Quasi-Destructive Graph Unification

with Structure-Sharing”

Hideto Tomabechi
Carnegie Mellon University
109 EDSH, Pittsburgh, PA 15213-3890
tomabech@cs.cmu.edu

Abstract

Graph unification remains the most expensive part
of unification-based grammar parsing. We foc
on one specd-up element in the design of unifi
tion algorithms: avoidance of copying of unmodi-
fied subgraphs. We propose a method of attaining
such a design through a method of structure-sharing
which avoids log(d) overheads often associated with
haring of graphs without any use of costly
dependency pointers. The proposed scheme elimi-

i

structu

nates redundant copying while maintaining the quasi-
destructive scheme’s ability to avold ower copying
and early copying combined with its ability to handle
cyclic structures without algorithmic additions.

1 Motivation
Despite receut efforts in improving graph unification
algorithims. graph unification remains the most ex-
pensive part of parsing. both in time and space.
ATR's latest data from the SL-TRANS large-scale
speech-to-gpeech translation project ([Morimoto. et
al, 1990]) show 80 to 90 percent of total parsing time
is still consumed by graph unification where 75 to 95
percent of time is consumed by graph copying func-
tions.! Quasi-Destructive (Q-D) Graph Unification
([Tomabechi. 1991]) was developed as a fast variation
of non-destructive graph unification based upon the
notion of time-sensitive ‘quasi-destruction’ of node
structures. The Q-D algorithm was proposed based
upon the following accepted observation about graph
unification:

Unification does not always succeed.

Copying is an expensive operation.

The design of the Q-D scheme was motivated by
the following two principles for fast graph unification
based upon the above observations:

¢ Copying should be performed only for suc-
cessful unifications.

¢ Unification failures should be found as
soon as possible,

*This research was done while the author was a Visiting
Research Scientist at ATR Interpreting Telephony Research
Laboratories.

1Based on unpublished reports from Knowledge and Data
Processing Dept. ATR. The observed teadency was that sen-
tences with very long parsing time requiring a large number of
unification calls {over 2000 top-level calls) consumed extremely
large proportion (over 93 percent) of total parsing time for
graph unification. Similar data reported in [Kogure. 1990}

ACTES DE COLING-92, NANTES, 23-28 A00T 1992 440

and eliminated Over Copying and Early Copying (as
defined in [Tomabechi. 1991]2) and ran about twice
the speed of [Wroblewski. 1987]'s alg()rithan In this
paper we propose another design principle for graph
unification based upon yet another accepted observa-
tion that:

Unmodified subgraphs can be shared.

At least two schemes have been proposed recently
based upon this observation (namely [Kogure. 1990)
and [Emele, 1991]); however, both schemes are based
upon the incremental copying scheme and as de-
scribed in [Tomabechi, 1991] incremental copying
schemes inherently suffer from Farly Copying as de-
fined in that article. This is because. when a unifica-
tion fails, the copies that were created np to the point
of failure are wasted if copies are created incremen-
tally. By way of definition we would like to catego-
rize the sharing of structures in graphs into Feature-
Structure Sharing (FS-Sharing) and Data-Structure
Sharing (DS-Sharing). Below are our definitions:

o Feature-Structure Sharing: Two or more dis-
tinct paths within a graph share the same sub-
graph by converging on the same node - equiv-
alent to the notion of structure sharing or reen-
trancy in linguistic theories (such as in [Pollard
and Sag, 1987]).

Data-Structure Sharing: Two or more dis-
tinct graphs share the same subgraph by con-
verging on the same node the notion of

2Namely.

¢ Over Copying: Two dags are created in order to create
one new dag. - This typically happens when copies of two
input dags are created prior to a destructive unification
operation to build one new dag.

Early Copying: Copies are created prior to the failure
of unification so that copies created since the heginning
of the unification up to the point of failure are wasted.

Wroblewski defined Early Copying as follows: “The argument
dags are copied before unification started. If the unification
fails then some of the copying is wasted offort™ and restricts
carly copying to cases that only apply to copies that are created
prior to a unification. Our definition of Barly Copying includes
copies that are created during a unification and created up
to the point of failure which were uncovered by Wroblewski's
definition.

3Recent experiments conducted in the Knowledge and Data
Processing Dept. of ATR shows the original Q-D algorithm
consistently runs at about 40 percent of the elapsed time
of Wroblewski's algorithm with its SL-TRANS large-scale
spoken-language translation system (with over 10.000 gram-
matical graph nodes).

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

structure-sharing al the data structure level.

