
Design Tool Combining Keyword Analyzer and Case-based Parser for
Developing Natural Language Database Interfaces

H i d e o S h i m a z u S e i g o A r i t a Y o s u k e T a k a s h i m a

C & C I n f o r m a t i o n T e c h n o l o g y R e s e a r c h L a b o r a t o r i e s

N E C C o r p o r a t i o n

4-1-1 M i y a z a k i , M i y a m a e - k u K a w a . s a k i , J a p a n , 216

s h i m a z u % j o k e . c l . n e c . c o . j p @ u u n e t . u u . n e t

A B S T R A C T

We have designed and experimentally implemented a
tool for developing a natural language systems tha t
can accept extra-grammatical expressions, keyword
sequences, and linguistic fragments, as well as ordi
nary na tura l language queries. The key to this tool 's
efficiency is its effective use of a simple keyword an-
alyzer in combination with a conventional case-based
parser. TILe keyword analyzer performs a majori ty of
those queries which are simple da t a retrievals. Since
it uses only keywords in any qnery, this analyzer is
robust with regard to ext ra-grammatica l expressions.
Since little labor is required of the application de-
signer in using the keyword analyzer portion of the
tool, and since the case-based parser processes only
those queries which the keyword analyzer fails to in-
terpret, total labor required of the designer is less
than tha t for a tool which employs a conventional
case-based parser alone.

1 I n t r o d u c t i o n

As the number of commercial on-line databases in-
creases, so does user need for pragmatic natural lan-
guage (NL) interface for communicat ing with tbose
databases. Case-based parsing is an effective ap-
proach to constructing NL interfaces to databases [1]
[5] [7] [11]. A s tandard case-based parser consists ba-
sically of a pat tern marcher and a case base which
stores a large number of linguistic pa~tern-concept
pairs. In response to a new input query, the pat-
tern matcher searches the case base for any matching
linguistic patterns. If one is found, its concept portion
is ou tpu t as a semantic representation of the given in-
put query. Though case-based parsing makes it easy
to construct domain dependent NL interfaces, it has
several serious drawbacks:

• The application designer who uses it must define
all possible linguistic patterns.

• The application designer must also define a con-
cept portion to correspond to each defined lin-
guistic pat tern.

• Since such pat tern-concept definitions will be
highly dependent oo tile nature of the specific
application, they must bc newly defined for each
target system.

In this paper, we propose a novel NL interface model,
CAPIT (Cooperative Analyzer and Parser as Inter-
face "Fool). It is a self-contained NL interface build-
ing tool for relational-like databases, and it integrates
NL processing mechanisms with the mechanism used
for the incremental acquisition of knowledge needed
in tha t NL processing. CAPIT combines a sim-
ple keyword analyzer, KBP(Keyword-Based Parsing
module), with a case-based parser, CBP(Case-Based
Parsing module). K B P extracts only keywords from
an input sentence, and constructs a meaning for the
sentence from them. Since NL queries to on-line
databases tend to be simple and straightforward,
KIqP can interpret a major i ty of those queries. How-
ever, because it constructs the meaning only from
the keywords, KBP sometimes fails to interpret them.
The ease-based parser (CBP) is a supplemental mod-
ule to KBP. CBP is a conventional case-based parser.
It consists of a pa t te rn matcher and a case base. Lin-
guistic pat tern-concept pairs are stored in the case
base. CBP must process only those queries which
KBP fails to interpret correctly. Since an applica-
tion designer do not have to define all the possible
linguistic patterns, his /her labor required to define
linguistic pat tern-concept pairs is less than tha t for a
tool which employs a conventional case-based parser
alone.

AcrEs DE COLING-92, NAtCrES, 23-28 Aot';r 1992 7 3 5 PROC. OF COLING-92, NAh'rEs, AUG. 23-28. 1992

Input Sentence (Corpus)
!

