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Abstract -- In this paper, we present a ncw math-
ematical framework in which disjunctive feature
structures are defined as directed acyclic hypergraphs,
Disjunction is defined in the feature structure domain,
and not at the syntactic Ievel in feature descriptions, This
enables us to study propertics and specify operations in
terms of properties of, or operations on, hypergraphs
rather than in syntactic terms. We illustraic the
cxpressive power of this framework by defining a class
of disjunctive fcature structures with interesting
properties (factored normal form or FNF), such as
closure under factoring, unfactoring, unification, and
generalization. Unification, in particular, has the
intuitive appeal of preserving as much as possible the
particular factoring of the disjunctive feature structures
to be unified. We also show that unification in the FNF
class can be extremely cfficient in practical applications.

1. INTRODUCTION

It has become common to make a distinction between a
language for the description of feature structurcs and
feature structures themselves, which are seen as directed
acyclic graphs (dags) or automata (sce, for instance,
Kasper and Rounds, 1986). To avoid confusion, the
terms of the representation language are often referred to
as feature descriptions. Disjunction is a representation
tool in the representation language, intended to describe
sets of feature structures. In this framework, there are
no disjunctive featurc structires, but only disjunctive
feature descriptions.

This framework has enabled researchers to explore
the computational complexity of unification. However, it
has some drawbacks. First, properties have to be stated
(and proofs carried out) at the syntactic level. This
implies using a complicated calculus based on formula
equivalence rules, rather than using graph-thcoretical
propertics. In addition, unification is not well-defined
with respects to disjunction. There is reference in the
literature to the "unification of disjunctive fcature
descriptions”, but, formally, we should instead speak of
the unification of the sets of feature structures the
descriptions represent.

For example, unifying the sets of feature structures
represented by the disjunctive feature descriptions in
Fig. 1 yields a set of four (non-disjunctive) feature
structures, which can be described by scveral equally
legitimate formulae: A factored, B factored, disjunctive
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normal form (DNF), cic. Depending on the algorithm
that is used, the description of the result will be one or
the other of these formulac. Some algorithms require
expansion to DNF and will therefore produce a DNF
representation as a result, but other algorithms may
produce different representations.

There is an important body of research concerned
with the development of algorithms that avoid the
expensive expansion 1o DNF (e.g., Kasper, 1987).
These algorithms typically produce descriptions of the
unification, in which some of the disjunctions in the
original descriptions arc retained. However, these
descriptions arc produced as a computational side-effect
(potentially different depending on the algorithm) rather
than as a result of the application of a formal definition.

A: al B: bl
[Esz ¥ %ﬂ [{Eii z;%ﬂ
A: a2 B: b2
el 1B

Fig. 1. Different descriptions for the same set of feature
structures

In this paper, we first consider disjunctive feature
structures as objects in themselves, defined in terms of
directed acyclic hypergraphs. This cnables us to build a
mathematical framework based on graph theory in order
1o study the properties of disjunctive feature structures
and specify operations (such as unification) in algebraic
rather that syntactic terms. It also enables the
specification of algorithms in terms of graph
manipulations, and suggests a data structure for
implementation.

We then illustrate the expressive power of this
framcwork by defining a class of disjunctive feature
structures with interesting properties (factored normal
form or FNF), such as closurc under factoring,
unfactoring, unification, and generalization. These
operations (and the relation of subsumption) are defined
in terms of operations on (or relations among)
hypergraphs. Unification, in particular, has the intuitive
appeal 1o preserve as much as possible the particular
factoring of the disjunctive featurc structures to be
unificd. We also show that unification in the FNF class
can bhe extremely efficient in practical applications.

