SYNTACTIC PREFERENCES FOR ROBUST PARSING WITH SEMANTIC PREFERENCES
JIN WANG
Computing Research Laboratory
New Mexico State University
Las Cruces, NM 88003
E-mail: wjin@nmsu.edu

Abstract

Using constraints in robust parsing seems to have
what we call "robust parsing paradox”. Preference
Semantics and Connectionism both offered a promis-
ing approach to this problem. However, Preference
Semantics has not addressed the problem of how to
make full use of syntactic constraints, and Connec-
tionism has some inherent difficuities of its own
which prevent it producing a practical system. In this
paper we are proposing a method to add syntactic
preferences to the Preference Semantics paradigm
while maintaining its fundamental philosophy. It will
be shown that syntactic preferences can be coded as
a set of weights associated with the set of symboli-
cally manipulatable rules of a new grammar formal-
ism. The syntactic preferences such coded can be
easily used to compute with semantic preferences.
With the help of some techniques borrowed from
Connectionism, these weights can be adjusted
through training.

1. Introduction

Robust parsing faces what seems to be a "para-
dox", On one hand, it needs to tolerate input
sentences which more or less break syntactic
and semantic constraints; that is, given an ill-
formed sentence, the parser should atempt to
interpret it somehow rather than simply reject it
because it violates some constraints. In order to
do this it allows syntactic and semantic con-
straints to be relaxed. On the other hand, robust
parsing still need to be able to disambiguate. For
the sake of disambiguation, stronger syntactic
and semantic constraints are required, since the
stronger these constraints are, the greater the
number of unlikely readings that can be rejected,
and the more likely the comect reading is
selected.

A lot of work related to this problem has been
done. The most commonly used strategy is to
usc the strongest constraints first to parse the
input, If the parser fails, the violated constraints
are relaxed in order to recover the failed process
and arrive at a successful parse (Carbonell &
Hayes, 1983) (Huang, 1988) (Kwasny & Son-
dheimer, 1981) (Weischedel & Sondheimer,
1983). The major problem with this approach is
that it is difficult to tell which constraint is actu-
ally being violated and, therefore, needs to be

ACTES DE COLING-92, NANIES, 23-28 AOUT 1992

239

relaxed when the parser fails. This problem is
more serious with the parser using backtracking,

Another strategy is based on Preference Seman-
tics (Wilks, 1975, 1978) (Fass & Wilks, 1983).
The idea 1y that all the possible sentence read-
ings can (ihough not necessarily) be produced.
All the "readings are scored according to how
many preference satisfactions they contain”, and
"the best reading (that is, the one with the most
preference satisfactions) is taken, even if it con-
tains prefercince violations.” Selfridge (1986)
and Slator (1988) also usc this strategy. One
important advantage of this approach is that
within a uniform mechanism, the semantic con-
straints can both be used maximally for the sake
of disambiguation and be gracefully relaxed
when necessary for the sake of robustness. How-
ever, how to extend the preference philosophy to
syntactic constraints have not been addressed.
‘There are two irequently used approaches to
incorporate syntactic consraints in systems
using semantic preferences. The first ,as in (Sla-
tor, 1988), is to use a weak version of a rather
typical syntactic module. The problem with this
approach is that the syatactic consiraints here
still suffer from the problem of "robust parsing
paradox”. Another problem with this approach is
that it shifts more burdens of disambiguation to
semantic preferences because the syntactic con-
straints need to be weak enough in order not to
reject too many noisy inputs. The second
approach, as in (Selfridge, 1986), is to try all the
possible combinations without any structural
preference. The problem here is computational
complexity especiaily with long sentences which
have complex or recursive structures in them.

Connectionism has also shown some appealing
results (Dyer, 1991) (Waltz & Pollack, 1985)
(I.ehnert, 1991) on robustness. However, there
are some very difficult problems which they
pose, such as the difficulty with complex struc-
tures (especially recursive structures), the
difficulty with variables, variable bindings and
unification, and the difficulty with schemes and
their instantiations, These problems need to be
solved before such an approach can be used in
practical natural language processing Ssystems

Proc, o COLING-92, NANTES, AuG. 23-28, 1992

especially those which involve syntactic pro-
cessing (Dyer, 1991).

