
S e l f - M o n i t o r i n g w i t h R e v e r s i b l e G r a m m a r s

Giinter Neumann* and Gertjan van Noord]

*Deutsches Forschungszentrum tRijksuniversiteit Groningen
f~r Kfinstliche Intelligenz Postbus 716

Stuhlsatzenhausweg 3 NL 9700 AS Groningen
D-6600 Saarbr/icken 11 vannoord@let.rug.nl

neumann@dfki.uni-sb.de

Abstract

We describe a method and its implementation
for self-monitoring during natural language gen-
eration. In situations of communication where
the generation of ambiguous utterances should be
avoided our method is able to compute an un-
ambiguous utterance for a given semantic input.
The proposed method is based on a very strict
integration of parsing and generation. During
the monitored generation step, a previously gen-
erated (possibly) ambiguous utterance is parsed
and the obtained alternative derivation trees are
used as a 'guide' for re-generating the utterance.
To achieve such an integrated approach the un-
derlying grammar must be reversible.

1 In troduct ion

In many situations of communication a speaker
need not to worry about the possible ambiguity
of what she is saying because she can assume tha t
the]tearer will be able to disambiguate tile ut ter
ance by means of contextual information or would
otherwise ask for clarification. But in some sit-
uations it is necessary to avoid the risk of gen-
erating ambiguous utterances tha t could lead to
misunderstanding by the hearer, e.g., during the
proecss of writing text, where no interaction is
possible, or when utterances refer to actions tha t
have to bc performed directly or in some specific
dialog situations (e.g. having an interview with a
company).

The need to generate un-ambiguous utterances
is also relevant for the development of natural
language generation systems. For example in
the case of an intelligent help-system tha t sup-
ports the use of an operating system (Wilensky
et al., 1984), asking an inexperienced user to 'f~e-
move the folder with the system tools' could]lave
tremendous effects on the system itself.

If one assumes a modular division of the natu-
ral language generation task between two stages

of the language production process - - deciding
what to say (conecplual level) and deciding how
to say it (grammatical level) - - it is not realis-
tic to expect that the conceptual component will
be able to specify the input for the grammatical
component such tha t ambiguous utterances can
be avoided.

If it were possible to specify the input in such
a way, then this would mean that the conceptual
component has to provide all information needed
by the grammatical component to make decisions
about lexieal and syntactic choices. Hence, the
conceptual component would need detailed in-
formation about the language to use. But this
would blur the distinction between the grammat-
ical and the conceptual level, because this would
imply that both components share the grammar
(see also Appelt (1989), Meteer (1990), Neumann
(1991)). 1

In order to maintain a modular design addi-
tional mechanisms are necessary to perform some
monitoring of the generator 's output . Several
authors argue for such additional mechanisms
(Jameson and Wahlster, 1982; De Smedt and
Kempen, 1987; Joshi, 1987; Levelt, 1989). For
example, Levelt (1989) pointed out tbat "speak-
ers monitor what they are saying and how they
are saying it". In particular he shows tha t a
speaker is also able to note that what she is say-
ing involves a potential ambiguity for the hearer
and can handle this problem by means of self-
monitoring.

In this paper we describe an approach for
self-monitoring which allows to generate un-
ambiguous utterances in such situations where
possible misunderstandings by tire user have to
be avoided. The proposed method is based on
a very strict integration of parsing and genera-
tion. During self-monitoring a generated ambigu

1As pointed out in Fodor (1983) one of tim chtaxacter-
istic properties of a module is that it is computationally
autonomous. But a relevant coimideration of cornputa-
tionally autonomy is that nmdules do not share sourccs
(in our case the grarmnar).

AcrEs DE COLING-92, NANTES. 23-28 AOL'r 1992 7 0 0 PROC. OF COLING-92. NANTES, AUG. 23-28. 1992

ous utterance is parsed and the obtained alterna-
tive derivation trees are use.d ms a 'guide' for the
'monitored' generation step. We will show that
such an integrated approach makes only sense
with reversible grammars. To our knowledge,
there is at present no algori thm tha t solves the
problem of generating un-ambiguous utterances
by nmans of self-monitoring.

