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Abstract. We prove a theorem stating that  any 
semantics can be encoded as a composit ional  
semantics, which means  that,  essentially, the 
standard definition of  composit ionali ty is for- 
mally vacuous. We then show that  when one re- 
quires composi t ional  semantics  to be 
"systematic" ( that  is the meaning funct ion can- 
not  be arbitrary, but  mus t  belong to some class), 
one can easily distinguish between composit ional  
and non-composi t ional  semantics. We also pre- 
sent an example o f  a simple g rammar  for which 
there is no "systematic" composit ional  seman- 
tics. This implies that  it is possible to distinguish 
"good" and "bad" grammars  oll the basis of  
whether  they can have composit ional  semantics. 
As a result, we believe that  the paper clarifies the 
concept o f  compositionali ty and opens a possi- 
bility of  making systematic compar isons  o f  dif- 
ferent systems of  grammars  and N L U  programs. 

l.lntroduction. 
Composi t ional i ty  is defined as the property that  
the meaning  of  a whole is a function of  the me- 
aning o f  its parts (cf. e.g. Keenan  and Faltz 
(1985),pp.24-25)? This definition, a l though intu- 
itively clear, does not  work formally. For in- 
stance, Ilirst (1987) pp.27-43 claims that  the 
semantics o f  Woods  (1967) and (Woods,  1969), 
is not  composit ional,  because "the interpretation 
of  the word depart varies as different preposi- 
tional phrases  are attached to it": 

AA-57 departs f rom Boston 

= > depart(aa-57, boston). 

AA-57 departs f rom Boston to Chicago 
= > connect(aa-57, boston, chicago). 

AA-37 departs from Boston on Monday  
= > dday(aa-57, boston, monday). 

AA-57 departs f rom Boston at 8:00 a,m. 
= > equal(dtime(aa-57, boston), 8:00am). 

AA-57 departs f rom Boston after 8:00 a.m. 
= > greater(dtime(aa-57,boston),8:l10am). 

AA-57 departs from Boston before 8:00 a.m. 
= > greater(8:0Oam,dtime(aa-57,boston)). 

Al though  this semantics  does look like non-  
compositional,  it is easy to create a funct ion that  
produces the meanings  o f  all these sentences 
f rom the meanings o f  its parts -- we can simply 
define such a function by cases: the meaning  o f  
departs~from/ is connect, the meaning  o f  
departs/from/on is dday, and so on. Hirst  there- 
fore changes the definition o f  composit ionali ty 
to "the meaning of  a whole is a Lystematic me- 
aning of  the parts" (op. cit. p.27.; tile emphasis  
is ours), but  without  defining the meaning  o f  the 
word "systematic." 

in this paper we show that,  indeed, t l irst  was 
right in assuming  that  the s tandard definition o f  
composit ionali ty has  to be amended.  Namely,  
we prove a theorem stating that  any semantics 
can be encoded as a composit ional  semantics,  
which means  that ,  essentially, the s tandard defi- 
nit ion o f  composit ionali ty is formally vacuous.  
We then show that  when one requires composi-  

An equivalent definition, e.g. Partee et al. (1990), postulates the existence of a homomorphism from syntax to semantics. 
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tional semantics to be "systematic" (i.e. the me- 
aning function must  belong to some class), one 
can easily distinguish between compositional 
and non-composi t ional  semantics. We also give 
an example of  a simple grammar  lor which there 
is no "systematic" composit ional semantics". 
This result implies that  it is possible to distin- 
guish "good" and "bad" grammars  on the basis 
of  whether they can have a compositional se- 
mantics  with a meaning  function belonging to a 
certain class. As a result, we believe that  the 
paper finally clarifies the concept of  composi- 
tionality and opens a possibility o f  making sys- 
tematic comparisons o f  different systems of  
grammars  and NLU programs. 

2.Some compositional meaning 
function can always be found 

Composi t ional  semantics,  or CS, is usually de- 
fined as a functional dependence o f  the mean-  
ing o f  an  expression on the meanings  of  its 
parts. One o f  the first natural  questions 
we might  want  to ask is whether  a set of  NL 
expressions, i.e. a language, can have some CS. 
This question has been answered positively by 
van Benthem (1982). t towever his result says 
nothing about  what  kinds of  things shoukl be 
assigned e.g. to nouns ,  where, obviously, we 
would like nouns  to be mapped into sets of  en- 
tities, or something like that. That  is, we want 
semantics to encode some basic intuitions, e.g. 
that  nouns  denote sets of  entities, and verbs de- 
note relations between entities, and so on. 

