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Abstract

In machine translation (MT) different levels of
representation can be used to translate a source
language sentence onto its target language cquivalent.
These levels have to be related to each other. This
paper describes a declarative formalism on the basis of
term-rewriting which maps one representation onto an
equivalent adjacent onc. The different levels (c.g.
represented by derivational trees, feature structures or
expressions of a knowledge representation language)
can be represented as terms. The equivalences between
them are stated as axioms which arc directed to form a
non-confluent and terminating term-rewrite system. A
complete and coherent’ algorithm has been developed
which interprets these systems and is able to handle
default rules.

1 Introduction

In general therc are different models of machine
translation (MT). Regardless of the model used as the
basis for an MT system, the architecture looks like the
following (see [Armold et al. 86] and [Sharp 88]):
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The Ry's are representations, ¢.g. derivational trecs (for
cxample the syntactic stuctures) or directed acyclic
graphs (for example f-structures of LFG or KL-ONE
based conceptual representations), the Gj's are the
formalisms which generate thesc representations, ¢.g.
context free grammars or signatures, the T's are
mappings from one representation to an cquivalent
adjacent one and Sg, S; arc the source and target
language sentences, respectively.

If the MT system is interlingua based, one of the R; is
the interlingua and if it is transfer based one of the (T;,;
is the transfer system. Usually the first and last
mappings have different stats and arc realized by a
parser and a generator, respectively.

The MT system of our project KIT-FAST! is based on
a transfer model and i = 4, where R, is the source

' KIT = Kinstliche Intelligenz und Textverstehen
(artificial intelligence and text understanding), FAST =
functor-argument-structure for translation. %he project
KIT-FAST constitutes the Berlin component of the
complementary research of EUROTRA-D. It receives
rants by the Federal Minister for Research and

‘echnology.
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GPSG structure (see {Gazdar et al. 85] and [Busemann/
Hauenschild 88]), R; is the source Functor-Argument-
Structure (FAS)?, Ry is the target FAS and Ry is the
target GPSG structure. G, to Gy are context-free
grammars. In the current phase of our project we are
taking the first steps towards the solution of textual
phenomena, ic. the interpretation of anaphorical
relations (sec [Schmitz et al, 91]), In order to achicve
this, the source FAS is mapped onto a conceptual
representation for the text content, which is represented
by the ABox (assertional knowledge) of the KL-ONE
like representation language BACK. The knowledge
representation system BACK has been developed by
our neighbour project KIT-BACK (see [Peltason et al.
891). The representation for the text content is used o
determine the discourse consistency of possible
antecedents for anaphoric pronouns.

Cumrently T, and 4Ty are realized by a GPSG parser
and a morphological synthesis component, respective-
ly. The mappings ;T (semantic analysis), ,T; (trans-
fer), 5T4 (generation) and the mapping from R, (FAS
representations) onto conceptual representations are
realized by one algorithm on the basis of term-
rewriting. The mapping §T; (parsing) also is intended
to be implemented with a term-rewrite system. A short
introduction to term-rewriting is given in section 3.

It seems reasonable to represent all different R; with
the help of onc data structure and to specify all ;T;,;
with the help of the same formalism (including parsing
and generation). Some proposals in this direction have
alrcady been made. Two of these systems, namely
CAT2 and TFS, and their propertics are outlined in
section 2. The following scctions present an alternative
approach, which remedies some problems of these
systems. In Section 4 a term representation, which is
generated by a signaturc for a term algebra, is
introduced with the help of which all R; can be
represented. The representation of GPSG or FAS
derivational trees, feature structures and KL-ONE like
conceptual structurcs as terms is shown by example.
The algorithm, i.c. the termination condition and the
application  relations, which arec  automalically
computed from the rewrite rules by the examination of
the interdependencies of the rules with the help of

% The FAS is a semantic rep ion for which
has been developed in the preceding phase of our project.
Among others it contains functor-argument-relations,
information about the thematic structuring of sentences
and semantic relations (argument roles) and semantic
features. For a more detailed description see
[Hauenschild/ Umbach 88], [Busemann/ Hauenschild 89]
and [Busemann 90].
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superposition, is given in section 5. Section 6
concludes the paper and gives an outlook for farther
research,

2 Other approaches

Several proposals in the direction of a uniform
architecture of MT systems have been made. Within
the EUROTRA-D project the CAT2 system was
developed by [Sharp 88]. This approach uses deriva-
tional trees as representations and is characterized by
the compositionality of the mapping rules according to
[Amnold et al. 86]). The Typed Feature Structure (TES)
system as presented in [Emele/ Zajac 89] and [Zajac
89,90,91] is outlined in subsection 2. It uses typed
feature structures as rcpresentations.