Step-1 [Add Semantic
i Categery, Pattern,

Case-Based and Mapping
Parser Definitions
(CBP)

Step-2 steP-3[u he~
Partially Matched

Fl]lly Matche~ [Application
Keyword Desiqner
Analyzer

(KBP)

] P a t t e r n Definition]
~Correct ? ~ Interviewer 1 - -

_ ~ I (Pp~l 1
Step-5 ~

Figured: CAPIT Flow

We analyzed KBP's interpretation failures, and cat-
egorized the types of KBP's interpretation failures.
We regard defining pattern-concept pairs for CBP
as repairs of KBP's interpretation failures. We de-
fined four repair types which are corresponding to
KBP's typical interpretation failures. When all appli-
cation designer encounters KBP's interpretation fail-
ure, he/she analyzes it, then selects the best and eas-
iest repair type. Such a repair task is accomplished
interactively between the application designer and the
Pattern Definition Interviewer module (PDI).

2 C A P I T F l o w

We have been collecting Japanese corpora which un-
trained users typed from computer terminals in order
to access on-line databases. We found that the large
part of the corpora arc "Pass me salt" like simple
data retrievals front databases. Many sentences have
simple grammatical or extra-grammatical structures.
Complex linguistic patterns are very rare. One ex-
treme example is just a sequence of keywords like,
"Dynamic Memory author", instead of asking "Who
is the author of the book titled Dynamic Memory?".
We hypothesized that the processing mechanism for

such simple expressions is different front a process-
ing mechanism for grammatical expressions, The two
parsing module structure of CAPIT reflects this hy-
pothesis.

Figure-1 describes the flow of CAPIT. First, the ap-
plication designer who develops a NL interface us-
ing CAPIT collects the corpora of users' queries in
the target domain. A query of tile collected cor-
pora is given to CAP1T one by one. The case-based
parser (CBP) tries to interpret the sentence (Step-
1). If CBP finds a fully matched linguistic pattern in
its case base, the corresponding concept is output as
the meaning for the input sentence (Step-2). If CBP
can not find any matching pattern, ttle NL query is
passed to the keyword-bascd parsing module (KBP).
If CBP finds a pattern which matches with a part of
tile query in its case base, CBP replaces the matched
part of the NL query with ttle corresponding concept,
then passes the modified NL query to KBP (Step-3).
KBP extracts only keywords from the query, and con-
structs its meaning (Step-4). KBP always constructs
the meaning for a given sentence.

The meaning generated by CBP and/or KBP, is

ACRES DE COLING-92, NAhq'ES, 23-28 hOOI 1992 7 3 6 PRoc. OF COLING-92, NANTES, AUG. 23-28, 1992

h "book","title","named published"

fleld-name Index field-name ir~dex

Title Author Publisher Date

Dynamic Memory Schank Cambridge 1983
U. Pr

Society of Mind O S&S 1985

I [ield-v~lue index

["the fathe, r of AI","Minsky"[

Table-1 : A Database Example

Price page

$15 240

$20 339

shown to the application designer. Tile application
designer judges whether or not the interpretation is
correct (Step-5). If it is correct, the examination us-
ing tbis NL query finishes, mid the next NL query is
taken from the corpora for the next examination. If
it is not correct, the Pattern Definition Interviewer
module (PI)I) is activated. PDI asks the applica-
tion designer for the correct interpretation of the NL
query. He/she defines linguistic patterns and/or se-
mantic concepts and/or the mappings between lin-
guistic patterns and semantic concepts for the NL
query (Step-6). The new definition is stored in KBP's
knowledge base mid/or CBP's case base. Next time
CAPIT encounters the same query or similar queries
to tile query, it succeeds in interpreting the queries
correctly.

After numbers of such examinations, CBP's case base
becomes rich, and tile NL interface application can be
released.

3 K B P M e c h a n i s m

This section describes the KBP mechanism, using
a simple example. Table-1 shows a simple CAPIT
target database example. Linguistic patterns are at-
tached as indices whicb refer to specific fields and the
values of specific fields of records in tile table. For
example, the indices to the "Title" field are "book",
"title", "book name", "named", etc. We call an index
to a field name field-name index. An index attached
to the value of a field of a record is called field-value
index. For example, "the father of AI" is a field-value
index to "Minsky" which is the value of tile "Au-
thor" field in a specific record. Values of each field of

each record is itself a field-value index. For example,
"1983" is a field-value index to the value of "Date"
field in a record. Field-name indices and field-value
indices are stored in KBP's knowledge base.

