories. The minimal terms are
all terms in which no SL categories occur. This
ordering guarantees the termination of that sequence
because the number of SL categories occurring in the
input term is finite and after a finite number of
applications there will be no SL categories left in the
resulting term or no TR rule is applicable.
In order to prove the termination o f a TRS, every single
TR rule has to be checked. The ths and rhs may
contain occurrences of variables for terms, i.e. for
(sub)DAGs, sets of (sub)DAGs, categories or feature
values of categories. If for example a variable for a
term representing a DAG is occurring once on the lhs
and doubled on the rhs, then the number of SL
categories occurring in the input term may be increased
in the resulting term. For this reason an additional

condition has to be defined which has to be full'tiled by
the lhs and rhs of each TR rule. Every variable
occurring on the rhs has to occur on the ths. The two
restrictions on 'IR rules allow for checking each rule
for termination after it has been defined or modified so
that the termination of the TRS can be guaranteed,
because in every derivation step the number of SL
categories is reduced. The derivation ends successfully
if no SL category occurs in the resulting term and the
corresponding tree can be generated by the corltext-free
TL grammar.
The given termination condition fulfils the three
constraints for termination (the input representation
must be built in a well-behaved compositional way,
recursive input representations have to be considered
and the input should not be extended) discussed in [van
Noord 901.
If the termination condition should prove to be
inadequate for the use in MT, qualitative orderings or
combinations of quantitative and qualitative orderings
may be defined. Up to now the given quantitative
ordering has proved to be adequate for the TRSes of
our MT system.

6 C o n c l u s i o n

The TRS interpreter and aal editor for TRSes are
implemented in Arity Prolog on an AT compatible PC.
The editor allows for a graphical input in DAG
notation, performs consistency checks on TR rules,
checks the termination condition on TR rules,
generates the corresponding terms and computes the
application order by the means of the definitions given
in section 5. TRSes have successfully been used for
semantic analysis, transfer, generation and for the
mapping from sentence semantic representations to
conceptual representations in the experimental MT
system of our project. TRSes are to be used to
implement parsing in the near filturc. First experiments
iu that direction have been encouraging.
In the future the possibility of merging all TRSes
defined for the translation of one language into another
to form one single TRS is to be investigated. The
advantage would be that the analysis depth will
become flexible in the way that if the translation of a
fragment of the source language syntactic representa-
tion is unambiguous, it can be directly translated into
the target language syntactic representatiou, without
the detour via the semantic representation. This would
be possible for all levels of representation.
Another point will be to check the possibility of
extracting reversible ports from one TRS and to use
them for the other translation direction.
The interpreter, which uses the basic unification
algorithm of [Eisele/DOrre 86] to superpose the input
term with the the lhs of the TR rules, is intended to be
expanded with disjunction according to [l)Srre/Eisele
90].
With these additional features, term-rewriting is a
powerful, elegant, complete and coherent device to
describe the relations between all levels of
representation in machine translation systems.

ACRES DE COL1NG-92, NANTES, 23-28 AO~r 1992 7 8 2 PROC. OF COLING-92, NANTES, AUG. 23-28. 1992

7 References
[Busemann 90]: S. Busemann: "Generiernng
natiirlieher Sprache mit Generalisierteu Phrasen-
struktar-Grammatiken", KIT-Report 87, Technical
University of Berlin 1990

[Arnold et al. 86]: D.J. Araold, S. Krauwer, M. Rosner,
L. de Tombe, G.B. Varile: "The (C,A),T Framework in
EUROTRA: A Theoretic.ally Committed Notation for
MT", in: Procs. l l th COLING-86, Bonn 1986, pp.
297-303

[Busemann/Hauenschild 88]: S. Buseinann, Ch.
Hauenschild: "A Constructive View of GPSG or How
to Make it Work", in: Procs. 12th COL1NG-88,
Budapest 1988, pp. 77-82

[Busenlann/Hauenschihl 89]: S. Busemann, Ch.
Hauenschihl: "From FAS Representations to GPSG
Structures", in: S. Busemann, Ch. Haueuschild and C.
Umbach (eds.): "Views of the Syntax/Semantics
Interface", Procs. of the Workshop "GPSG and
Semantics", KIT-Report 74, Technical University of
Berlin 1989, pp. 17 - 43

[Dershowitz 82]: N. Dershowitz: "Orderings for Term-
Rewriting Systems". Theoretical Computer Science 17
(1982), North-Holland, pp. 279 - 301

[Dershowitz 85]: N. Dershowi~: "Termination", in:
G.GOOs. J. Hartmanis (eds.): "Rewriting Techniques
and Applications", LNCS 202, Dijon, France 1985, pp.
180 - 224