For lack of space, proofs will be omitted or only
suggested.
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2. BASIC FRAMEWORK

2.1 Disjunctive feature structures as hypergraplis

(Disjunctive) feature structures will be defined as
directed acyclic hypergraphs. In a hypergraph (sec
Berge, 1970), arcs (hyperarcs) conncct scts of nodes
instead of pairs of nodes, as in usual graphs. We will
consider hyperarcs as directed from their first node to all
other nodes. More precisely, each hyperarc will be an
ordered pair consisting of an input node nj,, and a (non-
cmpty) set of output nodes njj, .... nj,. We will say

that (njy, {ni, ..., ni)) is a k-arc from ny to
Rijy oo iy, that nyy is an immediate predecessor of
Rigy vees Ry, and that ng,, ..., 0y arc immediate

successors of nj.

A path! in a hypergraph is a sequence of nodes
Hige cor B such that for j = 1,..,p -1, njis an
immediatc predecessor of ny, . If there exists a path
from a node n; to a node nj, we will write n; = ;. A
hypergraph is acyclic if there is no node such that n; =
n;. A hypergraph has a root ng if for each node n; # ng,
np = n;. The leaves of a hypergraph are those nodes
with no successor. A path terminating with a leaf is a
maximal path. Nodes with more than one immediate
predecessor are called merging nodes.

Definition 2.1 Lct L be a sct of labels and A be a set
of atomic values. A (disjunctive) feature structure on (L,
A) is a quadruple F = (D, ng, A, @), respecting the
consistency conditions 2.1 below, where D is a finite
directed acyclic hypergraph with a root ng, A is a partial
function from the l-arcs of D into L, and « is a partial
function from the leaves of D into A,

Feature structures which have isomorphic hyper-
graphs, whose corresponding leaves have the same
valuc, and whose corresponding feature-arcs have the
same labels, are isomorphic. We will consider such
feature structures to be equal up to isomorphism.

Definition 2.2 Labeled 1-arcs are called feature-arcs.
Non-labeled hyperarcs are called OR-arcs.

Note that OR-arcs are usually t-arcs with & >1, but
(non-labeled) 1-arcs can be OR-arcs as a special case.
We will use a graphic representation for disjunctive
feature structures in which OR-arcs are represented as k
lines connected together? (see Fig. 2).

Definition 2.3 The extended label of a given path is
the concatenation of all labels along that path. We will
use the notation i1:12: ... I, to represent extended labels.
A maximal extended label from a node is an extended
label for a maximal path from that node.

IWe use this term in the sense usual in graph theory. It should not
be confused with the term patk used in many feature structure
studies, which is a string of labels, and for which we will
introduce the term extended label Jater in the paper.

2in some work involving AND/OR graphs, this convention is used
for AND-arcs, This should not create further confusion.
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Fig. 2. Graphic representation

Conditions 2.1 Disjunctive feature structures must
verify the following consistency conditions:

(C1) No output nodde of an OR-arc is a lcaf;

(C7) Output nodes of OR-arcs are not merging nodes;

(C3) All featarc-arcs from the same node have different
labcls;

(C4) No maximal extended label from & given node is a
prefix of a non-maximal extended label obtained by
following a different hyperare from the same node.

Cy and Cy consirain OR-arcs to represent only
disjunctions. Cj3 and C4 are extensions of the
determinism that is usually imposed on dags (no
outgoing arcs with the same label from any given node).

Definition 2.4 A dag feature structure is a feature
structure with no OR-arc.

Definition 2.5 A projection of a feature structure x is
a hypergraph obtained by removing all but one output
node of all ORr-arcs of x.

Therefore, a projection has only 1-arcs.

Definition 2.6 A dag featurc structure y is a dag-
projection of a feature structure x if there exist some
projection y’ of x and a function & mapping nodes of y’
into nodes of y such that:

0
)

the root of y is mapped to the root of y;

if (nig, {ni1}) is a feawure-arc of y’, then
(h{nig), {A(ni})}) is a featurc-arc of y with the
samc label;

if (njg, {ni}) is a 1-OR-arc of y’, then A{nip) =
Hoy);

the value associated with a node #; in y’is the same
as the value associated with #(n;) in y, or both have
no value;

each feature arc in y is the image of at least one
feature arc in y’,

3
“@

(&)