KBP always regards the meaning for a given NL
query a~s an imperative, "Select records in s table
which satisfy specific conditions, and return the value
of the requested fields from the selected records". Tile
imperative is represented in SQL:

S E L E C T field-k, field-l, ...
F R O M target table
W H E R E field-i = value-i,

field-j = value-j ;

The KBP algorithm to generate the SQL expression
from a NL query is as follows:

l. KBP extracts only field-name indices and field-
value indices from a given NL query. The rest of
tile NL query arc abandoncd.

2. When a field-name index is extracted, its refer-
ring field name is kept a.s a SELECT-clause ele-
nlent.

3. When a field-value index is extracted, its refer-
ring field value and the field name of the field
value are kept as a WlIERE-clause element, in
tile form of (field name = field value).

4. After all extracted indices are processed, all
SELECT-clause elements and WHERE-clause
elements are merged. Then, they are assigned
into a SELECT-FROM-WlIERE structure.

Next, we explain this algorithm, using a NL query
example.

AcrEs DE COLING-92, NAMES, 23-28 AoOr 1992 7 3 7 PRec. or COL1NG-92. NArcrEs. And. 23-28. 1992

SI: "Show me the books published by S&S".

KBP extracts only "book", "published" and "S&S"
from $1. "Book" is a field-name index to tile "Title"
field. "Published" is a field-name index to the "Pub-
lisher" field. Since "S&S" is a field-value index to the
value of the "Publisher" field, the WHERE-clause cle-
ment, (Publisher = S&S) is kept. From these indices,
the following SQL command is generated:

S E L E C T Title, Publisher
F R O M Table- 1
W H E R E Publisher = S&S;

The SQL command is evaluated, and its answer is re-
turned. The answer is "Society of Mind" and "S&S".
They are the reply to the above query.

The actual KBP has several heuristic rules to se-
lect SELECT-clause elements and WHERE-clause el-
ements. For example, the right answer to $1 is just
"Society of Mind". "S&S" must not be produced.
With the actual KBP, a heuristic rule suppresses the
production of "S&S" in the above example.

Though the actual KBP is more complex than this
simple explanation, it is still very simple [2]. Since
KBP constructs a query meaning from only keywords
in a NL query, it can t reat extra-grammatical expres-
sions, keyword sequences and linguistic fragments, in
the same way as treating ordinary natural language
queries. For example, even the following strange
queries on Tab led are acceptable by KBP; "Publish-
ers?", "Dynamic Memory author" , "When the book
named Society of Mind appear?" , "Society of Mind,
how much", etc.

4 T h e R o l e o f C B P

4.1 The Situations KBP Fails to In-
terpret

KBP can perform a majori ty of those queries which
are simple da ta retrievals. So, in what kind of situa-
tions does KBP fail to interpret? CBP processes only
those queries which KBP fails to interpret. The ap-
plication designer must define pattern-concept pairs
which CBP uses to interpret such queries. Therefore,
we have to know the limitations of KBP's interpre-
tation capability. The followings are KBP's typical
failure cases.

Fa i l u r e -1 Cases an application designer forgot to
define necessary pat tcrns as indices:

If a necessary linguistic pat tern is not defined as ei-
ther field-name index or field-value index, KBP can
not interpret concerning NL queries correctly.

Fa i l u r e -2 Cases a NL query includes idiomatic ex-
pressions or spatial expressions:
KBP can not generate correct meanings, if idiomatic
expressions like "greater than 10ft', or spatial expres-
sions like "the switch between A and B" are included
in a NL query.

F a i l u r e - 3 Cases the meaning for a NL query is not
represented in tile form of SELECT-FROM-WHERE:
KBP assumes tha t any NL query is t ranslated into a
SELECT-FROM-WHERE structure. If a NL query
has a different SQL structure, like SELECT-FROM-
G R O U P BY-tIAVING, KBP can not generate a cor-
rect meaning. For example, a NL query like "Select
author and its amount which is bigger than 1000" are
represented with the SELECT-FROM-GROUP BY-
I1AVING structure.