2 Overview of the Monitor-
ing Algorithm

Our approach is based on a strict integration of
parsing and generation in that parsing is used to
detect whether a produced ut terance is ambigu-
ous or not. The advantages of using comprehen-
sion mechanisms to facilitate mointoriug arc for
example mentioned in Levelt (1989). [n his model
parsing and generation are performed in an iso-
lated way by means of two different granunars .
'Phe problem with this view is tha t generation of
un-ambiguous paraphrases can be very inefficient,
because the source of the ambignons ut terance is
not used to guide the generation process.

To overcome this problem the basic idea of our
approach is to operate with derivation tl~es ob-
tained during the generation and parsing step.
In short, the algorithm works as follows. Firstly,
it is checked whether a produced ut terance S of
an input form LF is ambiguous, by parsing S~ If
during parsing e.g. two readings LF and LF ~ are
deduced LF is generated again along the parse
trees obtained for S. Now an ut terance S' can be
generated tha t has the same meaning but differs
with respect to the ambiguity source of S.

In this way the derivation trees obtained dur-
ing parsing of a previously generated utterances
are used as a guide during monitored generation.
Grammatical structures obtained during parsing
arc used directly to restrict the search space dur-
ing generation. At this point it shouhl be clear
tha t the only way in order to be able to generate
'along parsed s tructures ' is to use reversible gram
mars. This ensures that every sentence produced
by the generator can be parsed. Similarly, for ev-
ery semantic structure computed by the parser,
the generator delivers an utterance.

3 A monitoring strategy

A n a i v e s t r a t e g y . The tirst and most straight-
forward solution to obtain Olfly nn-ambiguous ut-
terances during generation could hc described

as a 'brute force' solution. The generator de-
rives possible utterances for a given logical form.
For each of these utterances it is easy to check
whether it is ambiguous or not, by counting the
results the parser delivers for tha t utterance.

I n a Prolog implementation this simple solution
can be detincd as follows. Note tha t we assume
for simplicity ttlat linguistic signs are represented
with terms s i g n (L F , S t r , S y n , D e r) where LF
represents tile semantic information, S t r repre-
sents the string and Syn represents syntactic in-
formation. The fourtil argument position will be
used later in this paper to represent derivation
trees.

monitor(sign(LF,Str,Syn,Der)):-
geuerate(sign(LF,Str,Syn,Der)),
unambiguous(Sir).

tmambiguous(Str) : -
setof(LF,D'S^parse(sign(LF,Str,S,D),

[El]).

The predicates paxse /1 and g e n e r a t e / 1 call re-
spectively the underlying parser and generator.
The se to~ predicate is used to obtain the set of
solutions of the p a r s e predicate, where " indi-
cates tha t D and S are existentially quantified.
By instant ia t ing the resulting set as a set with
exactly one element, we implement the idea that
the ut terance should be un-ambiguous (in that
case there is only one parse result). Given Pro-
log's search strategy this definition implies tha t
the generator generates solutions until an un-
ambiguous utterance is generated.

The prol)lem with this 'generate and test ' ap-
proach is tha t the search of the generator is not
directed by the goal to produce an un-ambiguous
result. We will now present a more involved mon-
itoring s t rategy which is oriented towards tile goal
of producing an un-ambiguous utterance.

A m b i g u i t i e s a r e o f t e n ' l oca l ' . A flmdameu-
tal assumption is that it is often possible to obtain
an un-ambiguous utterance by slightly changing
an ambiguous one. ' fhus, after generating an am-
biguous utterance, it may bc possible to change
tha t u t t e rance locally, to obtain an un-ambiguous
ut terance with the same meaning. In the ease of
a simple lexieal ambiguity this idea is easily il-
lustrated. Given the two meanings of the word
'bank ' ('river bank ' vs. 'money institution') a
generator may produce, as a first possibility, the
following sentence in the eo.se of the first reading
of 'bauk ' .

ACRES DE COLING-92, NANTES, 23-28 hOt'n 1992 7 0 1 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

e l

/ \
j o l m i aux3

/ \
infll8 vp4

I / \
be2 infll2 ppt

I / \
stand3 nearl rip2

/ \
the2 bank4

s l

/ \
j olml aux3

/ \
infll8 vp4

I / \
be2 in~112 ppl

I / \
stand3 near1 rip2

/ \
the2 bemk7

Figure 1: Derivation trees

(I) John was standing near the bank while Mary
tried to make a picture of him.