[Kogure, 1990] calls copying of such structures

Redundant Copying.
Virtually all graph-unification algorithms support
FS-Sharing and some support DS-Sharing with vary-
ing levels of overhead. In this paper we propose
a scheme of graph unification based upon a quasi-
destructive graph unification method that attains
DS-Sharing with virtually no overhead for structure-
sharing. Henceforth, in this paper. structure-sharing
vefers to DS-sharing unless otherwise noted. We
will see that the introduction of structure-sharing to
ve unification attaing another two-fold
increase in ruu-time speed. The graphs handled in

quasi-destruc

the scheme can be any dirceted graph and cyclicity is
handled without any algorithmic additions.
Our design principles for achicving structure-
sharing in the quasi-destructive scheme are:
s Atomic and Bottom nodes can be shared*
Atomic nodes can be shared safely since they
never change their values. Bottom nodes can be
shared® since bottom nodes are always forwarded
to some other nodes when they unify.
¢ Complex nodes can be shared unless they
are modified - complex nodes can be cousid-
ered modified if they are a target of the forward-
ing operation or if they received the current ad-
dition of complement arcs (into comp-arc-list in
quasi-destructive scheme).

By designing an algorithiu based upon these prin-
ciples for structure-sharing while retaining the quasi-
destructive nature of [Tomabechi, 1991)s algorithm.
our scheme eliminates Redundant Copying while
climinating both Early Copying and Over Copying.

2 Q-D Graph Unification

We would first like to describe the quasi-destructive
(Q-D) graph unification scheme which is the basis of
our scheme. As a data structure, a node is repre-

sented with five fields: type. arc-list, comp-arc-list,
forward. copy, and generation.® The data-structure
for an arc has two fields, 'label” and *value’. ~Label’
is an atomic symbol whicl labels the are, and *value’
is a pointer to a node structure.

The central notion of the Q-D algorithm is the
dependency of the representational content on the
global timing clock (or the global counter for the
current generation of unifications). Any modification
made to comp-arc-list, forward, or copy fields during
one top-level unification cau be invalidated by one in-
crement operation on the global timing counter. Con-
tents of the comp-arc-list, forward and copy fields arce

4 Atomic nodes are nodes that represent atomic values, Bot-
tom nodes are nodes that represent variables.

5As long as the unification operation is the only operation
to modify graphs.

5Note that [Tomabechi, 1991] used scparate mark fields for
comp-arc-list, forward, and copy: currently however, only one
generation mark is nsed for all three fields. Thanks are due
to Hidehiko Matsuo of Toyo Information Systems (T1S) for
suggesting this.

ACTES DE COLING-92, NANTES, 23-28 AOUT 1992 441

S +

| type t

D +

| arc-list t

Fommmme e +

| comp-arc-list |

B +

| forvard I ARC

T S + e e +
| copy | | label |
o + G- +
| generation | 1 value |
A + D +

Figure 1: Node and Arc Structures

respected only when the generation mark of the par-
ticular node matches the current global counter value.
Q-D graph unification has two kinds of arc lists: 1)
st and 2) comp-arc-list. Arc-list contains the
arcs that are permanent {iL.e. ordinary graph aves)
and comp-are-list contains ares that arc only valid
during one top-level graph unification operation, The
algorithm also uses two kinds of forwarding links. i.c.,
permanent and temporary. A permanent forwarding
link is the usual forwarding link found in other al-
gorithms ([Pereira. 1985], [Wroblewski, 1987], ctc).
Temporary forwarding links are links that are only
valid during one top-level nnification. The currency
of the temporary links is determined by matching
the content of the generation field for the links with
the global counter; if they match, the content of this
field is respected”. As in [Pereira, 1985). the Q-D
algorithm has three types of nodes: 1) :atomic. 2)
shottom®, and 3) :complex. :atomic type nodes rep-

resent atomic symbol values (such as ‘Noun’), :bot-
tom type nodes are variables and :complex type nodes
are nodes that have ares coming out of them. Arcs
are stored in the arc-list field. The atomic value is
also stored in the ai
hottom nodes suc

it if the node type is :atomic.
d in unifying with any nodes
and the result of unification takes the type and the
value of the node that the :bottom node was unified
with, :atomic nodes succeed in unifying with :bottom
nodes or :atomic nodes with the same value (stored
in the arc-list). Unification of an :atomic node with
a tcomplex node immediately fails. :complex nodes
suceeeed in unifying with :bottom nodes or with :conr-
plex nodes whose subgraphs all unify.? Figure 2 is the
central quasi-destructive graph unification algorithim
and Figure 3 is the dercferencing!® function. Tig-
ure 4 shows the algorithin for copying nodes and ares
(called from unify0) while respecting the contents of

73/0 do not have a separate field for temporary forwarding
links; instead. we designate the integer value 9 to represent a
permancut forwarding link. We start incrementing the global
counter from 10 vo whenever the generation mark is not 9. the
integer value must equal the global counter value to respect
the forwarding link.

8Bottom is called leaf in Pereira’s algorithun.