In other terms, a dag-projection is obtained from a
projection by merging the input and output nodes of
cach 1-OR-arc, and merging paths with common
prefixes to ensure determinism,

Definition 2.7 A sub-feature structure rooted at a
node n; is a quadruple composed of a sub-hypergraph
rooted at that node, the root n;, together with the
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restrictions of the label and value functions to this sub-
hypergraph. The AND-part of a node is the sub-feature
structure rooted at that node, starting with only the
feature-arcs from that node. The OR-parts of a node arc
the different sub-feature structures rooted at that node,
starting with each of the OR-arcs. The disjuncts of an
OR-arc are the sub-feature structures rooted at each of
the output nodes of that OR-arc. If a node has only one
OR-arc, we will call its disjuncts the disjuncts of the

node.

[ a: "’B: l:[c)&l;l
Fara ]}
| L[r:mlem]]
_{[H 3

]
n:G: a]

=
[N:EO:EL’:E}]] ]

[o:[: E]]
[o:Cr: ¢ T

Fig. 3. Description of the feature structure in Fig. 2.

s:[x: %] ]

2.2 Representation language

Definition 2.8 The representation language for
(disjunctive) featurc structures described above is

defined by the following grammar:
F - [T,..,T]
T 11V
T — {F, ..., F)
1 —ile

v —Flale

where F is the axiom, €is the empty string, { belongs to
the set of labels L, a belongs to the set of atomic values
A, and i belongs to a set I of identifiers (we use the
symbols [0, B, etc.), disjoint from L. A formula @ of
that language is called a (disjunctive) feature description.

The mapping between feature structures and feature
descriptions is straightforward (Fig. 3). Translating
between feature descriptions and feature structures and
checking that a description is valid (that is, corresponds
to a valid feature structure) is computationally trivial,
and does not rely on the (potentially expensive)
application of equivalence rules as in Kasper and
Rounds (1986).

3. ATYPOLOGY OF NORMAL FORMS

In this section, we will first define the disjunctive
nomal form (DNF) in terms of hypergraphs. We will
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then define a family of increasingly restricted normal
forms, the most restricted of which is the DNF. One of
them, the factored normal form (FNF) enables a clear
definition of the "format” of a feature structure. It also
imposes a strict hierarchical view of the data, and is
exactly the class of feature structures that are reachable
from the DNF through sequences of factoring
operations. We believe that the FNF class is of great
linguistic interest, since it is clear that disjunction is
often used to reflect hierarchical organization, factoring,
etc., and thus is more than just a space-saving device. In
the sections that follow, factoring operations in the FNF
class will be defined formally, along with appropriate
extentions to the notions of subsumption and
unification.

3.1 Disjunctive Normal Form

Definition 3.1 A (disjunctive) feature structure is said
to be in disjunctive normal form (DNF) if:
(1) the root has only one OR-part, and no AND-part;
(2) each disjunct is a dag feature structure;
(3) all the disjuncts are disjoint and different (non-
isomorphic).
Note that the disjunctive normal form is defined for
feature structures themselves, not for their descriptions.

Definition 3.2 The disjunctive normal form of a
given feature structure x, noted DNF(x), is a DNF
feature structure, in which the set of disjuncts D; is equal
to the set of dag-projections of x.

Definition 3.3 Two feature structures x and y arc
DNF-equivalent if DNF(x) = DNF(y). We will note

Sang Y

3.2 Typology of normal forms

‘We can define several interesting restrictions on feature
structures, which in turn define a typology of
increasingly restricted normal forms.

Condition 3.1 Dag-projections obtained by different
sclections of output nodes of OR-arcs are different.

Condition 3.2 Each node has at most one OR-part.
Condition 3.3 The AND-part of each node is a dag.

Definition 3.4 When combined, the three conditions
above define several normal forms:

(1) 3.1: non-redundant normal form (NRNF);

(2) 3.1and 3.2: hierarchical normal form (HNF);

(3) 3.1 and 3.3: AND-normal form (ANF);

(4) 3.1, 3.2 and 3.3: layered normal form (LNF),
Definition 3.5 In an ANF feature structure x, the
AND-part of a node n; is a maximal AND-part of x if nj
is the output nodc of no feature arc.