To ' repair ' this ut terance we simply alter the word
'bank ' into the word 'river bank ' and we obtain
an un-ambiguous result. Similar examples can be
constructed for s t ructural ambiguities. Consider
the German sentence:

(2) Heute ist durch alas Au~nmin i s t e r ium
bekanntgegeben women, daft Minister van
den Broek den jugoslawischen
Delegationsleiter aufgefordert hat , die
Armee aus Kroatien zuriickzuziehen.
Today it was announced by the ministry of
foreign affairs that minister van den Brock
has requested the Yugoslav delegation
leaders to withdraw the army from Croatia,

which is ambiguous (in German) between 'with-
draw [the army of Croatia] ' and '[withdraw [the
army] away from Croatia] ' . In German this ambi-
guity can be repaired locally simply by changing
the order of 'aus Kroatien ' and 'die Armee', which
forces the second reading. Thus again we only
need to change only a small par t of the ut terance
in order for it to be un-ambiguous.

L o c a t i n g a m b i g u i t y w i t h d e r i v a t i o n t r ees .
We hypothesise that a good way to eharacterise
the location of the ambiguity of an utterance is by
referring to the notion of 'der lvat ion tree'. We are
assuming that the underlying g rammar formalism
comes with a notion 'derivation tree' which repre-
sents how a certain derivation is licenced by the
rules and lexical entries of the grammar. Note
tha t such a derivation tree does not necessarily
reflect how the parser or generator goes about

finding such a derivation tree for a given string
or logical form. For example, the derivation trees
of the two readings of ' john is standing near the
bank ' may look as in figure 1. The intuition tha t
the ambiguity of this sentence is local is reflected
in these derivation trees: the trees are identical
up to the difference between bamk4 and bank7.
In our examples each sign s i g n (L F , S t r , S y n , D)
is specified for its corresponding derivation tree
D. In Prolog such a tree is represented with terms
of the form t ; (Label ,Ds,M) where Label is the
node name (the unique name of a rule) and Ds
is a list of Daughter trees. The third argument
position will be explained below.

Given a derivation tree t of a generated sen-
tence s, we mark the places where the ambigu-
ity occurs as follows. If s is ambiguous it can
be parsed in several ways, giving rise to a set of
derivation trees T = t l . . . t n . We now compare
t with the set of trees T in a top-down fashion.
If for a given node label in t there are several
possible labels at the corresponding nodes in T
then we have found an ambiguous spot, and the
corresponding node in t is marked. Thus, in the
previous example of s t ructural ambiguity we may
first generate sentence (2) above. After checking
wbetfier this sentence is ambiguous we obtain, as
a result, the marked derivation tree of that sen-
tence. A marked node in such a tree relates to
an ambiguity. The relevant par t of the resulting
derivation tree of the example above may be the
tree in figure 2.

M a r k h l g a d e r i v a t i o n t ree . The predicate
m a r k (T r e e , S e t) marks the generated tree Tree
given the trees Set found by the parser. Tile third
argument M of tile terms t (Labsl ,Ds,M) repre-

ACRES DE COLING-92, Nxlcr~, 23.28 ̂ Or~T 1992 7 0 2 PRec. OF COLING-92, NANTES, AUG. 23-28, 1992

vp5

/ \
~ragen3 vp2 MARKED

npl vp4

/ \ /
die2 armeel ppl

/ \
aus2 Krl

\
infl4

t
zieh3

Figure 2: Marked derivation tree

senting derivation trees indicates whether the cur-
rent node is marked (in that case the value is y) or
not (using the value n). Subtrees of marked nodes
have no instantiated value for this variable.

mark(t(L,Ds,n),Set):-
root_same(L,Set),!,
get_ds(Set,DsSet),
mark ds(Ds,DsSet).

mark(t(L,Ds,y)~Set).

root_same(L, []).
root_same(L, [t(L) IT]) :-

root_same (L,T).

mark d s ([] , []) .
mark ds([HlT],[Hs]Ts]):-

mark(H,Hs), mark_ds(T,Ts).

get_ds([t(_,[],_)l_],[]).
get ds(Set,[~IT]):-

get f(Set,Sst2,H),
get_ds(Set2,T).

g e t f ([] , [] , []) .
ge t f ([t (_ , [H 3 I B] , _) I T] ,

[t (_ , B , _) I T 2 J , [H 3 I T 3 J) : -
get_f(T,T2,T3).