9 Arc values are always nodes and never symbolic values he-
caune :atomic and :bottom nodes may be (or hecome) pointed
to by multiple arcs (i.e, FS-Sharing) depending on grammar
conntraints, and we do not want arcs to contain terminal atomic
values,

0 Dereferencing is an operation to recursively traverse for-
warding links to return the target node of forwarding.

Proc. or COLING-92, NANTES, AUG. 23-28, 1992

QUuasT-DESTRUCTIVE GRAPH UNIFICATION J

FUNCTION unify-dg(dgl,dg2);
result +— catch with tag ‘unify-fail
calling unify0{dgl.dg2):
increment *unify-global-counter*: ;; starts from 10 1
return{result});
END;

FUNCTION unify0{dgl,dg2);
if "*T* = unifyl(dgl,dg2); THEN
copy + copy-dg-with-comp-arcs{dgl);
return{copy):
END;

FUNCTION unifyl (dgl-underef.dg2-underef):
dgl + dereference-dgidgl-underef);
dg2 ~ dereference-dgldg2-underef}):
IF (dgl.copy is non-cmpty) THEN
dgl.copy « uil; i cutoff uncurrent copy
IF (dg2.copy is non-empty) THEN
dg2.copy « nil;
IF (dgl = dg2)"* THEN
retuen(*T*),;
ELSE IF (dgl.type = :hottom) THEN
forward-dg(dgl.dg2,:temporary);
return{*T*});
ELSE IF (dg2.type = :bottom) THEN
forward-dg(dg2.dgl,:;temporary);
return{"*T*);
ELSE IF (dgl.type = :atomic AND
dg2.type = :atomic) THEN
IF (dgl.arc-list = dg2.arc-list)'3THEN
forward-dg(dg2,dgl,:temporary):
return("*T*);
ELSE throw!Ywith keyword unify-fail;
ELSE IF (dgl.type = :atomic OR.
dg2.type = :atomic) THEN
throw with keyword "unify-fail;
ELSE shared + intersectarcs(dgl,dg2);
forward-dg(dg2.dgl,:temporary);!s
FOR EACH arc IN shared DO
unify1(destination of
the shared arc for dgl.
destination of
the shared arc for dg2};
new « complementarcs(dg2,dgl):*®
IF'7 (dgl.comp-arc-list is non-empty) THEN

IF (dgl.generation = *unify-glohal-counter*) THEN

FOR EACH arc IN new DO
push arc to dgl.comp-arc-list:
ELSE dgl.comp-arc-list « nil;
ELSE dgl.generation — *unify-global-counter*:
dgl.comp-arc-lint « new;
return (*¥T*);
END:

Figure 2: The Q-D Unification Functions
he functions Complementarcs(dgl,dg2) and In-

119 jndicates a permanent forwarding link.

12 Fqual in the ‘eq’ nense. Becanse of forwarding and cycles,
it is possible that dgl and dg2 are “eq’.

13 Arc-list contains atomic valueif the node is of type tatomic.

14 Catel /throw construct; i.c., inmediately return to unify-
dg.

15 This was performed after FOR BACH loop in [Tomabechi,
1991} which could have caused a problem with a successful
cyclic call. Thauks are duc to Marie Boyle of University of
Tuebingen for suggesting the change.

18 Complementarca(dg2,dgl) was called before unifyl recur-
sions in {Tomabechi, 1991}, Currently it ix moved to after all
unifyl recursions successfully return. Thanks are also due to
Matrie Boyle for suggesting this.

17This check was added after [Tomabechi, 1991) to avoid
over-writing the comp-arc-list when it is written more than
once within one unify0 call. Thanks are due to Peter Neuhaus
of Universitiit Karlsruhe for reporting this problem.

ACTES DE COLING-92, NANTES, 23-28 A0UT 1992 442

| GrAPit NODE DEREFERENCING]

FUNCTION dereference-dg(dg):
forward-dest «— dg.forward;
IF (forward-dest is non-empty} THEN
IF (dg.generation = *unify-global-counter* OR
dg.generation = 9) THEN
dereference-dg{forward-dest):
ELSE dg.forward « uil; ;; make it GCable
return(dg):
ELSE return(dg):
END;

Figure 3: The Q-D Dereference Function

tersectarcs(dgl.dg2) return the set-difference (the
arcs with labels that exist in dgl but not in dg2)
and intersection (the arcs with labels that exist both
in dgl and dg2). During the sct-difference and set-
intersection operations, the content of comp-arc-lists
are respected as parts of arc lists if the generation
mark matchs the current value of the global timing
counter, Forward(dgl. dg2. dforward-type) puts dg2
in the forward field of dgl. If the keyword in the
function call is :temporary, the current value of the

unify-global-counter is written in the generation
field of dgl. If the keyword is :permanent. 9 is writ-
ten in the generation field of dgl.!* The temporary
forwarding links are necessary to handle reentrancy
and cycles. As soon as uuification (at any level of
recursion throngh shared arcs) is performed, a tem-
porary forwarding link is made from dg2 to dgl (dgl
to dg2 if dgl is of type :bottom). Thus, during unifi-
cation, a node already unified by other recursive calls
to unifyl within the same unify0 call has a temporary
forwarding link from dg2 to dgl (or dgl to dg2). Asa
result, if this node becomes an input argument node,
dereferencing the node causes dgt and dg2 to become
the same node and unification immediately succeeds.
Thus, a subgraph below an already unified node will
not be checked more than once even if an argument
graph has a cycle.!?