Definition 3.6 The layers of a LNF feature structure
are defined recursively as follows:

(1) Layer 0 is the AND-part of the root;
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(2) Layer n+1 is set of (maximal) AND-parts of all the
output nodes of OR-arcs originating in layer n.

Let us now turn back to formats.

Definition 3.7 The format of a dag feature structure
is the set of maximal extended labels starting at its root.
The format of a layer is the union of formats of all the
maximal AND-parts in that layer.

Definition 3.8 A LNF feature structurc is said to be
in factored normal form (FNF) if the following
propertics hold:

(1) the formats of all layers arc disjoint;

(2) paths originating in two distinct maximal AND-parts
of a layer n can merge only in a node belonging to
an AND-part in a layer #’ such that n’ < n.

Fig. 3. A typology of normal forms.

Fig. 3 shows the typology of normal forms. Notc
that the DNF is obviously in FNF,

In the rest of the paper, we will study only the
properties of FNF, in which formats are homogeneous.

Definition 3.9 The formar of a FNF feature structure,
noted f(x), is the sequence <sg, ..., s> of the formats
of each of its layers, in increasing order starting with the
1001,

Definition 3.10 We will call sets of extended labels
dag-formats, and scquences <sg, ..., 5,> of dag-
formats with all s; disjoint, fs-formats.

Proposition 3.2 If two FNF feature structures have
the same DNF and the same format, they are equal.

4. RESTRUCTURING OPERATORS

4.1 Factor and unfactor
Let us give first a few auxiliary definitions.

Definition 4.1 Let x be a dag feature structure, and s
a dag-format. The spanning of x according to s, noted
span,(x), is the greatest sub-dag of x such that of all the
paths in span,(x) have their extended labels in s,

Note that f(spany(x)) < s.

Definition 4.2 A dag fecature structure F is a
common factor of a feature structure x if the AND-part of
all the disjuncts at the top level of x contain F. A dag
format s is said to span a common factor of x if the
spanning of the AND-part of all the disjuncts at the top
Ievel of x according to s is a common factor.

Let us now definc the factoring and unfactoring
operations. Informally, the factor operator extracts a
factor common to all the top-level disjuncts, and raises it
to the root level.

Definition 4.3 Let x be a FNF feature structure such
that f(x) = <50, §1, 52, ..., Sp> and s a dag-format. If
s spans a common factor F, the factoring of x according
1o 5, noted ¢5(x), is the FNF fcature structure DNF-
equivalent to x with format <sguUs’, £1-8°, 82, ..., §4>
where 5= f(F).

Definition 4.4 Let x be a FNF feature structure with
an AND-part A, such that f(x) = <50, 51, 52, ..., $u>,
and s be a dag-format. Il F¥ = span,(x), the unfactoring
of x according to 5, noted ¢ ¢(x), is the FNF featurc
structure that is DNF-cquivalent to x with the format
<$p-5', $1US", 52, ..., Sp>, where §' = f(F).

Example. Scc Fig. 4

Proposition 4.1 ¢( ¢ :(x)) = P s(ps(x)) = x
Proposition 4.2

(1) ¢s{@s(x)) =P s(x)) = Pyus(x)

@ 5;( 5s(x)) = 55( as(x)) = @ sus(®)

format:
<{A:B,A:C}, {A:D,A:E,F:G,F:H}:

<—§—

format:
<{A:B,A:C,A:D,A:E}, {F:G,F:H}>

_._.,‘pv_.__a)

S={A:D,A:E}

Fig. 4. Factoring and unfactoring
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4.2 Group and ungroup

The factor operator requires that there is a common
factor. In many cases there is no common factor;
however, it is possible to define a group operator that
first splits feature structures into groups of disjuncts that
have common factors with respect to a given format, and
then factors them,

Definition 4.5 Let x be a FNF feature structure such
that f(x) = <@, 51,52, ..., Sa>, A1, ..., Ay be the
AND-parts of the top-level disjuncts of x, and s be a
dag-format. The grouping of x according to s, noted
¥%(x), is the FNF feature structure DNF-equivalent to x
with format <@, s’, s1-5’, 52, ..., §»> where s’ =
U f(spang(A).