F a i l u r e - 4 Cases the meaning for a NL query can
not be represented in SQL language:
If a NL query is a meta-level question for the target
database, like "What kind of information can I get
from this?", KBP can not interpret it.

F a i l u r e - 5 Cases KBP generates many candidate in-
terpretations of a NL query:
Since KBP generates tile meaning for a NL query us-
ing onty keywords in the query, it sometimes gener-
ates not only a correct meaning but also wrong mean-
ings. ['or examptc, KBP generates several different
meanings from the following query; "Show me the
publisher of the book titled L.A.".

In order to avoid these KBP 's failures, when KBP en-
counters these failures, the application designer must
repair the failures, by enriching and modifying either
KBP's knowledge base and /o r CBP's case base. Such
a failure-repair mechanism is analogous to those of
case-based reasoning [6] [8].

4.2 Repairs of K B P ' s Failures

There are four repair types of the KBP 's failures.
Three of the four are realized by defining a new
linguistic pat tern-concept pairs in CBP ' s case base.
Failure-5 is solved by either of the four types.

Repair -1 To define a linguistic pat tern as either a
field-name index or a field-value index:

Ac'I'~ DE COLING-92, NANTEs, 23-28 AoIYr 1992 7 3 8 Prtoc. OF COLING-92, NANTES, AUG. 23-28, 1992

Figure-2: I,inguistic Pat tern-SQL Pair in CBP for
Repair-3

This is corresponding to Failure-l, and is the easiest
of the four repmr types.

R e p a i r - 2 To define a pat tern-concept pair, where
the concept par t is represented as SELECT-clause el-
ements and /o r WHEH.E-clause elements:
This is corresponding to Fuihtre-2. This is usefill to
define idiomatic expressions or spatial expressions.
Suppose tha t KBP could not interpret a NL query
which included an expression, "price is more than
$100, and less than $200". The aPl)lieation designer
judges tha t the part of the query mnst be defined as
a pat tern-concept pair. Then, he/she defines a new
pat tern-concept pair:

[Def in i t ion- 1]
If a pat tern sequence is:
["fiekl-nanm(Field), 1 {Field i~typc-of numerical}, ~
more than, number(N1), le~s thmt, number(N2)" 1,
do the followings:

(1) to kee l) a field name, "Field", ,as a SELECT-
clause element, and

(2) to keep an expression, " Fiekl > N1, Field < N2",
as a WHERE-clause element.

This definition means selecting records whose "Field"
has the value more than N1 and less than N2, and
returning the value of "Field" of the .selected records.

R e p a i r - 3 '1"o define a pat tern-concept pair, where
the concept par t is represented as an SQL expression
which is not SELECT-FROM-WHERE:
This is corresponding to Failure-3. The application

IA terliu s tart ing wi th a capita l l e t ter is a variable.
2An expression tlurrounded by a pair of brace ({ ta*d)) is a

constraint to be satisf ied. It ia a meta~level description, al~d is
not regalx |ed as a Imrt o f pa t t ern aequellce.

17::::27:

Figure 3: Linguistic Pat tern-Semantic Concept Pair
in CBI ' for]b~pair-4

designer nmst enumeratively detine a new SQL struc-
ture corresponding to a given linguistic pat tern (See
Figure-2).

R e p a i r - 4 ' fb define a pat tern-concept pair, where
the concept is represented im u senlantic concept
which is a recta-level expression for the target
database and can not be detined as an SQI, form:
This is corresponding to Failure-4. C A P I T provides a
frame-like tanguage to deline semantic concepts. The
application designer detincs a new scm~mtic eonccl)t
using the language, l ie /she also defines a reply gem
eration procedure. The procedure is called when the
corresponding linguistic pat tern is matched with an
input qucry (See Figure-3).

