
S Y N T A C T I C PREFERENCES FOR ROBUST I)ARSING WIT[t S E M A N T I C PREFERENCES
JIN WANG

Computing Research Laboratory
New Mexico State University

Las Cruces, NM 88003
E-mail: wjin@nmsu.edu

Abstract
Using constraints in robust parsing seems to have
what we call "robust parsing paradox". Preference
Sem,'ultics and Coimecfionisln both offered a promis-
ing approach to fins problem. However, Prefelence
Semantics has not addressed the problem of how to
make flfll use of syntactic constraints, and Connec-
tiouism has some inherent difficulties of its OWll
which prevent it producing a practical system. In this
paper we are proposing a method to add syntactic
preferences to the Preferealce Semantics paradigm
while nmiutaining its fundamental philosophy. It will
be shown ttmt syntactic preferences can be coded as
a set of weights associated with the set of symboli-
cally manipulatable rules of a new grammar formal-
ism. ~121e syntactic preferences such codezt can lye
easily used to compute with semantic preferences.
With the help of some tectmiques borrowed from
Connectioeisln, these weights can be adjusted
through tralrting.

1. Introduction
Robust parsing faces what seems to be a "para-
dox". On one hand, it needs to tolerate input
sentences which more or less break syntactic
and semantic constraints; that is, given m~ ill-
formed sentence, the parser should attempt to
interpret it somehow rather thml simply reject it
because it violates some constraints. In order to
do this it allows syntactic and semantic con-
stralnts to be relaxed. On the other hand, robust
parsing still need to be able to disambiguate. For
the sake of disambiguation, stronger syntactic
and ,semantic coilstraints are required, since the
stronger these constraints are, the greater the
number of unlikely readings that can be rejected,
and the more likely the correct reading is
selected.

A lot of work related to this problem has been
done. The most commonly used snategy is to
use the strongest constraints first to parse the
input. If the parser fails, the violated constraints
are relaxed in order to recover the failed process
m~d arrive at a successful parse (CarboneU &
Hayes, 1983) (Huang, 1988) (Kwasny & Son-
dheimer, 1981) (Weischedel & Sondheimer,
1983). The major problem with this approach is
that it is difficult to tell which constraint is actu-
ally being violated and, therefore, needs to be

relaxed when the parser fails. Tiffs l)roblem is
more serious with the parser using backtracking.

Another strategy is based on Preference Seman-
tics (Wilks, 1975, 1978) (Fass & Wilks, 1983).
The idea is that all the possible sentence read-
ings can (though not necessarily) be produced.
All the "readings are scored according to how
mm~y preference satisfactions they contmn", and
"the best reading (that is, the one with the most
preference satisfactions) is taken, even if it con-
tains preference violations." Selfridge (1986)
and Slator (1988) 'also use this strategy. One
important advantage of this approach is that
within a uniform mechanism, the semantic con-
straints can both be used maximally for the sake
of disambiguation m~d be gracefully relaxed
when nece,ssmy for the sake of robusmess. How-
ever, how to extend the preference philosophy to
syntactic constraints have not been addressed.
There are two li-equently used approaches to
incorporate syntactic constraints in systems
using semantic preferences. The first ,~s in (Slao
tot, 1988), is to use a weak version of a rather
typical syntactic module. The problem with this
approach is that the syntactic constraints here
still suffer from the problem of "robust parsing
paradox". Another problem with this approach is
that it shifts more bin-dens of disambiguation to
semm~tic preferences because the syntactic con-
stralnts need to be weak enough in order not to
reject too many noisy inputs. The second
approach, as in (Selfridge, 1986), is to try all the
possible combinations without any structural
preference. Tfie problein hexe is computational
complexity especially with long sentences which
have conlplex or recnrsive slJllctares in them.