In this paper we will propose a framework of
representing syntactic preferences! that will
keep all the virtues of robustness Preference
Semantics suggests. Furthermore, such prefer-
ences can be learned.

2. Sketch of Our Approach

As we seen the idea of Preference Semantics
about robustness is to enable the system to 1)
generate (potentially) all the possible readings
for all the possible inputs, 2) find out among all
the possible readings which one is the most
appropriate one and generate it first. To meet
this goal for syntactic constraints we want to
accomplish the following:

1. A formalism with a practically feasible
amount of symbolic manipulatable rules which
will have enough generative power to accept any
input and produce all the possible structures of
it (section 3.1).

2. A scheme to associate weights with each of
these rules such that the weights of all the rules
that are used to produce a structure will reflect
how preferable (syntactically speaking) the
whole structure is (section 2.1).

3. A algorithm that will incorporate these rules
and weights with semantic preferences so that
the overall best reading will be generated first.
(section 2.2).

4. A method to train the weights (section 2.1
and 3.3).

2.1. Coding Syntactic Constraints

The most popular method to encode syntactic
constraints is probably phrase structure gram-
mar. One way to make it robust is to assign for
all the grammar rules a cost. So, a rule designed
for well formed inputs will have less cost than
the rules designed for less well formed inputs;
that is to say that a higher cost grammar rule
will be less preferred than a lower cost grammar
rule. However there are two serious problems
with this naive method. First, if all the ill-
formedness will have a set of special grammar
rules designed for them, to capture a reasonable

! We use syntactic preferences in a broader sense
which not only includes syntactic feature agreements
but also the order of the constituents in the sentence
and the way in which different constituents are com-
bined. On the other hand, as you will see, the absence
of nonterminals and syntactic derivation trees will
also distance us from a strong syntax theory.

AcTES DE COLING-92, NANTES, 23-28 AoUT 1992

2490

variety of ill-formedness, we need an unreason-
ably amount of grammar rules. Second, it is not
clear how we can find the costs for all these
rules. Next we will show how we will solve
these two problems.

To solve the first problem, our approach aban-
dons the use of phrase structure grammar, and
instead a new grammar formalism is used. The
idea of this new formalism is to reduce syntactic
constructions to a relative small set of more
primitive rules (P-rules), so that each syntactic
construction can be produced by the application
of a particular sequence of these P-rules. Section
3.1 will give more details about this formalism,
and we will just list some of its relevant charac-
teristics here: 1. There are no nonterminals in
this formalism. 2. Each P-rule take only three
parameters to specify a pattern on which its
action will be fired. All these threc parameters
will be one of the parts of speech (or word
types), such as noun, verb, adverb, etc. For
example: (noun, verb, noun) ==> action3 is a
P-rule. 3. Each rule has one action. There are
only three possible actions.

Since the number of parts of speech is generally
limited?, the total rule space (the number of all
the possible P-rules) is rather small®, So, it is
possible for us to keep all of the possible P-rules
in the grammar rule base of the parser. The out-
put of the parser is a parsing tree in which each
node corresponds to a word in the input sen-
tence and the edge represents the dependency or
the attachment relation between the words in the
sentence. One important property of this formal-
ism is that given any input sentence, for all of
the normal parsing trees that can be built on it
(the definition of normal parsing tree is given in
next section), there exists a sequence of P-rules,
such that the tree will be derived by applying
this rule sequence. This means that we can now
use this small P-rule set to guide the parsing?
without pre-excluding any kinds of ill-formed
inputs for which a normal parsing tree does
exist.

2 For example in Longman Dictionary of Contem-
porary English (1978) there are only 14 different parts
of speech. Given that interjection can be taken care by
a preprocessor and the compiex parts like v adv, v adv
prep, v adv;prep, v prep can be represented as v plus
some syntactic features, this number can be further re-
duced to 9.