So what  about  having a composit ional  semantics 
that agrees with intuitions? That  is, the ques- 
tions is whether after deciding what sentences 
and their parts mean,  we can find a function that  
would compose the meaning of  a whole from 
the meanings  of  its parts. 

The answer to this question is somewhat  dis- 
turbing. It turns out  that whatever we decide 
that  some language expressions should mean,  it 
is always possible to produce a ffmction that 
would give CS to it (see below tor a more precise 

formulation of this fact). The upshot  is that  
compositionality, as commonly defined, is not  a 
strong constraint on a semantic theory. 

The intuitions behind this result can be illus- 
trated quite simply: Consider tile language 
of finite strings of digits from 0 to 7. Let's fix a 
random function (i.e. an intuitively bizarre func- 
tion) from this language into {0,1). Let the me- 
aning function be defined as the value of the 
string as the corresponding number  in base 8 if 
tile value of  the function is 0, and in base 10, 
otherwise. Clearly, the meaning of  any string 
is a composit ion of the meanings of  digits (notice 
that the values of  the digits are the same in both 
bases). But, intuitively, this situation is different 
fi'om standard cases when we consider only one 
base and the meaning of  a string is given by a 
simple lbrmula relizrring only to digits and their 
positions in the string, The theorem we prove 
below shows that  however complex is the lan- 
guage, aqd whatever strange meanings  we want 
to assign to its expressions, we can always do it 
compositionally. 

One of  the more bizarre consequences of  this 
fact is that  we do not  have to start building 
composit ional  semantics fbr NL  beginning with 
assigning meanings to words. We can do equally 
well by assigning meanings  to phonems or even 
LETTFRS, assuring that,  for any sentence, the 
intuitive meaning we associate with it would be 
a lhnction of  the meaning of  the letters from 
which this sentence is composed.  

PROVING EXISTENCE OF C ( ) M P O S I -  
T I O N A L  S E M A N T I C S  

Let S be any collection o f  expressions (intu- 
itively, sentences and their parts). Let M be a set 
s.t. for any s e S ,  there is m = m ( s )  which is a 
member  of  M s.t. n, is the meaning  of  s. We 
want to show that  there is a cmnposi t ional  se- 
mantics for S which agrees with the function as- 
sociating m with re(s) , which will be denoted by 
re(x). 
Since elements of  M can be o f  any type, we do 
not  automatically have (for all elements of  S) 
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m(s.t) = m(s)#m(t) (where # is some operation 
on the  meanings).  To get this kind of  homo-  
morph i sm  we have to perform a type raising 
operation that  would map  elements o f  S into 
functions and then the functions into the re- 
quired meanings.  We begin by trivially extending 
the language S by adding to it an  ~end of  ex- 
pression H character $, which may  appear  only 
as the last element of  any expression. The pur-  
pose o f  it is to encode the funct ion re(x) in the 
following way: The meaning function tz that  
provides composit ional semantics for S maps  it 
into a set o f  functions in such a way that  
l~(s.t) = t~(s)(#(t)). We want  that  the original 
semantics  be easily decoded from p(s), and 
therefore we require that ,  for all . s, 
I~(s.$) = re(s). Note  that  such a type raising op- 
eration is quite common  both  in mathemat ics  
(e.g. 1 being a function equal  to 1 for all values) 
and in mathemat ical  linguistics. Secondly, we 
assume here that there is only one way of  com- 
posing elements o f  S -- by concatenat ion 2 but  
all our a rguments  work for languages with many  
operators as well. 

T H E O R E M .  Under  the above assumptions .  
There is a function ~t s.t, for all s, 
#(s.t) = #(s)(tt(t)) , and l~(s.$) = re(s). 

Proof. See Section 5.1. 

3.What do we really want from 
compositional semantics? 