Repair-4 is tile most dilficult of all repair types for
an apl)tieation designer. In Repair-d, he/she must
dctine not only a new semantic concept, but al.qo
the definitions of slots in the semantic cnncept, the
procedures which fill the slots, the relations between
the new semantic concept with existing other sentan-
tic coucepts~ various constraiuts anlong concepts, etc.
lIowever, relnember tha t he/she must carry out such
eoml)licated tasks to al l possible linguistic pat terns in
his/her target domain, if he/she uses the case-based
parsing approach alone.

5 D i a l o g u e E x a m p l e b e t w e e n
P D I and an A p p l i c a t i o n De-
s igner

PDI (Pat tern Definition interviewer) is CAPIT ' s
interface to all application designer. A dialogue be-
tween PDI and an application designer progresses as
follows:

1. PDI shows the application designer a NL query
which both KBP and CBP have failed to inter-

ACRES DE COLING-92, NAbrI'ES, 23-28 AO(.rr 1992 7 3 9 PROC. OF COL1NG-92, NAN'rES, AUG. 23-28, 1992

Lir~uistic Pattern

I why omissible (does) * exist I

field-name index

name function

vcr-function-table
Figure 4: The Repair in the Sample Dialogue

pret. And, it asks h im/her to define the correct
interpretat ion to process the input NL query.

2. The application designer analyzes tile reason
why KBP failed to interpret the NL query.

3. Tile application designer selects a repair type
of the failure, and performs the repair. The
definition is stored in either KBP ' s knowledge
base or CBP ' s case base. Here, he/she can gen-
eralize/modify the linguistic pat tern, using lin-
guistic pat tern generalization/modification oper-
ators [10].

4. PDI retries interpreting the NL query again, and
asks the application designer whether or not the
new interpretation is correct. If it is correct, the
definition process of the NL query ends. If it is
not correct, go back to 1.

Next, we show a typical sample dialogue between
PD1 and an application designer. The situation is
tha t the application designer is developing a guid-
ance system which can understand various natural
language queries on a specific commercial VCR. The
guidance system has an internal database containing
da ta about the functions and the elements of tile spe-
cific VCR. Each of them is represented its features
in a record of the vet-function-table (Figure-4). The
dialogue is an example of Failure-2 and Repair-2. In
this example, KBP and CBP are cooperatively gen-
erating the meaning for a given sentence.

Suppose, CAPIT is trying to interpret a new input
sentence,

$2: "Why does PAUSE exist?"

Since CBP finds no matching pat tern, $2 is sent
to KBP. KBP extracts keywords from the sentence.

Then, KBP generates its meaning. The KBP's inter-
pretation and its generating meaning is shown to the
application designer. He/she rejects them. He/she
defines a new linguistic pat tern which matches with
the part of $2,

"why omiss ib le(does) * exist?"

as a field-name index to the "function" field of the
target database (See Figure 4). Here, "omissible" is
a linguistic pat tern modification operator [10], and
the special symbol, "*", ill a linguistic pat tern, is
a CAPIT 's pat tern definition notation, which means
that it matches with any sequence of words. This
definition means that the reason why a specific el-
ement exists is described in the "function" field of
its corresponding record. Aftcr tire designer defines
tile repair of KBP's failure, PDI tries to interpret the
same sentence again. This time, since CHP matches
"why omiss ible(does) * exist" with a par t of the $2
sentence, CBP replaces tile matched par t of tile $2
sentence with its corresponding concept, tha t is the
"function" field. As a result, the input sentence is
transformed into,

$2': "field-name(function) PAUSE ?".

The transformed input sentence is passed to KBP.
KBP extracts keywords from the input sentence.
The extracted keywords are field-name(fimetion) and
field-value(PAUSE). KBP generates a new SQL ex-
pression, which is different from the previous one.
The application designer judges if the new interpre-
tat ion is right.

[PDI] Next Sentence is: "Why does PAUSE exist?"
[CBP]: Unmatched!
[KBP]: Extract Keywords:
"PAUSE" is field-value index of "name".
[KBP]: Meaning:
(SELECT * FROM vcr-function-table WHERE name =
PAUSE)
[PDI]: ANSWER:
Its NAME is PAUSE. Its TYPE is SWITCII, ...
[PDI]: CORRECT? - > no.