3 If there are 10 different parts of speech, the total
P-rule space is smaller than 10X10%10x3 = 3000,

4 Because of the searching algorithm we used, a
lot of searching paths sanctioned by p-rules will be
pruned by semantic preferences. In this sense the

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

To solve the second problem, we will use some
techniques borrowed from the connectionist
camp. As we have mentioned before each rule
takes three parameters to specify a pattern.
Each of these parameters will associate with a
vector of syntactic feature® roles. So, every P-
rule will have a feature role vector:
(fl e B Foges Fp W F
lE‘3r11)
Each feature role is in turn associated with a

weight. So each P-rule also has a vector of
weights:
Wy W
Wi Wa)

If a rule is applicable at a certain situation, the
feature roles will be filled by the corresponding
feature values given by the language objects
matched out by the pattern of the rule. The
value of each feature can be either 1 or 0. Let
F*,. denotes the value filling role F,. at one par-
ticltar application. The cost of aﬁplying that
rule at that situation will be:
LW e Fy ™

The weights can be trained by a training algo-
rithm similar to that used in the single layer per-
ceptron network.

To summarize, the syntactic constraints are
encoded partly as P-rules and partly as the
weights associated with each P-rule. The P-rules
are used to guide the parsing and tell which con-
stituent should combined with which consti-
tuent. There are two types of syntactic prefer-
ences encoded in the weights: the preferences of
the language to different P-rules and the prefer-
ences of each P-rule to different syntactic
features. The P-rule is still symbolic and work-
ing on a stack. So, the ability of recursion is
kept.

P

w

1’ 21 2n’

2.2. Organization of the Parser

At the topmost level, the parser is a standard
searching algorithm. Due to its efficiency, A*
algorithm (Nilsson, 1980) is used. However, it is
worth noting that any other standard searching
algorithm can also be used. For any searching

parsing is actually guided by both syntactic prefer-
ences and semantic preferences.

5 The use of erm “syntactic featurs” is only to
maks it distinct from semantic preference and seman-
tic type . We, by no means, try to exclude the use of
those features which are generally considered as se-
mantic features but which will help to make the right
syntactic choice.

ACTES DE COLING-92, NANIES, 23-28 A0UT 1992

241

algorithm, the following things ueed to be

specified: 1. what the states it the scarching

space are; 2. what the initial state is; 3. what the
action rules are and taking one state how they

create new states; 4. whar the cost of creating a

new node is (please note that the cost is actually

charged to the edge of the searching graph); 5.

what the final states are.

In the parser, the searching states are pairs like:
(<partial
tence>)

The partial result is represented as one or more

parsing trees which are kept on a working stack.

Details of this representation are given in next

section. The initial state is a pair of an empty

stack and a sentence to be parsed. The action of
the scarching process is to look at the next
read-in word and the roots of the top two trees
on the working stack, which represent the two
most recent found active constituents. The
searchinp will then search for all the applicable

P-rules based on what it sees. All P-rules it has

found will then be fired. The action part of these

P-rules will decide how to manipulate the trees

on the stack and the current read-in. It will also

decide whether it needs to read in next word.

Therefore, for each of these P-rules being fired,

a new state is created. The cost of creating this

new state is following: the cost of applying the

P-rule on its father state; the degree of violation

of any new local preference just being found in

the newly built trees; the cost of contextual
preference® associated with the new consumed
read in sense. All these costs are normalized and
added to yield the total cost of creating this new
state. The reason for normalization is that, for
example, the cost of applying P-rule (sec section
2.1) needs 1o be normalized to be positive as it
is required by A* algorithm. The relative magni-
tudes of different types of costs need also be
balanced, so that one kind of costs will not
overwhelm the others. The final states of the
searching are the states where the unparsed sen-
tence is nil and the working stack has only one
complete parsing tree on it. Obviously the out-
put of this searching algorithm is the reading

(represented as the tree) of the input sentence

which violates the least amount of syntactic and

semantic preferences.

So far the heuristics used in the A* searching is
simply taken to be:

result> <unparsed sen-

S For the idea of contextual preferences see (Slator,
1988).

Proc. or COLING-92, NANTES, AUG. 23-28, 1992

ale
where a is a constant. / is the length of the
unparsed sentence. ¢ is the average cost for pars-
ing each word.

It is needed to mention that the input sentence
we talked above is actually a list of lexical
frames. Each lexical frame contains the follow-
ing information about the word it stands for: the
part of speech, syntactic features, local prefer-
ences, contextual preferences, etc. Since words
can have more than one senses and one lexical
frame will only represent one sense, for each
read-in word, the parser will have to work for
each of its senses and produce all of their chil-
dren.