Another approach, which is similar to Emele and
Zajac's, is given in [Russell et al. 91].

2.1 The CAT2 system

The representations R; in the CAT2 system are
derivational trees generated by context-free grammars
G; which are made up of a pair {C;, A;), where C is a
set of Constructors (structural rules) and A a set of
Atoms (lexical rules). The mappings from one tree to
another are called Translators, which arc sets of t-rules,
The translators T, and , Ty are realized by a parser and
a tree-to-string transducer, respectively. The interpre-
ter for t-rules processes the input tree top-down by
matching the input tree with the left-hand side (1hs) of
a rule and the subobjects are recursively mapped. On
the way bottom-up the subtrees are reordered according
to the right-hand side (rhs) of the given t-rule. The
interpreter terminates when the whole input structure
has been traversed and mapped. The t-rules have the
form lhs => rhs. The Ihs and rhs are structural
descriptions of the source and target structure,
respectively, which are expressed by trees of the form
{node).(subtrecs). The nodes are pairs (C, F), where C
is a distinguished feature and F is a set of feature-value
pairs. The subtrees of the lhs and rhs can be combined
with the help of conjunction or disjunction. Each
subtree can be labeled with a tag $N and can be marked
as optional or with the Kleenc-star operator. When a
tag, which occurs on the lhs, is missing on the rhs, the
corresponding subtree is deleted, otherwise it is
replaced by its mapping (tanslation). The trules
maintain the partial compositionality® of the translator.
An example of a t-rule for semantic analysis is the
mapping from the surface cases of the English verb
generate onto the corresponding deep cases:

(s.41).I$1:(np.{cas=nom}},

{(vp.{).[(v.{stem=generate}) |},
$2:(np {cas=acc})]]

=

(_.{}).I(process {lu=generate}),
(agent,{}).[$1],
(affected,{}).[$2]]

‘The advantages of CAT2 are its simplicity and

3 The translation of an expression consists of the trans-

Iation of its subexpressions (see [Amold et al. 86]).
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efficiency. Furthermore CAT2 is supposed to be
reversible. The efficiency is a consequence of the
(partial) compositionality of the translators. This leads
directly 10 an efficient structure-driven® interpreter. The
disadvantage is that it does not allow for directed
acyclic graphs (DAGs) as representations. Since the
translators are compositional, the t-rules cannot express
the fact that the translation of one constituent depends
on the translation of other constituents. For example if
a predicate (verb, noun or adjective) is to be translated,
the translation typically depends on the semantic roles
and features (selectional restrictions) of its target
language arguments.

2.2 The TFS system

The TFS system uses typed feature structures (TFSes)
as representations, which can be represented as DAGs.
TFSes are defined recursively. A TES is an atomic or
complex type. An atomic type consists of a type
symbol and a complex type of a type symbol with a set
of pairs of features and TFSes (values). The feature
structures of PATR, LFG or HPSG are examples of
TFSes. The sct of type symbols P, which always
includes the special type symbols T (top) and L
(bottom), is partially ordered and T > T > L. holds for
all T € P. This partial ordering defines a lattice
structure on P and can be extracted from the definitions
(axioms). Definitions have the form T=TFS; v ... v
TFS,, :- C, where T is a type symbol, the TFS; are
TFSes of type F; (T 2 F;) and C is a conditional
constraint, which may be omitted and is expressed by a
logical conjunction of TFSes. The unification of two
type symbols is their greatest lower bound. A "rewrite
step” on an input TFS is performed by looking for a
subTFES of type T of the input TFS and a definition of
the form T = F :- C. In that case the subTFS of the
input TFS and the TFS F are unified, the conjunction C
of TFSes is solved and the result of the unification is
inserted in place of the subTFS. The TFS rle for the
semantic analysis rule of the previous subsection is:

SYN-S =
SEM-S[syn: S[np: NP[cas:NOM| X},
vp: VP[v:GENERATE,
np: NP[cas:ACC| Y]]
sem: REL|process: GENERATE,

agent: X',

affected: Y]
= SYN-NP[syn: NP[cas:NOM| X}, sem: X7,

SYN-NP[syn: NP[cas:ACC| Y], sem: Y'|

The advantage of TFS is that all different levels, i.e. S,
R, to R, and Sq, are accessible for all mappings ;T;,,.
The disadvantage is that the algorithm for the
application of definitions is not complete.