In view of  the above theorem, any  semantics is 
equivalent to a composi t ional  semantics,  and 
hence it would be meaningless to keep the defi- 
nition o f  eomposit ionali ty as the existence o f  a 
h o m o m o r p h i s m  from syntax to semantics with- 
out  imposing some conditions on this homo-  
morphism.  Notice that  requiring the 
computability of  the meaning function won't do. s 

P r o p o s i t i o n .  I f  the original funct ion re(x) is 
computable,  so is the meaning function/~(x). 

Proof. See the proof  o f  the solution lemma in 
Aczel (1987). 

3.1 W h a t  do we real ly  want?  
We have some intuitions and a bunch of  exam- 
ples associated with the concept o f  composi- 
tionality; e.g. for NP ->  Adj N , we can map  
nouns  and adjectives into sets and the concat- 
enat ion into set intersection, and get an intu- 
itively correct semantics for expressions like 
"grey carpet", "blue dog", etc. 

There seem to be two issues here: (1) Such pro- 
cedures work for limited domains  like "everyday 
solids ~ and colors; (2) The funct ion that  com- 
poses the meanings  should be "easily" definable, 
e.g. in terms of  boolean operations on sets. This 
can be made precise for instance along the lines 
o f  Manas te r -Ramer  and Zadrozny (1990), where 
we argue tha t  one can compare expressive 
power o f  various grammatical  formalisms in 
terms of  relations that  they allow us to define; 
the same approach can be applied to semantics,  
as we show it below. 

3 . 1 , 4  s imple  g r a m m a r  wi thout  a sys tem-  

atic semant ics  
If  meanings have to be expressed using certain 
natural ,  but  restricted, set o f  operations,  it may  
turn out  that  even simple grammars  do not  have 
a composit ional  semantics.  

Consider two grammars  o f  numerals  in base 10: 

G r a m m a r  N D  

• N < - - N D  

• N < - - D  

• D < - 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 [  

And  the second grammar  

2 We do not assume that concatenation is associative, that is (a.(b.c)) = ((a.h).c). Intuitively, this means that we assign se- 
mantics to parse trees, not to strings of words. But the method of proof can be modified to handle the case when concat- 
enation is associative. 
Also, note that in mathematics (where semantics obviously is compositional) we can talk about noncomputable functions, 
and it is usually clear what we postulate about them. 
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Grammar DN 

• N < - - D N  

• N < - - D  

* D < - - 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1  

For the grammar ND, the meaning of  any nu- 
meral can be expressed in the model 
(Nat, + ,  x ,  10) as 

#(N D) = 10 x #(N) + u(D) 

that is a polynomial in two variables with coef- 
ficients in natural numbers. 

For the grammar DN, we can prove that no 
such a polynomial exists, that is 

Theorem. There is no polynomial p in the vari- 
ables #(D), ~(N) such that 

#(D iV) = p(p.(D), #(N)) 

and such that the value of  #(D N) is the number 
expressed by the string D N in base I0. 

Proof. See Section 5.2. 

But notice that there is a compositional seman- 
tics for the grammar DN that does not agree 
with intuitions: #(D N) = 10 × #(N) +/~(D), 
which corresponds to reading the number back- 
wards. And there are many other semantics cor- 
responding to all possible polynomials in #(D) 
and/I(N). 

Also observe that (a) if we specify enough values 
of  the meaning function we can exclude any 
particular polynomial; (b) if we do not restrict 
the degree of  the polynomial, we can write one 
that would give any values we want on a finite 
number of  words in the grammar. 

The moral is that not only it is natural to restrict 
meaning functions to, say, polynomials, but to 
further restrict them, e.g. to polynomials o f  de- 
gree 1. Then by specifying only three values of  
the meaning function we can (a) have a unique 
compositional semantics lbr the first granmaar; 
(b) show that there is no compositional seman- 

tics tbr tile second grammar (directly from the 
proof  of  the above theorem). 

4. Conclusions 

4.1. Relevance for theories of grammar 

4. I. 1. On reduction of syntax to lexieal meanings 

T. Wasow on pp.204-205 of  Sells (1985) writes: 

It is interesting that  contemporary syn- 
tactic theories seem to be converging on 
the idea that sentence structure is gen- 
erally predictable from word meanings 
[...]. [...] The surprising thing (to lin- 
guist) has been how little needs to be 
stipulated beyond lexical meaning. [_.] 