3. Some Details

3.1. P-rules, Parsing Trees, and P-parsers,

Given an input string o on a vocabulary £, a
parsing tree of the input is a wee® with all its
nodes corresponding to one of the words in the
input string. For example, one of the parsing
trees for input abede is:

(e (a)(c(b)(d)))

Here the head of each list is the root of the tree
or the subtree, and the tail of the list are its chil-
dren. Inwitively the parenthood relation reflects
the attachment or dependency relation in the
input expression. For example, given an input
expression a small dog, the dog will be the
father of both a and small. The parsing tree is
more formally defined as follows:

Definition (Parsing Tree): Given an input string
a, the parsing tree on o is recursively defined as
following:

1. (a) is a parsing tree on ¢, if @ is in

a.
2.(aT, T, ... Ti) is a parsing tree
on «a, 1%(1 15 in o and T, (1<k<i) is

also a parsing tree on o.

Definition (Complete Parsing Tree): Suppose T
is a parsing tree on o. If for all the a in a, a is
also in T, then T is a complete parsing tree on
o

To reduce the computational complexity, we
will limit our atientions to only one special type
of parsing trees, namely the normal parsing tree.

7 In the actual parser I is the set of all the parts of
speech.

8 The order of children for any node is significant
here, and we will use LISP convention to represent
the parsing tree in this paper.

ACTES DE COLING-92, NANTES, 23-28 A00T 1992

242

It should not be difficult to see and prove from
the following definition that normal parsing
trees are simply the trees which do not have
"crossing dependencies” (Maling & Zaenen,
1982).

Definition: (Normal Parsing Tree): Suppose T is
a parsing tree on o. T is a normal parsing tree
on « iff for all the nodes in T, if they have chil-
dren, say T .,T,, then all the nodes in T
must be appea:ed E‘)‘efore all nodes in T. in thé
input string o, where 1<i<jgk. i

The P-parser has an input tape, and the reading
head is always moving forward. The P-parser
also keeps a stack of parsing trees which will
represent the parsing result of the part of the
input which has already been read. Besides there
is a working register in the P-parser to store the
current read in word. As you will see later, the
read-in word is actually transformed into a tree
before it being stored in the working register.
The configuration of the P-parser is thus defined
as a triple [<the stack>,<content of working
register>,<unparsed input>]. The P-rule is used
to specify how the P-parser works. If the input
is of a vocabulary X, the P-rules on it can be
defined as follows:

Definition (P-rule): A P-rule on ¥ is a member
of set L' X ¥’ X L' x A, where X' is X U [nil}
and A is the set of actions defined below.
Definition (Action): Actions are defined as func-
tions of type £ — E, where £ is the set of
configurations. There are total three different
actions used in P-rules, and they are listed
below:

5.IS,CRl= [(cons C 8), (list (car

RY), (cdr R)]
) 5[S, CRl= [(cdr S), (cons (car C)
(cons (car S) (cdr O))), R]
[S.CR]= [(cons (append (car S)

(E t (cadr S))) (cddr S)), C, R]
Action 1 simply pushes the current read-in on
the stack and then reads the next word from the
input. Action 2 attaches top of the stack as the
first child of the current read-in stored in the
working register. Action 3 pops the top of the
stack first and then attaches it to the second top
of the stack as its last child.
The initial configuration for the P-parser is [nil,
(list (car &), (cdr)], where the o is the input
string to be parsed. There is a set of P-rules in
each P-parser to specify its behavior. The P-
parser will work non-deterministically. A P-rule
can be fired iff its three parameters match the
roots of the top two parsing trees on the stack
and the root of the tree in the working register

PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

respectively. Note the P-rule does not care about
the unparsed input part in the configuration tri-
ple. A configuration is a final configuration iff
the unparsed input string and the working regis-
ter are all empty and the stack only has one
parsing tree on it. A input is grammatical if and
only if the P-parser can reach from the initial
configuration to a final configuration by apply-
ing a sequence of P-rules taken from its gram-
mar set. If there are more than one possible final
states for a given input string and the parsing
trees produced at these states are different, then
we say that the input string is ambiguous. Here
is a simple example to show how the P-parser
works. You may need a pen and a piece of
paper to work it out. Given input abcdc (a good
Jriend of mine, for example), the parsing tree (¢
{a) (b} (d (c))) can be constructed by applying
the following sequence of rules:

(nil,nil,a)=>1 (a,nil,b)=>1 (b.a,c)=>2
(a,nil,c)=>2 (nil,nil,c)=>1 (c,nil,d)=>1
(d,cc)=>1 (c,d,nil)=>3 (d,c,nil)=>3

Most properties of this formalism will not be of
the interests of this paper, except this theorem:

Theorem: A P-parser with all the P-rules on £
as its grammar set can produce all the complete
normal parsing trees for any input string on X.
PROOF: 1t is easy to prové this by induction on
the length of the input string.