4 ‘'Swucture-driven’ means that the input structure is
acessed in a cerlain strategy (in this case top-down).
tructure-driven processes are normally more efficient

than data-driven processes, which process the input
structure according to the rules which manipulate it.

3 This is not rewriting' in the sense of this paper, but the
input TES is extended unification, which is a
monotonic operation, i.e. it is "blown up” with additional
information.
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Another problem of TFS can arise if the definitions arc
applicd in the wrong order. Let us for example assume
that a predicate has altenative translations depending
on the selectional restrictions of its target language
arguments and the definition which gives the wrong
translation is applied before the target language
arguments cxist. This would lead to a wrong or no
translation, cven if the correct translation would be
possible. This can only be avoided if the alternatives
arc specified in one definition with thc help of
disjunction, which, however, may be very incfficient if
the correct translation is the last alternative.

3 Term-rewriting

A term-rewrite system (TRS)® is a set of term-rewrite
rules (TR rules) A — p with left-hand side (ths) A and
right-hand side (rhs) p, in which cospecified variables
occur. The applicability of a TR rule to an input term (
is checked by superposing t with A.

Definition: Superposition

The tern t) is superposable with the term t,, iff a
subterm t/u of t; and t, arc unifiable with minimal
unifier (or substitution) o # {).

The elements of o are pairs of substitutions X - t,,
where the variable X is substitutcd by the correspond-
ing term t,. The substitution of variables occurring in
t/u and A according to o (notation: (/u)o and Ao,
respectively) yields two identical terms ((u)o = Ao).
If the term t is superposable with A at the subterm Yu
with the substitution g, the TR rulc is applicd by
replacing tu in ¢ by po yielding the target term t' = t[u
« po]. This is called a derivation step (notation: t —
1.

Originally TRScs are used to prove the cquality of
terms. In this context the Knuth-Bendix algorithm has
been developed (see [Knuth/ Bendix 70]), which
computes the normal form of a given TRS, if the TRS
is confluent and terminating,.

A TRS is confluent if the application of the rewrite
rules to an input term yields exactly one target term, no
matter in which sequence the rules are applied.

In order to goarantee the termination of TRSes, an
ordering on the corresponding terms has to be defined
and at least one minimal term exists. Such an ordering
guarantees the termination of a derivation scquence t
—Dho gy gifandonlyify>t> >t
t,, where t; is the input term, t, the target term and t; —
L+ a derivation step, in which the resulting term t,, is
derived from the original term t; by the application of
one TR mle.

In order to prove the termination of a TRS,
theoretically all possible derivation sequences have to
be checked. Another possibility is 0 define a total
ordering on the terms on the Ths and rhs of the TR
rules, which guarantees that in a derivation step t; —
ti,1 the original term t; is reduced according to this
ordering (t; > t,,,), then the TRS is terminating because
after a finitc number of derivation stcps cither a

§  In the following a notation according to [Huet/ n 80)

is used, which gives a detailed introduction to TRSes.
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minimal term is reached or no TR rule is applicable to
the resulting term,

In order to guarantee the termination of TRSes by
considering each single TR rule, some criteria have to
be defined for the terms on the Jhs and rhs of each
single TR rule 8o that its application reduces the input
term according to the totat ordering. The ordering may
reduce the size of the input term after the application of
a nile (a quantitative ordering, i.c. deleting a subterm
on the rhs) or substitute a subtenn of the input term in
such a way that this substitution is never reversed by
another rewrite rule (a qualitative ordering, i.e. an
operator precedence ordering). For the use in MT we
assume a qualitative ordering (see section 5.5). For
details about the termination of TRSes see [Dershowitz
82 and 85],

TRSes in normal form are complete and coherent. They
can efficicntly be applicd to deduce the normal form of
an input term. In order to prove the equality of two
tenms, their normal forms arc deduced and compared
for literal equality.