QUASI-DESTRUCTIVE COPYING l

FUNCTION copy-dg-with-comp-arcs(dg-underef):
dg «+ dereference-dg{dg-underef);

IF (dg.copy is non-empty AND
dg.copy.generation?® = *unify-global-counter*) THEN
return(dg.copy);*!

ELSE IF (dg.type = :atomic) THEN
newcopy + create-node();??
newcopy.type + :atomic;
newcopy.arc-list «— dg.arc-list:
newcopy.gencration + *unify-global-counter®;
dg.copy «— newcopy:
return(newcopy);

ELSE IF (dgtype = :hottom) THEN
newcopy — create-node();
newcopy.type + :hottom;
newcopy.generition — *unify-global-counter*;
dg.copy — newcopy;
return{newcopy);

ELSE

' Pormanent forwardings may be nceded by grammar con-

pilers that merge graphs.

19 Also, during copying subsequent to a successful unifica-
tion, two arcs converging into the same node will not cause
overcopying simply because if a node already has a copy then
the copy is returned.

Proc. ofF COLING-92, NANTES, AUG. 23-28, 1992

newcopy — create-node():
newcopy.type — complex:
newcopy.generation — *unify-global-counter®:
dg.copy +— newcopy:2?
FOR ALL arc IN dg.arc-list DO
newarc +— copy-arc-and-comp-arc{arc);
push newarc inte newcopy.arc-list;
IF (dg.comp-arc-list is non-empty AND
dg.generation = *unify-global-counter*) THEN
FOR ALL comp-arc IN dg.comp-arc-list DO
newarc +- copy-arc-and-comp-arc{comp-arc);
push newarc into neweopy.arc-list;
dg.comp-arc-list «— nil;
return (newcopy):

END:;

FUNCTION copy-arc-and-comp-arc(input-acc);
label «- input-arc.label;
value «— copy-dg-with-comp-arcs(input-arc.value):
return a new arc with label and value;

END;
Figurc 4: Node and Arc Copying Functions

3 Q-D Copying + DS-Sharing
Tu order to attain structure-sharing during Quasi-
Destrnctive graph unification, no modification is nec-
essary for the unification functions described in the
previous section. This section describes the quasi-
destructive copying with structure-sharing which re-
places the original copying algorithm. Since uni-
fication functions are unmodified, the Q-D unifica-
tion witliout structure-sharing can be mixed trivially
with the Q-D unification with structure-sharing if
such a mixture is desired (by simply choosing differ-
ent copying functions). Informally, the Q-D copying
with structure-sharing is performed in the following
way. Atomic and bottom nodes are shared. A com-
plex node is shared if no nodes helow that node are
changed (a node is considered changed by being a
target of forwarding or having a valid comp-arc-list).
If a node is changed then that information is passed
up the graph path using multiple-value binding facil-
ity when a copy of the nodes are recursively returned.
Two values are returned. the first value being the copy
(or original) node and the second value being the flag
representing whether any of the node below that node
(including that node) has been changed. Atomic and
bottom nodes are always shared: however, they are
considered changed if they were a target of forward-
ing so that the ‘changed’ information is passed up. If
the complex node is a target of forwarding, if no node
below that node is changed then the original complex
node is shared; hiowever, the ‘changed’ information

20Le.. the ‘generation” field of the node stored in the ‘copy’
field of the *dg’ node. The algoritln described in [Tomabechi,
1991] used rcopy-mark’ ficld of ~dg’. Currently ‘generation’ ficld
replaces the three mark ficld described in the article.

217.¢e.. the existing copy of the node,

22Creates an empty node structure,

237Thiy operation to set & newly created copy node into the
copy’ field of ‘dg' was doue after recursion into subgraphs in
the algorithm deseription in [Tomabechi. 1991} which was a
cause of infinite recursion with a particular type of cycles in the
graph. By moving up to this position from after the recursion,
such a problem can be effectively avoided. Thanks are due to
Peter Neuhaus for reporting the problem.

ACTES DE COLING-92, NANTES, 23-28 AoUT 1992 443

Below is
the actual algorithm description for the Q-D copying
with structure-sharing.

r Q-D CoPYING WITH STRUCTURE-SHARING

FUNCTION copy-dg-with-comp-arcs-share(dg-underef):
dg — dercference-dg{dg-underef};
IF (dg.copy is non-empty AND
dg.copy.generation == *unify-global-connter*) THEN
IF (dg = dg.copy) THEN %}
newcopy — create-node():
newcopy.type « hottom;
newcopy.gencration — *unify-global-connter*;
dg.copy - newcapy:
values(dg.copy.:changed): 29
ELSE values{dg.copy.:changed)
ELSE IF (dg = dg-underef) THEN
copy-node-comp-not-forwarded(dg);
ELSE copy-node-tomp-forwarded({dg):
END;

is passed up when the recursion returns.