The reader should notice that the meaning func- 
tion m in our main theorem is arbitrary. In par- 
ticular we can take re(s) to be the preferred 
syntactic analysis of  the string s. The theorem 
then confirms the above observation: indeed, 
the syntax can be reduced to lexical meanings. 
At the same time, it both trivializes it and calls 
out for a deeper explanation. It trivializes the 
reduction to lexical meanings, since it also says 
that with no restriction on the types of  meanings 
permitted, syntax can be reduced to the meaning 
of  phonems or letters. The benefits o f  the re- 
duction to lexical meanings would have to be 
explained, especially if such meanings refer to 
abstract properties such as binding features, 
BAR, or different kinds of  subcategorization. 

It is the view of  this author (cf. Zadrozny and 
Manaster-Ramer (1997)) and, implicitly, o f  Fill- 
more et al. (1988), that such a reductionist ap- 
proach is inappropriate. But we have no room 
to elaborate it here. 

4.1.2. On good and bad grammars 

By introducing restrictions on semantic func- 
tions, i.e. demanding the systematicity of  se- 
mantics, we can for the first time formalize the 
intuitions that linguists have had for a long time 
about "good" and "bad" grammars (cf. Manast-  
er-Ramcr and Zadrozny (1992)). This allows us 
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to begin dealing in a rigorous way with the 
problem (posed by Marsh and Partee) of  con- 
straining the power of  the semantic as well as the 
syntactic components  of  a grammar. 

We can show for instance (ibid.) that some re- 
strictions have the effect o f  making it in principle 
impossible to assign correct meanings to arbi- 
trary sets o f  matched singulars and plurals if the 
underlying grammar does not  have a unitary rule 
of  reduplication. Thus, grammars such as 
wrapping grammars (Bach (1979)), TAGs (e.g., 
Joshi (1987)), head grammars, LFG (e.g., Sells 
(1985)) and queue grammars (Manaster-Ramer 
(1986)), all o f  which can generate such a lan- 
guage, all fail to have systematic semantics for 
it. On the other hand, we can exhibit other 
grammars (including old-fashioned trans- 
formational grammars) which do have systcm- 
atic semantics for such a language. 

4.2. What kind o f  semantics for NL? 
In view of  the above results we should perhaps 
discuss some of  the options we have in semantics 
of  NL, especially in context of  NLU by com- 
puters. To focus our attention, let's consider the 
options we have to deal with the semantics of  
depart as described in Section 1. 

• Do nothing. That is, to assume that the se- 
mantics is given by sets of  procedures asso- 
ciated with particular patterns; e.g. "X 
departs from Y" gets translated into 
"depart(X,Y)". 

• Give it semantics a la Montague, for in- 
stance, along the lines of  Dowry (1979) (see 
esp. Chapter 7). Such a semantics is quite 
complicated, not very readable, and it is not  
clear what would be accomplished by doing 
this. However note that this doesn' t  mean 
that it would not be computational -- t tobbs  
and Rosenschein (1977) show how to trans- 
late Montagovian semantics into Lisp func- 
tions. 

Restrict the meaning of  compositionality re- 
quiring for example that the meaning of a 

verb is a relation with the number of  argu- 
ments equal to the number of  arguments of  
the verb. If  the PP following the verb is 
treated as one argument, there is no com- 
positional semantics that would agree with 
the intended meanings of  the example sen- 
tences. This would formally justify tile argu- 
ments of  t lirst. 

• Recognize that  depending on the PPs the 
meaning of  "X departs PP" varies, and de- 
scribe this dependence via a set o f  meaning 
postulates (Bernth and Lappin (1991) show 
how to do it in a computational context). In 
such a case the semantics is not given di- 
rectly as a homomorphism from syntax into 
some algebra o f  meanings, but indirectly, by 
restricting the class of  such algebras by the 
meaning postulates. 

* Admit that the separation of  syntax and se- 
mantics does not work in practice, and work 
with representations in which form and me- 
aning are not separated, that is, there cannot 
be a separate syntax, except in restricted 
domains or for small fragments of  language. 
This view of  language has been advocated 
by Fillmore et al. (1988), and shown in Za- 
drozny and Manaster-Ramer (1997), Za- 
drozny and Manaster-Ramer (1997) to be 
computationally feasible. 