In order to usc TRSes for mappings between a source
and a targel representation in MT, the source
representation can be viewed as an input term for a
TRS and the target representation as its normal form.
For this reason a term algebra for cach representation
R; has to be defined which generates the corresponding
terms for the given representation. The mapping rules
are considered as TR rules. But using TRSes for the
mappings in MT causcs a problem. Normally analysis,
transfer and generation of natural languages in MT
may have morc than one result, ie. TRSes used for
mappings in MT usually are not conflucnt. For this
reason an interpreter for TRSes has been developed in
our project (sce section S, [Weisweber 89] and
[Weisweber/ Hauenschild 901), which is complete and
coherent and applics terminating and non-confluent
TRSes in a very cfficient way.

4 The term representation

In order to have one process for the iterpretation of
the mapping rules of the different |\ T,,,, all structurcs
R, have to be represented with the help of one data
structure, The data structure used by the TRS
interpreter consists of terms which represent directet
acyclic graphs (DAGs) with complex categories as
node labels. Derivational trees are special instances of
DAGs in which no re-cntrancy of nodes is allowed and
the edges leaving one node are ordered. The terms are
generated by the following signature’:

Signature for DAGs

dag: CAT LIST -> DAG
list: DAG LIST — LIST
[I: » LIST

At present this signature is fixed for the interpreter, but
if more expressive representations are necessary for

Signatures are very similwr to contexl-free rules. The
operator definitions ‘op” 8, ... 8, ; — §, can be viewed ay
the context-free rule §, -» ‘op(' §, "' ...\ S,,"), where the
sorts §; arc interpreted as non-terminals.
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MT, the interpreter can be adapted. The sort CAT,
which represents complex categories, is also generated
by a signature which has to be specified for the
particular representations.

Scheme for signatures for complex categories

C:LANG F, ... F, 5 CAT

g-gpsg, g-fas, e-fas, e-gpsg, g-atl, ... - LANG

V;Z -3 Fi

The C arc the main categories (in the sense of the
distinguished features of [Sharp 88]). LANG is a
special sort which represents the language to which a
category belongs. With the help of the instances of this
sort the categories occurring in terms can be
distinguished to belong to the source or targel
representation. This fact is used to allow the TRS
interpreter to process the input structure in a flexibie
strategy (see section 54) and to guarantee its
termination (see section 5.5).

The sorts F; represent the features which are associated
to the main category. The V,; are 0-ary opecrators
(constants) which represent the values for the features
represented by F; (V; € F). Nodes N of a DAG which
have no out-going edges (in trees terminal nodes) are
represented by dag(N,[]).

Example signature for German nominal phrases

np: LANG PER PLU GEN CAS — CAT
0-gpsg: > LANG

1,23; - PER

+,-0 = PLU

fem,masc,neut: —» GEN
nom,gen,dat,acc: —» CAS

An example of a term for a German nominal phrase is
np{g-gpsg.3,- fem,nom).

The TRS interpreter uses the signature for DAGs to
traverse the input representation in order to find a
subterm which is unifiable with the lhs of a TR rule.
Our TRS editor uses the signature for DAGs o produce
terms from a graphical input and to perform consist-
ency checks on the input.

In order to show, for example, how conceptual
structures can be represented as terms, a small
fragment of the syntax of the ABox tell langnage
(ATL) of the knowledge representation system BACK
(sec [Peltason et al. 89]), which is used in the
experimental MT system of our project, is given:

Context-free rules for a fragment of the ATL:

{abox-tell) — (obj-ref) = gatl-conc)
{variable}) = {atl-conc)
2obj-ref) - ug
atl-conc) — {concept)
| {concept) with {atl-roie)
{atl-role) — (role) : ({abox-tell))
{atl-role) andwith (ati-role)

The non-terminal {concept) represents the concepts
used in a discourse and {role) represents the semantic
roles of the arguments of a predicative concept.
{variable) represents variables which are instantiated
with a new unique discourse object reference ug;, if
there is no object reference in the ABox for the given
concept.
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In order to represent ATL expressions as terms the
following signature is used:

Signature for ATL categories:

equal: LANG OBJ-REF — CAT
with; LANG ROLE —» CAT
g-atl. - LANG

The ATL expressions are represented by trees and
since terms represent DAGs, a context-free syntax is
needed to check whether the target terms of the
conceptual analysis rcpresent ATL trees or not. The
context-frec syntax of ATL trees is given in the
following.