FUNCTION copy-node-comp-not-forwarded(dg):
IF (dg.type = :atomic) THEN values(dg,uil);
i return original dg with "no change’ flag.
ELSE IF (dg.type = :bottom} THEN values(dg.nil):
ELSE -
IF (dg.comp-arc-list is non-empty AND
dg.generation = *unify-global-counter*) THEN
newcopy «— ereate-node(};
newcopy.type — complex;
newcopy.generation « - *unify-glohal-counter*:
dg.copy +— newcopy:
FOR ALL arc IN dg.arc-list DO
newarc
+- first value of copy-arc-and-comp-arc-share(arc);
push newarc into newcopy.arc-list;
FOR ALL comp-arc IN dg.comp-arc-list DO
neware
= first value of
copy-arc-and-com p-arc-share(comp-are)
push newarc into newcopy.arc-list;
dg.comp-arc-list «— nil:
values{ newcopy,:changed):
ELSE
atate — nil, arcs — nil:
dg.caopy « dg?0. dg.generation «— *unify-global-counter;
FOR ALL arc IN dg.arc-list DO
newarc,changed « copy-arc-and-comp-arc-share(arc);
pusit newarc into arcs:
IF (changed has value) THEN
state — changed;
IF (state has value) THEN
IF (dg.copy # dg) THEN
dy.copy.arc-list «— arcs:
dg.copy.type «— :complex;
values(dg.copy.:changed);
ELSE
newcopy + create-node{);
newcopy.type ~ :complex;
newcopy.generation — *unify-global-counter®;
newcopy.arc-list «— arcs;
dg.copy - newcopy;
values(newcopy.:changed);
ELSE dg.copy « nil; iireset copy field
values(dg.uil):

END;

FUNCTION copy-node-comp-forwarded(dg);

IF {dg.type = :atomic) THEN values(dg..changed);

3 return original dg with ‘changed’ fiag.

ELSE IF (dg.type = :bottom) THEN values(dg,:

ELSE

IF {(dg.comp-arc-list is non-empty AND

dg.generation = *unify-global-connter*) THEN
newcopy +— create-node():
newcopy.type « :complex;

changed);

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

newcapy.generation — *unify-global-counter*;
dg.copy « newcopy:
FOR ALL arc IN dg.arc-list DO
newarc
« firat value of copy-arc-and-comp-arc-share(arc):
puah newarc into newcopy.arc-list:
FOR ALL comp-arc IN dg.comp-arc-list DO
newarc
+— first value of
copy-arc-and-comp-arc-share(comp-arc);
push newarc into newcopy.arc-list;
dg.comp-arc-list — nil:
values{newcopy,:changed);
ELSE
state — nil, arcs « nil;
dg.copy + dg. dg.generation «— *unify-global-counter®;
FOR ALL arc IN dg.arc-list DO
newarc,changed «- copy-arc-and-comp-arc-share(arc):
push newarc into arcs;
IF (changed has valne) THEN
state — changed:
IF (state has value) THEN
IF (dg.copy # dg) THEN
dg.copy.atc-list + arcs:
dg.copy.type — :complex;
values(dg.copy.:changed):
FLSE
newcopy « create-node():
newcopy.type «— complex;
newcopy.generation «— *unify-global-counter®;
newcopy.arc-list +— arcs;
dg.copy « newcopy;
values{newcopy.ichanged);
ELSE dg.copy + nil;
values(dg.changed); ;; considered changed

END;
FUNCTION copy-arc-and-comp-arc-share(input-arc);
destination ,changed
— copy-dg-with-comp-arcs-share(input-arc.value};
IF (changed has value) THEN
label « input-arc.label;
value + destination;
values(a new arc with label and value,:changed);
ELSE values(input-arc,uil): ;; return original arc
END;

Figure 5: Structure-Sharing Copying Functions

4 Experiments

Table 1 shows the results of our experiments us-
ing an HPSG-based sample Japanese grammar de-
veloped at ATR for a counference registration tele-
plone dialogue domain. ‘Unifs’ represents the to-
tal number of top-level unifications during a parse
(i.e, the number of calls to the top-level ‘unify-dg’,
and not unify1")?8. <USrate’ represents the ratio of

24 Currently, all nodes are copied in a cyele in order to prevent
the split of the copy and the original when node above an
unchanged original is modified. Thanks are due to Makoto
Takahasi of TIS for suggesting the fix. Of course, a better
method, if possible, would be to copy the whole cycle only
when at least one node in the cycle is modified,

25yalues’ return multiple values from a function. In our
algorithni, two values are returned. The first value is the result
of copying, and the recond value is a flag indicating if there was
any modification to the node or to any of its descendants.