C h a n g i n g t h e a m b i g u o u s pa r t s . Summaris-
inK, the generator first generates a possible ut-
terance. This utterance is then given as input
to the monitor. The monitor calls the parser to
find which parts of that utterance are ambiguous.
These parts are marked in the derivation tree as-
sociated with the utterance. Finally the monitor
tries to generate an utterance whictl uses alterna-
tive derivation trees for the marked, i.e. ambigu-
ous, parts.

Generating an utterance given a marked dcriva-

tion tree proceeds as follows. The generator sim-
ply 'repeats' the previous generation in a top-
down fashion, as long as it encounters unmarked
nodes. This part of the generation algorithm
thus simply copies previous results. If a marked
node is encountered the embedded generation al-
gorithm is called for this partial structure. The
result should be a different derivation tree than
the given one. Now clearly, this may or may not
he possible depending on the grammar. The next
paragraph discusses what happens if it is not pos-
sible.

The following definition ~sumes that gram-
mar rules are represented simply as rule(Name,
No'thor, Ds) where Name is the rule name,
Mother is the mother sign and Ds is a list of
daughter signs. The predicate mgen is used to
generate an utterance, using a marked derivation
tree as an extra guide.

mgen(sign(Lf,Str,S,D) ,*(Name,Ds,y)):-
genera* e (sign(Lf ,Sir, S,D)),
\+ D = t(Name,Ds,_).

mgen(sign(Lf, Str, S ,Dr, t (Name ,Ds ,n)) : -
rule (Name, sign (Lf, Sir, S,D), Kids),
mgends(Kids,Ds).

mgen_de ([], _).
mgen_ds ([SIT], [Stree,Ttree]) :-

mgen (S, Stree),
mgen ds (T, Tire ~).

II .edefining locality. Often it will not be pos-
sible to generate an alternative expression by a
local change as wc suggested. Wc propose that
the monitor first tries to change things ~-q local mq
possible. If all possibilities are tried, the notion
'locality' is redefined by going up one level. This
process repeats itself until no more alternative so-
lutions are possible. Thus, given a marked deriva-
tion tree the monitored generation first tries to
find alternatives for the marked parts of the tree.
]f no further possibilities exist, all markers in the
trees are inherited by their mother nodes. Again
the monitored generation tries to find alterna-
tives, after which the markers are pushed upwards
yet another level, etc.

The following definition of the predicate
laawkA..g(Treo, Set , Guido) will (procedurally
speaking) first construct the 'guide' Guide given a
derivation tree Tree and a set of derivation trees
Set; upon backtracldng it will push the markers
in the tree one level upward at the time.

mark_l_g (Tree, Set, Guide) : -

Ama~s DE COLING-92, NANTES, 23-28 ao~" 1992 703 PROC. OV COLING-92, NANTES, Auo. 23-28, 1992

m a r k (T r e e , S e t) ,

l_g (Tree , Guide).

1 g (T r e e , T r e e) .
l_g(Tree, Guide) : -

one_up(Tree, Tree2) ,
l _g (Tree2 ,Guide).

one_up(t (L,Ds ,n), t (L,Ds ,y)) :-
member(t(. . . . y),Ds), ! .

one_up(t (L,Ds ,n) ,t (L,Ds2,n)) :-
one_up_ds (Ds, Ds2).

one up_ds ([] , []) .
one_up_ds ([H I T] , [H2 IT2]) : -

one_up(It,It2), one_up_ds (T,T2) .

The algorithm can be completed as follows. ~

monitored_genorat ion (LF, Sign) :-
generate (sign (LF, Str, Syn,D)),
!, ~. stick to one..
monitor (sign(LF,Str,Syn,D) ,Sign).

monitor(sign(LF,Str I, Synl,Dl),
sign(LF,Str,Syn,D)) :-

Find_all_parse (Strl ,TreeSet),
(TreeSet = [_]
-> Strl = Str, Synl = Syn, DI = D
; mark_l_g(D1 ,TreeSet ,Guide),

mgen (sign(LF, Str, Syn,D) ,Guide),
unambiguous (Sir)

).

Zind all_parse(Strl ,TreeSet) :-
seto~ (D,LF~S'parse(sign(LF, Strl ,S.D),

TreeSet).

Simple a t t a c / n n e n t e x a m p l e . In order to
clarify the monitoring strategy we will now con-
sider how an attachment ambiguity may be
avoided. The following German sentence consti-
tutes a simplified example of the sort of attach-
ment ambiguity shown in (2).

(3) Die M~inner haben heute die Frau mit dem
Fer nglas gesehen.
The men have today the woman with the
telescope seen.
Today the men saw the woman with the
telescope.