Context-free syntax for ATL trees

atl(g-atl) — equal(g-atl,_) with(g-atl,_)"
with(g-atl,_) — equal(g-atl,_) with(g-atl, )"
equal{g-atl,_) — (concept) (lexical rules)

For example thc German ATL expression uc, =
generate with agent : (uc, = generator) andwith
affected : (uc; = sentence) is represented by the
following ATL term:

Example for an ATL term

dag(atl(g-ati), [
dag(equal(g-atl,uc,), {
dag(generate, [}}),
dag(with(g-atl,agent), [
dag(equal(g-atl,ucy), [
dag(generator, [)])]),
dag(with{g-at!,affected), [
dag(equal(g-atl,uca), [
dag(sentence, [D)])])

At the end of this section we give the TR rule of the
semantic analysis which corresponds to the rules of
CAT2 and TFS presented in the sections 2.1 and 2.2,
respectively:

dag(s(e-gpsq). [
dag(v-pred(e-fas,nom-acc,active), [
dag(generate, [])]),
dag(term(e-fas,nom), X),
dag(term{e-fas,acc), Y)])
=
dag(clause(e-fas), [
dag(v-pred(e-fas,ag-af,active),
dag(generate, [])]),
dag(term{e-fas,agent), X),
dag(term{e-fas,affected), Y))

The TR rule contains the cospecified variables X and
Y. Additionally some conditions on variable feature
values can be defined with the help of the operators =,
#, < and 2 which can be combined with the logical
operators and or or.

In order to handle for example the long distance
dependencies of GPSG or LFG conveniently, the
expressive power of TR rules has been increased. The
categories occurring on the lhs and rhs of a rule may be
fabeled with the +-operator, which is similar to the
Kleene-star operator. The occurrence of the category
C* means that C is the root node of the corresponding
subDAG, which may dominate another category C,
which again may dominate another category C and so
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on. This is similar to functional uncertainty in LFG.

5 Interpretation of TRSes

As mentioned in scction 3, the TRSes for the mappings
in MT are not usually confluent. For this rcason the
Knuth-Bendix algorithm cannot be used. In order to
apply non-confluent TRSes efficiently, the inter-
dependencies between their TR rules have to be
determined. The rewrite process is data-driven and in
order to check each TR rule only once for application,
an order is computed (subsection 1). The rewrite
process should be completc and coherent. Therefore
more general TR rules should be checked for
application after more specific ones and subsection 2
shows an order for some kind of default TR rules. As
the TRSes arc not confluent, the interpreter has to
control the branching of the derivation sequence. This
is done with the help of altemative rules (subscction 3).
The TRS interpreter is outlined in subsection 4. Since
the rewrite process is data-driven, the termination of
the intcrpreter cannot be guarantced by the interpreter
itself. Subsection 5 gives an adequate termination
condition for TRSes used in MT systems.

In the following subscctions, the existence of two TR
rules (ny, &; — py) and {ny, Ay —> p,) in the TRS is
assumed, where (n, n;} ¢ Ry (the set of numbers of
all TR rules), A;, A, are the left-hand sides (lhs) and py,
p, are the right-hand sides (rhs) of the TR rules.

5.1 The application order

In order to check each TR rule for application only
once, an order has to be computed. Generally there arc
cycles in the application order and the TR rules of a
cycle have to be checked more than once.

Definition: Appli order r
If p, is superposable with A, or

A, is superposable with p,
then n, >, 1y, where >,,, C Ry X Ry,

It

Zapp

The relation >, is transitive and ny >,,, ny means that
TR rule n; has to be applied before rule n,. This
relation may have cycles ny >y . >ypp Tha >ypp By In
order to compute the cycles of >,.,, the transitive
closure >}, is computed, which may contain an
equivalence relation >, (>, is reflexive, symmetric
and transitive, >y C >7pp and >c,c & Re X Re, where
R¢ C Ry is the set of numbers of cyclic TR rules).