The theorem tells that a P-parser with all the
possible P-rules as its rule set can produce for
any input string all of its possible parsing trees
which have no crossing dependencies. This
alone may not be very useful since this P-parser
will also accept all the strings over L. However,
as we have shown in the last section, with a
proper weighting scheme, this P-parser offers a
suitable framework for coding syntactic prefer-
ences.

3.2. Syntactic Preferences in the Weights of
P-ruies

Each lexical item will have a vector (of a fixed
length) containing syntactic features. The value
of the each feature is either 1 or 0. Each of the
three parameters in the P-rule is associated with
a vector (of the same length) of syntactic feature
roles. Each of these syntactic feature roles is
associated with a weight. Each weight thus
encodes a preference of the P-rule toward the
particular syntactic feature it corresponds to. A
higher weight means the P-rule will be more
sensitive to the appearance of this syntactic
feature, and the result of applying this rule
therefore will be more competitive when it does

Actes bE COLING-92, NANTES, 23-28 A0UT 1992

243

appear. The preferences of the language to dif-
ferent P-rules arc also reflected in weights.
Instead of being reflected in each individual
weight, they are reftected in the distribution of
weighits in P-rules. A P-rule with a higher aver-
age weight is generally more favored than a P-
lule with a lower average weight, since the
higher the average weight is, the lower the cost
of applying the P-tule tends to be. It is also
necessary to emphasize that these two types of
preferences are closely integrated.

3.3. Weight Learning

The weights of all the P-rules will be trained.
The training is supervised. There are two dif-
ferent methods to train the weights, The first
method takes an input string and a correct pars-
ing tree for that string. We will use an algorithm
to computer a sequence of P-rules that wiil pro-
duce the given parsing tree from the given input
string. This algorithm is not difficult to design,
and due to the space limits we will not present it
here. After the P-rule sequence is produced,
each of P-rule in the sequence will get a bonus
6. The bonus will further be distributed to the
weights in the P-rule in the same fashion as that
in the single layer perceptron network, that is:

AW, = ndE°
where 1) is the learning factor.

The second method requires less interventions.
The parser is let to work on its own. 'The user
only need to tell the parser whether the output it
gives is correct. If the result is comect, all the
P-rules used to construct this outpui will get a
bonus and all the rules used during the parsing
which did not contribute to the output will get a
punishment. If the answer is wrong, all the P-
rules used to construct this answer will get a
punishment, and the parser will continue to
search for a second best guess. The bonus and
punishment will be distributed to the weights of
the P-rule in the same manner as that in the first
method.

The first method is more appropriate at the early
stage of the training when most of the rules
have about the same weights. It will take much
longer for the parser to find the correct result on
its own at this time. On the other hand, the
second method needs less interventions. So, it
will be more appropriate to be used whenever it
can work reasonably well.

It is well known that the single layer perceptron
net can not be trained to deal with exclusive-or.
The same situation will also happen here. Since
exclusive-or relations do exist between syntactic

Proc. of COLING-92, NANTES, AuG. 23.28, 1992

features, we need to solve this problem. The
simplest solution is to make multiple copies for
the P-rule, and, hopefully, each copy will con-
verge to each side of the exclusive-or relation.

3.4, Measuring Preference Violations

The syntactic preference violation is measured
by formula (*) in section 2. Both action 2 and
action 3 of P-rule actions make an attachment,
and some semantic preferences may be either
violated or satisfied by the attachment. So, after
each application of such P-rule actions, the
parser needs to check whether there are some
new preferences being violated or satisfied. If
there are, it will computer the cost of these vio-
lations and report it to the searching process.
Similarly, each action 1 will cause a new con-
textual preference being reported. The measure-
ment for the violation degree of both local
preferences and contextual preferences is basi-
cally taken from PREMO (Slator, 1988), which
we will not repeat here.