2 In the actual implementation the predicate ~ind_all _-
parse is complicated in order to remember which parses
were already tried. If a parse has been tried before, then
the predicate fails because then that reslflt is either al-
ready shown to be ambiguous, or otherwise the colTs-
sponding solution he.s already been found.

Suppose indeed that the generator, as a first pos-
sibility, constructs this sentence in order to realize
the (simplified) semantic representation:

heute(mi t (f ernglas, sehen(pl(mann), f rau))

Let us assume that the corresponding derivation
tree is the tree in figure 3. To find out whether

topic

/ \
mann verb ~see

/ \
haben vp_compl

/ \
frau vp_mod

mit dem fernglass gesehen

Figure 3: Derivation tree of German example

this sentence is ambiguous the parser is called.
The parser will find two results, indicating that
the sentence is ambiguous. For the alternative
reading tile derivation tree shown in figure 4 is
found.

topic

/ \
mann verb_see

/ \
haben vp_compl

/ \
pp-mod gesehen

/ \
frau mit dem fernglass

Figure 4: Derivation tree of alternative reading

The derivation tree of the result of generation
is then compared with the trees assigned to the
alternative readings (in this ease only one), given
rise to the marked derivation tree shown in fig-
ure 5.

The monitored generation will then try to find
alternative possibilities at these marked nodes,
However, no such alternatives exist. Therefore,
the markers are pushed up one level, obtaining
the derivation tree given in figure 6.

ACRES DE COLING-92. NANTES. 23-28 Aou'r 1992 7 0 4 PREC. OF COLING-92, NANTES, AUO. 23-28, 1992

topic

/ \
n l a n n ve rb~sec

/ \
haben vp_compl

frau MARKED vpanod MARKED

/ \
tnit dem fernglass gesehen

Figure 5: Marked tree of German example

topic

/ \
YilaIln verb~see

haben vp_eompl MARKED

/ \
frau vp_mod

/ \
mit dem ferngtass gesehen

Figure 6: Markers are pushed one level upward

At this point the monitored generator again
tries to find alternatives for tile marked nodes,
this time sueeessflflly yielding:

(4) Die Mgnner haben mit dem Fernglass die
Prau gesehen.

At this point we may stop. However, note that
if we ask for further possibilities we will eventu-
ally obtain all possible results. For example, if
the markers are pushed to the root node of the
derivation tree we will also obtain

(5) Mit dcm Ferngtass haben (lie Mgnner (lie
l'¥au gesehen.

4 D i s c u s s i o n

P r o p e r t i e s . Some of the important properties
of our approach can be dmraeterised as follows.

The strategy is sound and complete in the sense
tha t no ambiguous utterances will be produced,
and all un-ambiguous utterances are produced. If
for a given semantic s tructure no nn-ambiguous
utterance is possible, the current s trategy will not

deliver a solution (it is foreseen tha t in such cases
the planner decides what should happen).

The strategy is completely independent on the
grammars that are bcing used (except for the re-
l i lac6 on derivation trees). Even more interest-
ingly, the nature of the underlying parsing and
generalion strategy is not important either. The
strategy can thus he used with any parsing- or
generation strategy.

1)uri~g thc monitored generation previously
generated structures are re-used, because only
the ambiguous partial structures have to be re-
generated.

Finally, for the proposed strategy to i)e mean-
ingful, it nmst bc the case tha t r*;versible gram-
mars are being used. If this were not the case then
it would not makc sense to compare the deriva-
tion tree of a generation result with the derivation
trees which the parser produces.

G e n e r a t i o n o f P a r a p h r a s e s . In Neumann
and van Noord (to appear) we discuss the imple-
mentation of a variant of the monitoring strategy,
to solve tile problem of the generation of para-
phrases.

If parsing an ut terance has lead to several read-
ings, one way in order to detcrmme the intended
meaning is to s tar t a claritication dialog, in which
the multiple interpretations of the parsed utter-
ancc are con t r~ t cd by restat ing them in different
form. The dialog partner is then requested to
almost the approllriate paraphr~qc, by e~sking her
'Do you nrean X or Y ?'.

The advantage of our approach is, that it will
be ensured tha t the source of the ambiguity is
used dircctly during the production of such para-
phrases. Therefore, the generation of irrelevant
paraphrases is avoided.