Definition: Cycles of >,
A cycle of >}, is an equivalence class {n] = {m |n Sepc
m} and >, is the grealest equivalence relation in >{ .

The cycles (equivalence classes) are either equal or
disjoint and constitute a partition of R¢. The efficiency
of the rewrite process crucially depends on the number
and size of the cycles.

5.2 Default TR rules

In some situations it is useful to have some kind of
default TR rule. For example if there are scveral
different translations for one source language terminal
which depend on certain (structural) conditions and
there is a "default" translation, if none of these
conditions holds, e.g. if the German verb schAwimmen
has an inanimate argument, it has to be wranslated into
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the English floar and if there is no information
available, it has to be translated into swim.

These defaull TR rmles can be computed by
superposing the lhs of two TR rules and one lhs occurs
completely in the other Ihs. In that case the morc
special TR rule has to be checked for application first
and the more general one last.

Definition: Default relation >,

If A, is superposable with A, with substitution o and
A, and A, are not identical and
all variables X of (X « t) € o occurin A,

then ny >4 0y, where >y & Rp X Rp.

The relation >4 is reflexive, anti-symmetric and
transitive, i.e. a (partial) order relation in Ry, (the set of
numbers of default rules) and ny >g¢ n, means that the
Ihs of rule n, is more special than the Ihs of rule n; and
1y has to be checked for application before ny, cven if
they arc part of a cycle. If A, and A, arc identical
without the names for variables, the TR rules are
alternatives (see next subsection).

The sct Rp contains subsets C; < Ry, which are called
chains, because for every x,y € C; either x >y y Or'y
>4er X. Every chain has an infimum (the most special
TR rule) and a suprernum (the most gemeral TR rule).

5.3 Alternative TR rules

In order to get alternative solutions the derivation
sequence has to branch at certain points which can also
be computed by superposing the lhs of two TR rules.
This is just the situation, in which the Knuth-Bendix
algorithm computcs a critical pair.

Definition: Alternative relation V/
If A; is superposable with A, at subterm Aj/u with
substitution o and
P is not superposable with A, and
if Aj/u = X, then A, is not unifiable with p,
then {{n,‘, Mo — p,c&, {n3, M0 — Mu ¢ p,0))) ©
TRS and n; v, n';, where Vv, & Ry X Ry,

The relation v,y is reflexive, symmetric and transitive,
i.c. an equivalence rclation in R, (the set of numbers
of alternative rules). n; Vv, n, means that everytime
TR rule nj is applicable to an input term, then nj is
applicable and vice versa and the derivation sequence
branches at this point. The additional condition that
the rhs p, of onc rule is not superposable with the lhs
A, of the other is necessary to exclude branches caused
by rules in which the subterm A,/u is used as structural
condition. The other condition is needed for the same
reason in the special case when A; and A, are unifiable.
The rules n; or ny may alrcady exist in the TRS. In that
case either the lhs of n; and n, have been identical and
Ny = iy and Ny =Ny OF Ry >ger Ny aNA D] =Ny OF Ny Dyr Ty
and n; = n,.

If the rules n; or ny are not in the TRS, they are added
and all other relations ar¢ computed. In most cases the
new lhs is more special than the two other lhs and the
corresponding default relations hold.

The lhs of the new TR rules n; and nj is the
"superposition” of lhs of the rules ny and ny. The rhs of
n; is the rhs of ny, in which the variables are replaced
according to the substitution . The rhs of n; is the lhs
of ny, in which the subterm A/u is replaced by the rhs
of n,, the variables of which are replaced according to
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the superposition. The efficiency of the rewrite process
crucially depends on the number and size of the
equivalence classes of R,,.