26Temporarily set copy of the dg to be itself.

27 Multiple-value-bind call. The first value is hound to
‘newarc’. and the second value is bound to *changed".

€.
28 Unifyl is called several times the number of unify-dg in
the grammar used in the experiment. For example unifyl was

ACTES DE COLING-92, NANTES, 23-28 A0UT 1992 444

successful unifications to the total number of unifica-
tions. We parsed cach sentence three times on a Sym-
bolics 3620 using three nnification methods, namely,
Wroblewski’s algorithm. a quasi-destructive method
without structure-sharing, and a quasi-destructive
method with structure-sharing, We took the short-
est clapsed time for each method (*W' represents
Wroblewski’s algoritlin with a modification to han-
dle cycles and variables?, *QD" represents the quasi-
destructive method without structure-sharing, and
Q8" represents the proposed method with structure-
sharing). Data structures are the same for all three

unification methods except for additional fields for
comp-arc-list in the Q-D methods. Same functions
are used to interface with Barley’s parser and the
same subfunctions are used wherever possible (such
as creation and access of arcs) to minimize the dif-
ferences that are not purely algorithmic. *“Number of
Copies’ represents the number of nodes created dur-
ing each parse. ‘Number of Ares’ represents the num-
ber of arcs created during each parse.

We used Earley's parsing algorithm for the cxper-
iment. The Japanese grammar is based on HPSG
analysis ([Pollard and Sag, 1987)) covering phe-
nomena such as coordination, case adjunction, ad-
juncts, control, slash categories, zero-pronouns, in-
terrogatives, WH constructs. and some pragmatics
(speaker, hearer relations, politeness. etc.) ([Yoshi-
moto and Kogure, 1989]). The grammar covers niany
of the important linguistic phenomena in conversa-
tional Japanese. The grammar graphs which are con-
verted from the path cquations contain 2324 nodes.3?
We used 16 sentences from a sample telephone con-
versation dialog which range from very short sen-
tences (one word, i.c., Zie ‘no’) to relatively long ones
(such as soredehakochirakarasochiranitourokuyoushi-
woookuriitashimaese ‘In that case, we [speaker] will
send you [hearer] the registration form.'). Thus, the
number of (top-level) unifications per sentence varied
widely (from 6 to over 500).

5 Discussion:

Pereira ([Percira, 1985]) attains structure-sharing by
having the result graph share information with the
original graphs by storing changes to the environ-
ment’. There will be the log(d) overhead (where d
is the number of nodes in a graph) associated with
Pereira’s method that is required during node access
to assemble the whole graph from the ‘skeleton” and
the updates in the ‘environment”. In the proposed
scheme, since the arcs directly point to the original
graph structures there will be no overhead for node
accesses. Also, during unification, since changes are

called 3299 times for sentence 9 when unify-dg was called 480
times,

22Kogure ([Kogure, 1989]) describes a trivial time modifica-
tion to Wroblewski's algorithm to handle cycles which is used
in our experiments.

39Digjunctive equations are preprocessed by the grammar
reader module to expand into cross-multiples, whereas in
ATR's SL-TRANS system. Kasper's method ([Kasper. 1987])
to handle disjunctive feature-structures is adopted.

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

sent# Unifs USrate Elapsed time(sec)
W QD Qs
1 6 0,50 0,20 0.15 0.13
2 101 0.34 2.53 1.16 1.10
3 18 0.22 0.40 0.20 0.20
4 71 0.55 2.20 1.24 0.91
b 305 0.37 13.78 6.51 3.65
6 59 0.27 3,20 0.64 0.50
7 6 0.50 0.21 0.13 0.11
8 81 0.51 3.17 1.59 1.21
9 480 0.37 24.62 8.1t 5.74
10 555 0.41 40.15 16.39 8.80
11 109 0.456 4.60 1.71 1.41
12 428 0.33 19.57 8.24 4,45
13 559 0.39 37.76 11.74 6,23
14 52 0.38 3.81 0.90 0.50
15 7 0.55 2.50 1.57 0.93
16 77 0.55 2.53 1.57 0.90
total 2984 161.23 61.85 36.77

(% for total) 100% 38.4% 22.8Y%

Num of Copies

Num of Arcs

W ap Qs W Qv Qs
107 79 18 113 123 36
2285 1317 407 2441 1917 760
220 111 26 182 183 62
2151 1564 514 2408 2191 879
9092 5224 1220 9373 T142 2272
997 549 97 874 797 204
107 79 18 113 123 36
2406 1699 401 2572 2334 710
15756 8986 1696 17358 12427 3394
18822 11234 2737 20323 15375 5116
2913 1938 565 3089 2712 992
13363 7491 1586 14321 10218 3059
17741 9417 2483 19014 13055 4471
947 693 107 893 983 199
2137 1513 428 2436 2185 793
2137 1513 428 2436 2185 793
91181 653407 12721 97946 73950 23776
1004 58.6Y% 144 100% 6% 24