• t iope that the meaning will emerge from 
non-symbolic representations, as advocated 
by the "connectionists." 

5.The proofs 

5.1. The Existence of  compositional me- 
aning functions 
Let S be any collection of  expressions (intu- 
itively, sentences and their parts). Let M be a 
set s.t. for any swh i ch  is a member of  S, there 
ism=m(s) which i s a  member of  M s . t . m  is 
the meaning of  s. We want to show that there 
is a compositional semantics for S which agrees 
with the function associating m with m(s) , 
which will be denoted by rn(x). To get the ho- 
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momorphism from syntax to semantics we have 
to perfbrm a type raising operation that Would 
map elements o f  S into fhnctions and then the 
functions into the required meanings. 

As we have described it in Section 2, we extend 
S by adding to it the "end of  expression" char- 
acter $, which may appear only as the last ele- 
ment  of  any expression. Under these 
assumptions we prove: 

THEOREM. There is a function ~t s.t, for all s, 

#(s.t) = #(s)(tt(t)) , and 

~(s.$) : m(s). 

Proof. Let /(0),1(1) .... , t(a) enumerate S. We 
can create a big table specifying meaning values 
for aU strings and their combinations. Then the 
conditions above can be written as a set o f  
equations shown in the figure below 

t,(t(0)) ~ { < $, m(t(0)) > ,  < it(t(0)),/t(t(0).t(0)) > . . . . .  < #(t(u)), it(t(O).t(a)) > .. . .  } 
#(t(I))  ~ { < $, m(t(1)) > ,  < ~t(t(0)),/~(t(1).t(0)) > . . . . .  </~(t(~)),  t t(t(I).t(a)) > ... .  } 

tt(t(a)) = { < $, m( t (a) )  > ,  < #(t(0)), ~(/(a).t(0)) > . . . . .  < #(t(a)),  #(t(~). t(a))  > . . . .  } 

Continuing the proof: By the solution lemma 
(Aczel (1987) and Barwise and Etchemendy 
(1987)) this set of  equations has a solution 
(unique), which is a function. 

To finish the proof  we have to make sure that 
the equation #($)= $ holds. Formally, this re- 
quires adding the pair < $, $ > into the graph of  
tt that was obtained from the solution letmna. 

[] 

We have directly specified the function as a set 
of  pairs with appropriate values. Note that that 
there is place for recursion in syntactic catego- 
ries. Also, if a certain string dues not belong to 
the language, we assume that the corresponding 
value in this table is undefined; thus # is not ne- 
cessarily defined for all possible concatenations 
of  strings of  S. 

Note: The above theorem has been proved in set 
theory with the anti-loundation axiom, ZFA. 
This set theory is equiconsistent with the stand- 
ard system of  ZFC, thus the theorem does not  
assume anything more than what is needed for 
"standard mathematical practice". Furthermore, 
ZFA is better suited as foundations for seman- 
tics of  NL than ZFC (Barwise and Etchemendy 
(1987)). 

5.2 .  A g r a m m a r  w i t h o u t  c o m p o s i t i o n a l  

s e m a n t i c s  

Vor the grammar DN, we can prove that  no 
such a polynomial exists, that is 

1qaeorem. There is no polynomial p in the vari- 
ables #(D), #(N) such that 

#( D IV) = p(la( D ), I~( N) ) 

and such that the value o f# (D P0 is the number 
expressed by the string D N in base 10. 

Proof. We are looking for 

~(~ ~0 = p ( u ( ~ ,  ~(O)) 
= #(D) x (1() tength(~) + p(N) 

where the function p must be a polynmnial in 
these two variables. But such a polynomial does 
not exist, since it would have to be equal to 
#(N) for p(N) in tile interval 0..9, and to 
/~(D) × 10+/~(N) for /~(N) in 10..99, and to 
#(D) × 100 + ~t(N) for ~t(N) in 100..999, and so 
on. And if the degree of  this polynomial was less 
than l ~ ,  lbr some n, it would have to be equal 
identically to /~(D) × 10" +/~(N) , since it would 
share with it all the values in l@..10 ~ - 1, and 
therefore could not give correct values on the 
other intervals. 
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