5.4 The TRS interpreter

In order to apply the TR rules in an efficient order, the
ordered set APP is precomputed:
APP= Ry-Re-Rp-Ry

U (nl[n} SRc)

U {n]nis infimum of a chain C C Rp)

U {nlm) CRa)
The set APP is ordered in the way that the sequence
does not contradict 1o >, The interpreter for TRSes
takes an input term t and checks all TR rules {n, A —
p) in the order of APP,
If n € Rg, then all TR rules m € [n] € Re have to be
checked for application in an arbitrary order as long as
one rule of the cycle [n] is applicable, otherwise if t is
superposable with A, then the corresponding TR rule is
applied else the next TR rule is checked for
application.
If the applicable TR rule n is a default rule (n € Ryp),
then the TR rules m (n 24,; m) of the chain C C Ry are
applied in the order of >y
If the applicable TR rule n is an alternative rule (n €
Ry), then all the TR rules m € [n] < R, are applied
alternatively. Every alternative is a new branch in the
derivation sequence.
If a TRS has a normal form, the algorithm interpretes it
as efficiently as normalized TRSes.
The interpreter strategy of processing the input term,
which represents a DAG, is flexible, i.e. the TR rule
writcr determines whether to proceed top-down,
bottom-up, from left to right or vice versa. For example
if the daughter categories of the Ihs of the TR rules are
target language (TL) categorics and the mother catego-
ry is a source language (SL) category which is to be
translated into a TL category by the corresponding rule,
then the interpreter will process the input structure
bottom-up (see example of the TR rule in section 4).

5.5 Termination

For the use in our TRSes a quantitative ordering has
been defined that guarantees the termination of all the
TRSes used in our MT system. This ordering uses the
different vocabularics of the SL and TL terms and
requires that the number of SL categories occurring in
the input term has to be reduced. This means that cither
a SL category has to be deleted or it has to be replaced
by one or morc TL categories. The minimal terms arc
all terms in which no SL categories occur. This
ordering guarantees the termination of that sequence
because the number of SL categories occurring in the
input term is finite and after a finite number of
applications there will be no SL. categories left in the
resulting term or no TR rule is applicable.

In order to prove the termination of a TRS, every single
TR rule has to be checked. The lhs and rhs may
contain occurrences of variables for terms, ic. for
(sub)DAGs, sets of (sub)DAGs, categorics or featurc
values of categories. If for example a variable for a
term representing a DAG is occurring once on the ths
and doubled on the rhs, then the number of SL
categories occurring in the input term may be increased
in the resulting term. For this reason an additional
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condition has 10 be defined which has to be fulfilled by
the Ihs and rhs of cach TR rmule. Every variable
occurring on the rhs has to occur on the lhs. The two
restrictions on TR rules allow for checking each rule
for termination after it has been defined or modificd so
that the termination of the TRS can be guaranteed,
because in every derivation stcp the number of SL
categories is reduced. The derivation ends successfully
if no SL category occurs in the resulting term and the
corresponding tree can be generated by the context-free
TL grammar.

The given tenmination condition fulfils the three
constraints for termination (the input representation
must be built in a weli-behaved compositional way,
recursive input represcntations have to be considered
and the input should not be extended) discussed in [van
Noord 90].

If the termination condition should prove to be
inadequate for the use in MT, qualitative orderings or
combinations of quantitative and qualitative orderings
may be defined. Up to now the given quantitative
ordering has proved to be adequate for the TRSes of
our MT system.

6 Conclusion

The TRS interpreter and an editor for TRSes are
implemented in Arity Prolog on an AT compatible PC.
The editor allows for a graphical input in DAG
notation, performs consistency checks on TR rules,
checks the termination condition on TR rules,
generates the corresponding terms and computes the
application order by the means of the definitions given
in section 5. TRSes have successfully been used for
semantic analysis, transfer, generation and for the
mapping from sentence semantic represeniations (o
conceptual representations in the experimental MT
system of our project. TRSes are to be used to
implement parsing in the near futore. First experiments
in that direction have been cncouraging.

In the futurc the possibility of merging all TRSes
defined for the translation of onc language into another
to form onc single TRS is to be investigated. The
advantage would be that the analysis depth will
become flexible in the way that if the translation of a
fragment of the source language syntactic representa-
tion is unambiguous, it can be directly translated into
the target language syntactic representation, without
the detour via the semantic representation. This would
be possible for all levels of represcntation.

Another point will be to check the possibility of
extracting reversible parts from one TRS and to use
them for the other translation direction.

The interpreter, which uses the basic unification
algorithm of [Eisele/ Dtrre 86] to superpose the input
term with the the ths of the TR rules, is intended to be
expanded with disjunction according to [Dorre/ Eisele
90].

With these additional features, term-rewriting is a
powerful, elegant, complete and coherent device to
describe  the rclations between all  levels of
representation in machine wranslation systems.
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