4. Conclusion and Comparisons

Preference Semantics offers an excellent frame-
work for robust parsing. However, how to make
full use of syntactic constraints has not been
addressed. Using weights to code syntactic con-
straints on a relatively small set of P-rules (from
which all the possible syntactic structures can be
derived) enables us to expand the philosophy of
Preference Semantics from semantic constraints
to syntactic constraints. The weighting system
not only reflects the preferences of the language,
say English, to different P-rules but also reflects
the preferences of each P-rule to each syntactic
feature. Besides of this, it also offers a nice
interface so that we can integrate the application
of these syntactic preferences nicely with the
application of both local semantic preferences
and contextual preferences by using a highly
efficient searching algorithm.

This project has also shown that some of the
techniques commonly associated with the con-
nectionism, such as coding information as
weights, training the weights, and so on, can
also be used to benefit symbolic computing. The
result is gaining the robustmess and adaptability
while not losing the advantages of symbolic
computing such as recursion, variable binding,
etc.

The notion ’'syntactic preference’ has been used
in (Pereira, 1985) (Frazier & Fodor, 1978)
(Kimball, 1973) to describe the preference
between Right Association and Minimal Attach-
ment. Qur approach shares some similarities

ACTES DE COLING-92, NANTES, 23-28 AOUT 1992

244

with (Pereira, 1985), in that MA and RA simply
“corresponds to two precise rules on how to
choose between alternative parsing actions” at
certain parsing configurations. However, he did
not offer a framework for how one of them will
be preferred. According to our model the prefer-
ence between them will be based on the weights
associated with the two rules, the syntactic
features of the words involved and the semantic
preferences found between these words. Besides,
the idea of syntactic preferences in this paper is
more general than the one used in their work,
since it includes not only the preference between
MA or RA but other kinds of syntactic prefer-
ences as well.

Wilks, Huang and Fass (1985) showed that
prepositional phrase attachments are possible
with only semantic information. In their
approach syntactical preferences are limited to
the order of matchings and the default attaching.
Their attaching algorithm can be seen as a spe-
cial case of the model we proposed here, in that,
if they are correct, the preferences between the
sequences of rules used for RA and MA would
turn out to be very similar so that the semantic
preferences involved would generally over sha-
dow their effects.

There are some significant differences between
our approach and some hybrid systems (Kwasny
& Faisal, 1989) (Simmons & Yu, 1990). First,
our approach is not a hybrid approach. Every-
thing in our approach is still symbolic comput-
ing. Second, in our approach the costs of the
applications of syntactic constraints are passed
to a global search process. The search process
will consider these costs along with the costs
given by other types of constraints and make a
decision globally. In a hybrid system, the syn-
tactic decision is made by the network locally,
and there is no intervention from the semantic
processing. Third, our parser is non-
deterministic while the parsers in hybrid systems
are deterministic since there is no easy way to
do backtracking. It is also easy to see that
without the intervention of semantic processing,
lacking the ability of backtracking is hardly an
acceptable strategy for a practical natural
language parser. Finally, in our approach each
P-rule has its own set of weights, while in the
hybrid systems all the grammar rules share a
common network, and it is quite likely that this
net will be overloaded with information when a
reasonably large grammar is used.

PROC. oF COLING-92, NANTES, AUG. 23-28, 1992

Acknowledgment

All the experiments for this project are carried
on the platform given by PREMO which was
designed and implemented by Brian Slator when
he was here in CRL. The author also wants to
thank Dr Yorick Wilks, Dr David Farwell, Dr
John Barnden and one referee for their com-
ments. Of course, the author is solely responsi-
ble for all the mistakes in the paper.

References

1.

J. G. Carbonell and P. J. Hayes, ‘‘Recovery
Strategies for Parsing Extragrammtical
Language,”” American Journal of Compuia-
tional Linguistics, vol. 9(3-4), pp. 123-146,
1983.

D. Fass and Y. Wilks, ‘‘Preference Semantics,
Ill-Formedness, and Metaphor,”” American
Journal of Computational Linguistics, vol,
9(3-4), pp. 178-187, 1983.