[D6rre/Eisele 90]: J. I)6rre, A. Eisele: "Feature Logic
with Disjunctive Unification", in: Procs. 13th
COLING-90 (Vol. 2), Helsinki 1990, pp. 100-105

[Eisele/D6rre 86]: A. Eisele, J. D0rre: "A Lexical
Functional Grammar System in Protog", in: Procs. l l th
COLING-86, Bonn 1986, pp. 551-553

[EmelefZajac 89]: M. Emele, R. Zajac, "RETIF: A
Rewriting System lot Typed Feature Structures", ATR
Technical Report TR-I-0071 1989

[Gazdar et al. 851: G. G~dar, E. Klein, G. Pullum and
I. Sag: "Generalized Phrase Structure Grammar",
Oxford, Blackwell 1985

lHauenschild/Bnsemann 88]: Ch. Hauen~hild, S.
Busemann: "A constructive version of GPSG for
machine translation", in: E. Steiner, P. Schmidt and C.
Zellinsky-Wibbelt (eds.): "From Syntax to Semantics -
Insights From Machine Translation", London, Frances
Pinter 1988, pp. 216-238

lHauenschild/Umbach 88]: Ch. Hauenschild, C.
Umbach: "Funktor-Argument-Stmktur, Die
satzseman~scheRepr~entations- und Transferebene
im Projekt KIT-FAST", in: J. Schiltz (ed.): "Workshop
Semantik und Transfer", EUROTRA-D Working
Papers No.6, Saarbrilcken 1988, pp. 16-35

[HuetK)ppen 80]: G. Huet, D. Oppen: "Equations and
Rewrite Rules", in: R.V. Book (ed.): "Formal
Language Theory, Perspectives and Open Problems",
Academic Press 1980, pp. 349-405

[KnutldBendix 70]: D. IOmth, P. Bendix: "Simple
Word Problems ill Universal Algebras", in: J. Le~h
(ed.): "Computational Problems in Abstract Algebra",
Pergamon Press 1970, pp. 263-297

[Peltasou et al. 751: C. Peltason, A. Schmiedel, C.
Kindermanu, J. Quan~, "The BACK System
Revisited", KIT-Report 75, Technical University of
Berlin 1989

]Russell et al. 91]: G. Russell, A. Ballim, D. Estival, S.
Warwick-Amstrong, "A Language for the Statement of
Binary Relations over Feature Structures", in: Preos. of
the 5th Con|erence of file European Chapter of the
ACL, Berlin 1991, pp. 287-292

[Schmi~ ct al. 91]: B. Schmitz, S. Preufl, C.
Hauenschild: "Textrepr'asentatiou und Hintergrand-
wissen fiir die Anaphernresolutiou im Maschinelleu
Ubersetzungssystem KIT-FAST", KIT-Report 93,
Technical University of Berlin 1991

ISh~u-p 881: R. Sharp, "CAT2 - Implementing a
Formalism for Multi-Lingu',d MT", in: Procs. of the
2ud International Conference on Theoretical and
Methodological Issues in Machine Translation of
Natural Languages, CMU Pittsburg 1988

[vau Noord 90]: G. vua Noord: "Reversible
Unification Based Machine Translation", in: Procs.
13th COLING-90 (Vol. 2), Helsinki 1990, pp. 299-304

IWeisweber 89]: W. Weisweber: "Transfer in Machine
Translation by Non-Confltlent Term-Rewrite Systems",
in: Pfocs. tff the 13th Gernmn Workshop on Artificial
Intelligence (GWAI-89), Eringerfeld, September 1989,
pp. 264 - 269

[Weisweber/Hauen~hihl 90]: W, Weisweber, Ch.
Hauenschild: "A model of Multi-Level Transfer for
Machiue Translation and Its Partial Re~dization", KIT-
Report 77, Technical University of Berliu 1990 and to
appear in: Procs. of the Seminar "Computers &
Translation '89", Tbilisi 1989

[Zajac 891: R. Zajac, "A Transfer Model Using a Typed
Feature Structure Rewriting System with Inhuritance",
in: Plots. of the 271h Annual Meeting of the ACL,
Vancouver 1989

[Zajac 90]: R. Zajac, "A relational approach to
translation", in: Procs. of the 3nd International
Conference on Theoretical and Methodological Issues
in Machine Translation of Natural Languages, Austin
1990

[Zajac 911: R. Zajac, "A Uniform Architecture for
Parsing, Generation and Transfer", in: T. Strzalkowski
(ed.), Procs. of the Workshop on Reversible Grammar
in Natural Language Processing, Berkeley 1991, pp.
71-80

AC1T~ DE COLING-92, NANTJ~, 23-28 Aol)r 1992 7 8 3 PR()c:. OF COLING-92, NAIXrIES. AUG. 23-28, 1992