[PDI]: Please define the correct interpretation. - >
define-field-name-index (
[why, omissible(does), *, exist],
field-name(function)).

[PD1] Retry Sentence: "Wily does PAUSE exist? "
[CBP]: Replaced t o :

[field-name(function), PAUSE]
[KBP]: Extract Keywords:
"PAUSE" is field-value index of "name".

ACRES DE COLING-92, NANTES, 23-28 Ao(rr 1992 7 4 0 PROC. OF COLING-92, NANTES, AUO. 23-28, 1992

[KBP]: Meaning:
(SELECT flmction FROM vcr-function-table WIIERE
name = PAUSE)

[PDI]: ANSWER:
Its FUNCTION is ...
[PDI]: CORRE(?YF? - > yes.

6 In C o n c l u s i o n

The proliferation of commercial on-line databases bas
increased to demand for natural language interfaces
that can be used by untrained people. Real world
queries include not only fully grammatical expres-
sions but also such abbreviated expressions as a se-
quence of keywords, etc [9] [3]. U will not use a
NL interface unless it can also interpret such queries,
and CAPIT has that capability

Speed is another important issue. Telephone charge
and database access charge are based on time of use,
and users require speed. Users will not use a NL in-
terface unless its response time is fast enough. NI,
interfaces designed with CAPIT are extremely fast.
Users' queries are responded within a second.

Ease of development and maintenance is also impor
tant. CAPIT is a eombiuation of a keyword analyzer
and a case-based parser. Since little labor is required
of the application designer in using the keyword an-
alyzer portion of the tool, and since the case-based
parser processes only those queries whicb the keyword
analyzer fails to interpret, total labor required of the
designer is less than that for a tool which employs a
conventional case-based parser alone. With CAPIT,
it is possible to design an entirely new NL interface
within a matter of weeks.

guage", Technical Report CMU-CS-84-107,
Dept. of Computer Science, CMU, 1984.

[4] Cox, C.A., "ALANA Augmentable LANguage
Analyzer", l~ep. UCB/CSD 86/283, 1986.

[5] Hendrix, G.G., Saeerdoti, E.D., Sagalowicz, D.,
anti Slocum, J., "Developing a Natural Language
Interface to Complex Data", In ACM Trans. on
Database Systems, 1978.

[6] Kolodner, J., "Retrieval and organizational
strategies in conceptual memory: A computer
model", ltillsdale, NJ.: Lawrence Erlbanm As-
sociates, 1984.

[7] Martin, C.E., "Cease-based Parsing", In 1n-
side Case-based Reasoning edited by R. Schank
and C. Riesbeck, Lawrence Erlbaum Associates,
Ilillsdale, N J, 1989.

[8] 1)~iesbeck, C.K., Schank, R.C., "Inside Case-
based f~easoning", Lawrence Erlbaum Asso-
ciates, |tillsdale, N J, 1989.

[9] Sbneiderman, B., "Designing the User Inter-
face", Addison-Wesley Pub., 1987.

[10] Sbimazu, H. and Takashilna, Y., "Acquiring
Knowledge for Natural Language Interpretation
Based On Corpus Analysis", Proc. of IJCAI'91
Natural Language Learning Workshop, 1991.

[11] Wilensky, IL et. al., "UC - A Progress Report",
Rep. UCB/CSD 87/303, 1986.

R e f e r e n c e s

[1] Arens, Y., "CLUSTERS: An Approach to
Contextual Language Understanding', Rep.
UCB/CSD 86/293, Ph.D. Thesis, 1986.

[2] Arita, S., Shimazu,][1., Takashima, Y., "Sim-
ple + Robust -- Pragmatic: A Natural Lan-
guage Query Processing Model for Card-type
Databases", Proc. of the 13th Annual Confer-
ence of the Cognitive Science Society, 1992.

[3] Carbonell, J.G., and Hayes, P.J., "Recov-
ery strategies for parsing extragrammtical lan-

AcrEs DE COLING-92, NANTES, 23-28 AOt~7' 1992 7 4 1 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