Definition 4.6 Let x be a FNF feature structure such
that f(x) = <@, 51, §2, ..., 52>, A1, ..., Ay be the
AND-parts of the top-level disjuncts of x, s be a dag-
format, and s’ =\._Jf(spanx(A;)). We will note ¥ ,(x)
the ungrouping of x according to s ;

(1) if s'=s) then ¥ g(x) is the FNF feature structurc
DNF-cquivalent to x with format
<@, §1US2, 53, ..., Sp>;

(2) if s's1 then ¥ 5(x) is the FNF feature structurc
DNF-equivalent to x with format <@, s1-s', s
US2, §3, voey Sp>.

Example. See Fig. 5.
Proposition 4.3 y(7 :(x) =7 s(3s(x)) = x

Proposition 4.4 The class of FNF feature structures
is closed under factoring, unfactoring, grouping and
ungrouping.

4.3 Format operator

Definition 4.7 Let § be a fs-format <s50,51,...,62>.
The formatting of a DNF feature structure x according to
§, noted vs(x), is the result of the following sequence of
operations;

vs(x) = ¢s0(%‘1ux0(X\‘2UJ1U50(---~(75nU...U\Fo(x))))

It is clear that vg(x) is in FNF, and is DNF-
equivalent to x.

Proposition 4.5 Any FNF feature structure x can be
reached from its DNF though a sequence of grouping
and factoring operations. More precisely, if x' =
DNF(x) then x = vf(x(x").

Definition 4.8 Let § be a fs-format <s50,51,...,59>.
The unformatting of a FNF feature structure x according
to §, noted Vg(x), is the result of the following
sequence of operations:

Vs(x) = 7 saU sl ( ? .r2u.r|uso( 7 s)uso( ¢Tso(x))))

Proposition 4.6 Any FNF feature structure x can be
transformed into its DNF though a sequence of
unfactoring and ungrouping operations. More
precisely, V f(x)(x) = DNF(x).

Proposition 4.7 vg(Vg(x)) = Vg(vs(x)) = x

5. SUBSUMPTION, UNIFICATION AND
GENERALIZATION

As mentioned in the introduction, the format of the result
of unification is not defined in the classical approach.
Our goal will be to define unification on FNF disjunctive
feature structures in such a way that the format of the
result is unique and predictable. Intuitively, when
featurc descriptions have compatible formats (as in Fig.
6), it secms that unification should preserve it. On the
other hand, when two feature descriptions have
completely incompatible formats (as in Fig. 1), the
resulting format should be in DNF. When formats are
only partially compatible, a limited amount of
unfactoring should be performed, and the compatible
part should be preserved in the result. These
considerations lead us to define compatibility of formats,
and to extend the notions of subsumption, unification,
and generalization to feature structure formats. We then
define unification and gencralization on disjunctive
feature structures in such a way that important propertics

format:
<o, (A, B,C,D:E,F}, {G,H}>

— Y

et

format:
<@, {A}, {B,C,D:E,F}, (G, H}>

Fig. 5. Grouping and ungrouping
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hold. In particular, reduction to DNF, factoring, and
grouping arc homomorphisms with respect to unification
(that is, DNF(x LI y) = DNF(x) L) DNE(y), ¥s(x-Ll y)
= %(®) U x%G). etc).

n: al A ar ] _] [a: a1 7] -‘
I:B: b]l:l D: dl D: dl
ci e [n: m] [n: bl
B: b2 E: el C: cl
[C: CJ {[B: bZ] E: el]
n: a2 L\LE: e2l/] [u: b7
B: b3 A: a2 C: c2
I:C= a3 D: d2 L F: eZ|/L]
R: bd [B: b3] A: a2
[C: cd E: @3 D: d2
[B: 1)4] B: b3
E: ed [C: c3
- a E: el}
B: b4
U-> C:oed
LL E: ed

Fig. 6. Compatible formats

In what follows, we will call the classical
subsumption, unification, generalization of dag feature
structures dag-subsumption, dag-unification and dag-
generalization (n0ted Suug, L g0 Ty, repectively). The
classical subsumption, unification, generalization of
DNF feature structures will be called dnf-subsumption,
dnf-unification and dnf-generalization (noted g5, Llans,
My, repectively).