Cormectionism has also shown some appealing
results (Dyer. 1991) (Waltz & Pollack. 1985)
(l,ehnelt, 1991) on robusmess. However, there
are some very difficult problems which they
pose, such as the difficulty with complex struc-
tures (especially recursive structures), the
difficulty with variables, variable fiindings and
ratification, and the difficulty with schemes and
their instantiations. These problems need to be
solved before such an approach can be used. in
practical natural language processing systems

ACRES DE COLING-92, NA~rt~s, 23-28 AO~r 1992 2 3 9 Pl~oc. ot: COLING-92, NAbrrEs, AuG. 23-28. 1992

especially those which involve syntactic pro-
cessing (Dyer, 1991).

In this paper we will propose a framework of
representing syntactic preferences 1 that will
keep all the virtues of robustness Preference
Semantics suggests. Furthermore, such prefer-
ences can be learned.

2. Sketch of Our Approach

As we seen the idea of Preference Semantics
about robustness is to enable the system to 1)
generate (potentially) all the possible readings
for all the possible inputs, 2) find out among all
the possible readings which one is the most
appropriate one and generate it first. To meet
this goal for syntactic constraints we want to
accomplish the following:

1. A formalism with a practically feasible
amount of symbolic mampulatable rules which
will have enough generative power to accept any
input and produce all the possible structures of
it (section 3.1).
2. A scheme to associate weights with each of
these rules such that the weights of all the rules
that are used to produce a structure will reflect
how preferable (syntactically speaking) the
whole structure is (section 2.1).
3. A algorithm that will incorporate these rules
and weights with semantic preferences so that
the overall best reading will be generated first.
(section 2.2).
4. A method to train the weights (section 2.1
and 3.3).

2.1. Cod ing Syntact ic Cons t ra in t s

The most popular method to encode syntactic
constraints is probably phrase structure gram-
mar. One way to make it robust is to assign for
all the grammar rules a cost. So, a rule designed
for well formed inputs will have less cost than
the rules designed for less well formed inputs;
that is to say that a higher cost grammar rule
wil l be less preferred than a lower cost grammar
rule. However there are two serious problems
with this naive method. First, i f all the ill-
formedness will have a set of special grammar
rules designed for them, to capture a reasonable

I We u~ syntactic preferences in a broader sense

which not only includes syntactic feature agreements
but also the order of the constituents in the sentence
and the way in which different constituents are com-
bined. On the other hand, is yOU will ram, the absence
of nonterminals and syntactic derivation tree~ will
also di.staoce us from a strong syntax theory.

variety of ill-fornledness, we need an unreason-
ably amount of grammar rules. Second, it is not
clear how we can find the costs for all these
rules. Next we will show how we will solve
these two problems.

To solve the first problem, our approach aban-
dons the use of phrase structure grammar, and
instead a new grammar formalism is used. The
idea of this new formalism is to reduce syntactic
constructions to a relative small set of more
primitive rides (P-rules), so that each syntactic
construction can be produced by the application
of a particular sequence of these P-rules. Section
3.1 will give more details about this formalism,
and we win just list some of its relevant charac-
teristics here: 1. There are no nonterminals in
this formalism. 2. Each P-ntle take only three
parameters to specify a pattern on which its
action will be fired. All these three parameters
wil l be one of the parts of speech (or word
types), such as noun, verb, adverb, etc. For
example: (noun, verb, noun) ~ > action3 is a
P-rule. 3. Each rule has one action. There are
only three possible actions.

Since the number of parts of speech is generally
limited 2, the total rule space (the number of all
the possible P-rules) is rather small 3. So, it is
possible for us to keep all of the possible P-rules
in the grammar rule base of the parser. The out-
put of the parser is a parsing tree in which each
node corresponds to a word in the input sen-
tence and the edge represents the dependency or
the attachment relation between the words in the
sentence. One important property of this formal-
ism is that given any input sentence, for all of
the normal parsing trees that can be built on it
(the definition of normal parsing tree is given in
next section), there exists a sequence of P-rules,
such that the tree will be derived by applying
this rule sequence. This means that we can now
use this small P-rule set to guide the parsing 4
without pre-excluding any kinds of ill-formed
inputs for which a normal parsing tree does
exist.