M. G. Dyer, ‘“Symbolic NeuroEngineering and
natural language processing: a multilevel
research approach.,” in Advances in Connec-
tionist and Neural Computation Theory, Vol.
1., ed. J.A. Bamnden and J.B. Pollack, pp. 32--
86, Ablex Publishing Corp. , Norwood, N.J.,
1991.

L. Frazier and J. D. Fodor, “The Sausage
Machine: A New Two-Stage Parsing Mode!,”
Cognition, vol. 6, pp. 291-325, 1978.

X. Huang, “‘XTRA: The design and Implemen-
tation of A Fully Automatic Machine Transla-
tion System (Doctoral Dissertation),”
Memoranda in Computer and Cognitive Sci-
ence, vol. MCCS-88-121, Computing Research
Laboratory, New Mexico State University, Las
Cruces, NM 88003, USA, 1988.

J. Kimball, ‘“‘Seven Principles of Surface
Structure Parsing in Natural Language,” Cog-
nition, vol. 2, pp. 15-47, 1973.

S. C. Kwasny and N. K. Sondheimer, ‘‘Relaxa-
tion theories for parsing ill-formed input,”
American Journal of Computational Linguis-
tics, vol. 7, no. 2, pp. 99-108, 1981,

S. C. Kwasny and K. A. Faisal, “‘Competition
and Leaming in a Comnectionist Deterministic
Parser,”’ Procs. 11th Annual Conf. of the Cog-
nitive Science Society, pp. 635-642., Lawrence
Erlbaum, Hillsdale, N.J., 1989,

W. G. Lehnert, ‘‘Symbolic/Subsymbolic Sen-
tence Analysis: Exploiting the best of two
worlds.,”” in Advances in Connectionist and
Neural Computation Theory, Vol. 1., ed. JA.
Bamden and J.B. Pollack, pp. 32--86, Ablex
Publishing Corp. , Norwood, N.J., 1991.

J. Maling and A. Zaenen, “‘A Phrase Structure
Account of Scandinavian Extraction

Actes DE COLING-92, NANTES, 23-28 AoUT 1992

2458

20.

Phenomena,” in The Nature of Syntactical
Represeruation, ed. P. Jacobson and G. X. Pul-
lum, pp. 229--282, Reidel Publishing Com-
panty, Holland, 1982.

N. Nilsson, Principles of Al, Tioga pulishing
co., Menlo Park, 1980.

1. C. N. Pereira, ‘A New Characterization of
Attachment Preference,” in Natural Language
Parsing, ed. D. R. Dowty, L. Karttunen & A.
M. Zwicky, pp. 307-319, Cambridge Univer-
sity Press, Cambridge, 1985.

M. Selfridge, ‘‘Integrated Processing Produces
Robust Understanding,” Computational
Linguistics, vol. 12(2), pp. 89-106, 1986.

R. V. Sinumoens and Y. IL Yu, “Training a
Neural Network to be a Context Sensitive
Grammar,” Proceedings of the S5th Rocky
Mountain Conference on Al, pp. 251-256, Las
Cruces, NM., 1990

B. M. Slator, ‘‘Lexical Semantics and Prefer-
ence Semantics Analysis (Doctoral Disserta-
tion),”* Memoaranda in Computer and Cogni-
tive Science, vol. MCCS-88-1, Computing
Reseaich [Laboratory, New Mexico State
University, Las Cruces, NM 88003, USA,
1988.

D. L. Waitz and J. B. Pollack, ‘‘Massive Paral-
lel Parsing: A Strongly Interactive Model of
Natural Language Interpretation,” Cognitive
Science, vol. 9, pp. 51-74, 1985.

R. M. Weischedel and N. K. Sondheiiner,
“‘Meta-rules as a basis for processing ill-
fonmed output,”” American Journal of Compu-
tational Linguistics, vol. 9, no. 3-4, pp. 161-
177, 1983.

Y. Wilks, “A Preferential Pattern-Seeking
Semantics for Nanwal Language Inference,”
Artificial Intetligence, vol. 6, pp. 533-74, 1975.

Y. Wilks, ““Malking Preferences More Active,"”
Artificial Intelligence, vol. 11, pp. 197-223,
1978.

Y. A. Wilks, X. Huang and D. Fass, *‘Syntax,
preference and nght attachment,” IJCAI-85,
pp. 635-642., 1985

Proc. or COLING-92, NaNTES, AUG. 23.28, 19972