Table 1: Comparison of three methods

stored directly in the nodes (in the quasi-destructive
maunuer) there will be no overhead for reflecting the
changes to graphs during unification. We share the
principle of storing changes in a restorable way with
[Karttunen, 1986]'s reversible unification and copy
grapls only after a successful unification. However,

Karttunen'’s method does not nse structure-sharing,
Also, In Karttunen's method®!, whenever a destruc-
tive change is about to be made, the attribute value
pairs3? stored in the body of the node are saved into
an array. The dag node structure itself is also saved
in another array. These values arce restored after the
top level unification is completed, (A copy is made
prior to the restoration operation if the unification
was & suceessful one.) Thus, in Karttunen's method,
cach node in the entire argument graph that has been
destructively modified must be restored separately
by retricving the attribute-values saved in an array
and resetting the values into the dag structure skele-
tons saved in another array. In the Q-D method.
oue increment to the global counter can invalidate
all the changes wade to the nodes. [Karttunen and
Kay. 1985] suggests the use of lazy evaluation to de-
lay destructive changes during unification. [Godden,
1990] presents one method to delay copying until a de-
structive change is about to take place. Godden uses
delayed closures to divectly implement lazy evalua-
tion during unification. While it may be conceptually
straightforward to take advantage of delayed evalua-
tion functionalities in programming languages, actnal
efficiency gain from such a scheme nay not be signif-
icant. This is because such a scheme simply shifts
the time and space consumed for copying to creating
and evaluating closures (which could be very costly
compared to ‘defstruct” operations to create copics

3Phe discussion of Karttunen's method is based on the D-
PATR implementation on Xerox 1100 machines ([Karttunen,

1986]).
3Le. arc structures: ‘label’ and ‘value’ pairs in owr
vacabulary.

ACTES DE COLING-92, NANTES, 23-28 AoUT 1992

445

which are often effectively optimized in many cour
mercial compilers). [Kogure, 1990] and [Emele. 1991}
also use the lazy evaluation idea to delay destruc-
tive changes. Both Kogure and Emele avoid direct
usage of delayed evaluation by using pointer opera-
tions. As Emele suggests, Kogure's method also re-
quires a special dependency information to be main-
tained which adds an overliead along with the cost
for traversing the dependency arcs. Also. a second
traversal of the set of dependent nodes is required for
actually performing the copying. Emele proposes a
method of dereferencing by adding environment in-
formation that carries a sequence of generation coun-
ters so that a specific generation node can be found
by traversing the forwarding links until a node with
that generation is found. While this allows undoing
destructive changes cheaply by backtracking the en-
viromment, every time a specific graph is to be ac-
cessed the whole graph needs to be reconstrncted
by following the forwarding pointers sequentially as
specified in the enviroument list (except for the root
node) to find the node that shares the same genera-
tion number as the root node. Therefore, similar to

Pereira’s method, there will be Nlog(d) overhead as-
sociated with constructing cach grapl every time a
graph is accessed, where d is the number of nodes in
the graph and N is the average depth of the environ-
mental deference chain, This would cause a problem
if the algorithm is adopted for a large-scale system in
which result graphs are unified against other graphs
many times. Like Wroblewski's method, all three lazy
methods (i.e, Godden’s, Kogure's and Emele’s) suf-
fer from the problem of Farly Copying as defined in
[Tomabechi, 1991]. This is because the copies that are
incrementally created up to the point of failure during
the same top-level unification are wasted. The prob-
lem is isherent in incremental copying scheme and
this problem is eliminated completely in [Karttunen,

Proc. oF COLING-92, NANTES, Aug. 23-28, 1992

1086] and in the Q-D method.®3

There is one potential problem with the structure-
sharing idea which is shared by each of the schemes
including the proposed method. This happens when
operations other than unification modify the graphs.
(This is typical when a parser cuts off a part of a
graph for subsequent analysis®®.) When such op-
erations are performed. structure-shariug of bottom
(variable) nodes may cause problems when a sub-
graph containing a bottom is shared by two different
graphs and these graphs arc used as arguments of a
unification function (either as the part of the sane
input graph or as elements of dgl and dg2). When a
graplh that shares a bottom node is not used in its en-
tirety. then the represented constraint postulated by
the path leading to the bottom node is no longer the
same, Therefore. when such a graph appears in the
same unification along with some other graph with
which it DS shares the same bottom node. there will
be a false FS-Sharing. (If the graph is used i its
entirety this is not a problem since the two graph
patlis would unify anyway.) This problem happens
only when neither of the two graphs that DS-Shares
the sanie bottom node was unified against some other
graph before appearing in the same unification.?®
(If either was once unified. forwarding would have
avoided this problem). The methods to avoid such
a problem can be 1) As long as these convergence of
bottom nodes are used for features that are not passed
up during parsing, the problems does not affect the
result of parse in any way - which scems the case with
the grammars at ATR and CMU. 2} A parser can
be modified so that when it modifies a graph other
than through graph uuification®, it creates copies
of the arc structures containing the bottom nodes.
In the proposed method this can be done by call-
ing the copy function without structure-sharing be-
fore a parser modifies a graph. 3) A parser can be
moditied so that it does not cut off parts of graphs
and use the graphs in their entirety (this should not
add complexity once structure-sharing is introduced
to unification). Thus, although the space and time
reduction attained by structure-sharing can be sig-
nificant. DS-Sharing can cause problems unless it is
used with a caution (by making sure variable sharing