5.1 Subsumption, uwnification, generalization
of formats

Definition 5.1Let §; be a fs-format <sq,
51y,.-.0 51,,> and S2 be a fs-format <sz,, 52;,..., §2,>.
We will say that Sy subsumes S if each p in s5y;
belongs to some 82 with { < j, for all i in {1,n}. We
will note §) Sfm, S2

Definition 5.2 Let S and S; be two fs-formats. The
wnification of §1 and Sz, noted S Llfm, S4. is the
greatest lower bound of Sy and S2 according to the
format subsumption relation, The generalization of S1
and $3, noted 51 ﬂ/m $2, is the least upper bound of
§1 and S2 according to the format subsumption relation.

It is easy to prove that these bounds exist. They can
be built recursively. For example, let §3 = <51,
S1pses §1,> and S = <52, §24,..., §2,> (for the
sake of simplicity, we will consider the shorter of
and S to be padded on the right with an appropriate
number of @'s in order to ensure the same length), § =
St U e §2 = <80, S1...., $4> c€an be constructed
recursively:

M) sp=s1,Us2,
@ s= o)

n

LJ

A for all i, 0<i <n.
Definition 5.3 Let Sy be a fs-format <5y,
S1ysee- §1,> and S a fs-format <s24, 52¢5-.» 52,>.
We will say that Sy is a sub-format of §1 if 51, is
included in s, for all i in {1, n}, We will say that §;
and S, are compatible if both §1 and §; are sub-formats
of the same format.
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5.2 Subsumption, unification, generalization
of disjunctive feature structures

Definition 5.4 We will say that a FNF feature
structure x subsumes a FNF feature structure y, and
note x <y, if

(1) x 5.1,‘[)’
@ F0 % FO)

Definition 5.5 Let x and y be two FNF featurc
stractures. The unification of x and y, noted x LJ y, is
the greatest lower bound of x and y according to the
subsumption rclation. The generalization of §1 and §2,
noted x My, is the least upper bound of x and y
according to the format subsumption relation.

The following proposition states thatx LI y is dnf-
cquivalent to the dnf-unification of the DNFs of x and y,
and the format of x L} y is the unification of the formats
of xand y:

Proposition 5.1
(1)  DNF(x lJy) = DNF(x) Uans DNF(y)
@  feun=r e, f6
As a result, the unification of x and y can be computed
by compietely unformatting both x and y, unifying
them, and formatting the result according to the
unification of their formats:
Proposition 5.2 B B

x Uy = VuUmf o)V f() gy V FoION

(Dual proposition holds for gencralization.)

Proposition 5.3 The class of FNF feature structures
is closed under factoring, unfactoring, unification, and
generalization,

This follows directly from the definitions.
Proposition 5.4

() wxuy) = %x L%
@ LUy =7%@UL®
B Py = g L)
@ dxlly) = g L)

(Dual propositions hold for generalization.)