L i m i t a t i o n s . It should be clear tha t monitor-
ing involves nlore than the. avoidance of alnhigu--
ities, l,evelt (1989) discusses also monitorirlg on
the conceptual lewd and inonitoring with respect
to social standards, lexical errors, loudness, pre-
cision and others. Obviously, our approach is re-
stricted in the sense tha t no changes to the inlmt
LF are made.

Meteer (1990) makes a strict distinction be-
tween processes that can change decisions that
operate on intermediate levels of representatiml
(optimisations) and others tha t operate on pro-
duced text (revisions). Our strategy is an exam-
pie of revision. Optimisations are useful when
changes have to be done during the initial gen-
eration process. For example, in Neumann and

AcrEs DE COLING-92, NANTES, 23-28 AO't3T 1992 7 0 5 F"aoc. Ol: COLING-92, NANTES, AUO. 23-28, 1992

Finkler (1990) an incremental and parallel gram-
matical component is described that is able to
handle under-specified input such that it detects
and requests missing but necessary grammatical
information.

I m p l e m e n t a t i o n . In Levelt (1989) and Meteer
(1990) the need for revision respectively moni-
toring is discussed in detail although they de-
scribe no implementations. As far as we know
our approach is the first implementation of re-
vising a produced utterance in order to find an
un-ambiguous alternative. The underlying parser
and generator are described in Shieber et al.
(1990) and van Noord (1991). We are using lex-
icalized unification-based grammars for German
and Dutch.

Acknowledgements

This research work has been partially supported
by the German Science Foundation in its Special
Collaborative Research Programme on Artificial
Intelligence and Knowledge Based Systems (SFB
314, Project N3 BiLD), and by the DFKI in the
project DISCO, funded by the German Ministry
for Research and Technology under Grant-No.:
ITW 9002.

References

Douglas E. Appelt. Bidirectional grammars and
the design of natural language generation sys-
tems. In Y. Wilks, editor, Theoretical Issues in
Natural Language Processing, pages 206-212.
Hillsdale, N.J.: Erlbaum, 1989.

K. De Smedt and G. Kempen. Incremental sen-
tence production, self-correction and coordina-
tion. In G. Kempen, editor, Natural Language
Generation, pages 365-376. Martinus Nijhoff,
Dordrecht, 1987.

Jerry A. Fodor. The Modularity of Mind: An .Es.
say on Faculty Psychology. A Bradford Book,
MIT Press, Cambridge, Massachusetts, 1983.

Anthony Jameson and Wolfgang Wahlster. User
modelling in anaphora generation: Ellipsis and
definite description. In ECAI, pages 222-227,
Orsay, 1982.

Aravind K. Joshi. Generation - a new frontier
of natural language processing? In Theoretical
Issues in Natural Language Processing 3, New
Mexico State University, 1987.

Willem J. M. Levelt. Speaking: From Intention
to Articulation. MIT Press, Cambridge, Mas-
sachusetts, 1989.

Marie M. Meteer. The Generation Gap - the
problem of ezpressibility in test planning. PhD
thesis, University of Massachusetts, 1990.

Giinter Neumann and Wolfgang Finkler. A bead-
driven approach to incremental and parallel
generation of syntactic structures. In Proceed-
tugs of the 13th International Conference on
Computational Linguistics (COL1NG), pages
288-293, Helsinki, 1990.

Giinter Neumann and Gertjan van Noord. Re-
versible grammars for self-monitoring and gen-
eration of paraphrases. In Tomek Strzalkowski,
editor, Reversible Grammar in Natural Lan-
guage Processing. Kluwer, to appear.

Giinter Neumann. Reversibility and modularity
in natural language generation. In Proceedings
of the ACL Workshop on Reversible Grammar
in Natural Language Processing, pages 31-39,
Berkeley, 1991.

Stuart M. Shieber, Gertjan van Noord, Robert C.
Moore, and Fernando C.N. Pereira. Semantic-
head-driven generation. Computational Lin-
guistics, 16(1), 1990.

Gertjan van Noord. Head corner parsing for dis-
continuous constituency. In 29th Annual Meet-
ing of the Association for Computational Lin-
guistics, Berkeley, 1991.

R. Wilensky, Y. Arens, and D. Chin. Talking to
unix in english: An overview of uc. Communi-
cations of the ACM, pages 574 593, 1984.

ACRES DE COLING-92, NANTES, 23-28 AOUT 1992 7 0 6 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