33 Lazy methods delay copying until a destructive change
is to be performed so that unnecessary copies are not cre-
ated within a particular recursion into a unification function;
however. since cach shared arc recursion is independent (non-
detenministic). even if there are no wunecessary copica created
at all in oue particular recursion, if there is a failure in some
other shared arc recursion {at some depth), then the copies
that arc created by successful shared arc recursions up to the
point of detection of failure will hecome wasted, As long as
the basic control structure remains incremental, this is inher-
ent in the incremental method. In other words, the problem is
inherent in these incremental methods by definition.

34 Bor example. many parsers cut off a subgraph of the path
0 for applying further rules when a rule is accepted.

338uch cases may happen when the same rule (such as V =
V) anguiented with a heavy use of convergence in the hattom
nodes is applied many times during a parsc.

$6Such as when a rule is accepted and subgraph of 0 path is
cut off,

ACTES DE COLING-92, NANTES, 23-28 A00T 1992 446

does not cause erroncous sharing by using these or
sonte other methods).

6 Conclusion

The structure-sharing scheme introduced in this pa-
per made the Q-D algorithm run significantly faster.
The original gain of the Q-D algorithm was due to
the fact that it does not create any Over Copies
or Early Copies whereas incremental copying scheme
inherently produces Early Copies (as defined in
[Tomabechi. 1991]) when a unification fails. The pro-
posed scheme makes the Q-D algorithm fully avoid
Redundant Copies as well by only copying the low-
est nodes that need to be copied due to destructive
changes caused by successful unifications only. Since
there will be virtually uo overhead associated with
structure-sharing (except for returning two values in-
stead of one to pass up :changed information when re-
cursion for copying returns), the performance of the
proposed structure-sharing scheme should not drop
even when the gramuar size is significantly scaled
up. With the demonstrated speed of the algorithi.
as well as the ability to handle cyclicity in the graphs.
and ease of switching between structure-sharing and
non-structure sharing, the algorithim counld be a viable
alternative to existing unification algorithms used in
current natural language systems.

References

[Emele, 1991] Emele. M, “Unification with Lazy Non-
Redundant Copying™. In Proe. of ACL-91, 1991,

[Godden, 1990] Godden. K. “Lazy Unification” In Proc. of
ACL-906. 1990.

[Karttunen. 1986] Karttunen. L. *D-PATR: A Development
Enviromment for Unification-Based Grammars™. In Proe. of
COLING-86. 1986. (Also, Report CSLI-86-61 Stanford Uui-
versity).

[Karttunen and Kay, 1985] Karttunen. L. and M. Kay. “Strue-
ture Sharing with Binary Trees™. In Proc. of ACL-85. 1985.

[Kasper, 1087] Kasper. R, ~A Unification Method for Disjunc-
tive Feature Descriptions™. In Proc. of ACL-87, 1987.

{Kogure, 1989] Kogure, K. A Study on Feature Structures and
Unification. ATR Techuical Report. TR-1-0032. 1988.

[Kogure. 1990] Kogure, K. “Strategic Lazy Incremental Copy
Graph Unification™. In Proc. of COLING-90, 1990.

{Morimoto. et al, 1990] Morimoto, T.. H. I1da, A. Kurematau,
K. Shikano. and T. Aizawa. “Spoken Language Translation:
Toward Realizing an Automatic Telephone Interpretation
System™. In Proc. of InfoJepan 1990, 1990.

[Percira, 1985] Pereira, F. “A Structure-Sharing Representa-
tion for Unification-Based Grammar Formaliss™. In Proc.
of ACL-85, 1985.

[Pollard and Sag. 1987] Pollard, C. and L Sag. Information--
based Syntar and Semantics. Vol 1. CSLI, 1987.

[Yoshimoto and Kogure, 1989] Yoshimoto, K. and K. Kogure.
Japanese Sentence Analysis by means of Phrase Structure
Grammar. ATR Technical Report. TR-1-0049, 1989,

[Tomabechi, 1991] Tomabechi, H. “Quasi-Destructive Graph
Unification”. In Proc. of ACL-91. 1991.

[Wroblewski, 1987] Wroblewski. D.“Noundestructive Graph
Unification”. In Proc. of AAAI87. 1987,

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