5.3 Algorithm

Proposition 5.2 does not imply that complete
unfactoring and re-factoring is the most efficient
computation of unification and generalization. Because
of the propertics given in proposition 5.4, unification
can be carried out layer by layer, and only partial
unfactoring is needed (algorithm 5.1). In the extreme
case, when the formats of x and y are compatible, no
unfactoring is needed, and the procedure match-formats
does nothing.
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Algorithm 5.1 Unification of FNF feature structures

function unify(x, y: feature-structure): {eature-structure
match-formats(x, y)
// Unify AND-paris
2.AND ¢ dag-unify(x.AND, y.AND)
if 2.AND = failure then retum failure
// Unify OR-parts
2.0R « unify-disjuncts(x.OR, y.OR)
if 2.0R = failure then return failure else return z
function unify-disjuncts(x, y: feature-structure):
feature-structure
/fassume x.AND and y.AND are empty
match-formats(x, y)
k<0
for each x.DISJ;
for each y.DISJ;
t « dag-unify(x.DISJ;.AND, y.DlSJj.AND)
if t # failure then
u « unify-disjuncts
(x.DISJ;.OR, y.DISJ j.OR)
if u # failure then

ke k+1

2.DISI.AND « ¢

z.DISJ;.OR « u
if k = 0 then return failure elsereturn z

We will consider the complexity of this algorithm in
terms of the number of dag-unifications, which is the
only costly operation (O{n log(n)), where n is the total
number of symbols in the two dag feature structures--
see Aft-Kaci, 1984). We will first consider the case
where the formats are compatible. One dag-unification is
performed in the unify function, but the bulk of the dag-
unifications are performed in the unify-disjuncts
function. There are two nested loops, and the function is
applied recursively through all the layers. Therefore, in
the worst case, the algorithm requires O(d2) dag-
unifications, whre d is the total number of disjuncts.

When the formats are not compatible, some
unfactoring and ungrouping has to be performed by the
match-formats function in order to force the formats to
match. The number of operations can be limited if the
two formats arc partially compatible, due to the
properties of FNF. Complete unformatting will be
necessary only in cases where the two formats are
completely incompatible.

For example, if f(x) = <{A}, (B,C), {D,E}, (F}.
{G}, {H}>, and f(3) = <{I}, (B.J}, (D/F}, {EK],
(G}, {L}>, the resulting format is <{A,l}, (B,CJ)},
{D}, (E,F K], {G}, (HL}>. The two first layers can
be computed without unfactoring. Unfactoring is
required for disjuncts at the next level, yielding the
formats  <{D}, (E/F), {G), (H}> and <(D},
{E,F.K)}, (G), {L}>, respectively. When this is
accomplished the formats match, and the algorithm can
resume with no more unfactoring.

It is clear that, in the worst case, when the
algorithm requires the complete unformatting of the two
feature structures, the total number of dag-unifications
grows exponentially with the number of disjuncts.
However, in most pratical cases, the algorithm is likely
to perform better. We saw, in particular, that when the
two feature structures have completely compatible
formats, the complexity is only quadratic. There is
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obviously a range of possible behaviors between these
two extremes.

It seems to us that in practical applications,
disjunction is not random, but, instead, reflects some
systematic linguistic propertics. A high degree of
compatibility among formats is thercfore expected. It
should also be noted that the algorithm can easily be
modified so that only one feature structure is unfactored
and re-formatted into a format that is compatible with the
format of the other. This is especially useful in the
common situation in which a small feature structure,
containing a small number of disjuncts (c.g. a
constituent at a given stage of parsing) is matched
against a very large feature structare (c.g. a grammar).
In this case, the time required for unformatting and
reformatting the "small” feature structure is negligible,
and the overall number of dag-unifications grows
lincarly with the number of disjuncis in the “large”
feature structure.

6. CONCLUSION

In this paper, we present a new mathematical
framework in which disjunctive feature structures arc
defined as directed acyclic hypergraphs. Disjunction is
defined in the feature structure domain, and not at the
syntactic level in feature descriptions. This enables us to
study propertics and specify operations (such as
unification) and relations (such as subsumption) in terms
of algebraic operations on (or relations among)
hypergraphs rather than in syntactic terms. We illustrate
the expressive power of this framework by defining a
class of disjunctive feature structures with interesting
properties {factored normal form, or FNF), such as
closure under factoring, unfactoring, unification, and
generalization. Unification, in particular, has the
intuitive appeal of preserving as much as possible the
particular factoring of the disjunctive feature structures
to be unified. We also show that unification in the FNF
class can be extremely efficient in practical applications.
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