2 For example in Longnmn Dictionary of Contem-
porary English (1978) there are only 14 different parts
of speech. Given that interjection can be taken care by
Jt preprocessor and the complex parts like v adv, v adv
prep, v adv;prep, v prep can be represented as v plus
anme syntactic feature.s, this number can be further m-

duce, d to 9.
3 If there ere 10 different parts of speech, the total

P-rule sl~ee is smaller than lOxlOxlOx3 = 3000.
4 Because of the searching algorithm we used, a

lot of searching paths sanctioned by p-rules will be
pruned by semantic prefurences. In this sense the

AcrEs DE COLING-92, NANTES, 23-28 AOt3X 1992 2 4 0 PRec, OF COLING-92, NANTES, AUG. 23-28, 1992

To solve the second problem, we will use some
techniques bon'owed from the connectionist
cmnp. As we have mentioned before each rule
takes three parameters to specify a pattern.
Each of these parameters wil l associate with a
vector of syntactic feature 5 roles. So, every P-
rule will have a feature rote vector:

(FFlt Fln, F21 F2n, F31

Each feature role is in turn associated with a
weight. So each P-rule also has a vector of
weights:

(W W
W 11 W . ln ' W21 W2n'

31 3n)
If a rule is applicable at a certain situation, the
feature roles will be filled by the corresponding
feature values given by the language objects
matched out by the pattern of the rule. The
value of each feature can be either 1 or 0, Let
F ' i . denotes the value filling role F i • at one par-
t i c~ar application. The cost of al~plying that
rule at that situation will be:

-Y. Wij • F ' i j (*)
The weights can be trained by a training algo-
rithm similar to that used in the single layer per-
ceptron network.

To summarize, the syntactic constraints are
encoded partly as P-rules and partly as the
weights associated with each p-ride. The P-rnles
are used to guide the parsing and tell which con-
stituent should combined with which co~tsti-
tuent. There are two types of syntactic prefer-
ences encoded in the weights: the preferences of
the language to different P-rules and the prefer-
ences of each P-rule to different syntactic
features. "l~e P-rule is still symbolic and work-
ing on a stack. So, the ability of recursion is
kept.

2.2. Organ iza t ion of the Pa r se r

At the topmost level, the parser is a standard
searching algorithm. Due to its efficiency, A*
algorithm (Nilsson, 1980) is used. However, it is
worth noting that any other standard searching
algorithm can also be used. For any searching

parsing is actually guided by both syntactic prefer-
enccs and semantic preferences.

5 The use of term "syntactic feature" is only to
make it distinct from semantic preference and seman-
tic type . We, by no means, try to exclude th~ use of
those features which are generally considered as so-
mantle feantres but which will help to make the right
syntactic choice.

algorithm, the following things need to be
specilied: 1. what the states hi the searching
space are: 2. what the initial state is; 3. what the
action roles are aed taking one state how they
create new states; 4. what the cost tff creating a
new node is (please note that the cost is actually
charged to the edge of the searching graph); 5.
what the final states are.

In the pmser, tile searching states are pairs like:

(<partial resutt>,<unparsed sen-
tence>)

The pml:ial re.suit is represented a.s one or more
parsing trees which arc kept on a working stack.
Details of this representation are given in next
section. The initial state is a pair of an empty
stack and a sentence to be parsed. The action of
the searching process is to look at the next
read-in word and the roots of the top two taees
on the wolking stack, which represent the two
most recent /ound active constituents. The
searching will then search for all the applicable
P-rules based on what it sees. All P-rules it has
found will then be fired. The action part of these
P-rules will decide bow to manipulate the trees
on the stack and the current read-in. At will also
decide whether it needs to read in next word.
Therefore, for each of these P-rules being fired,
a new state is created. The cost of creating this
new state is following: the cost of applying the
P-rule on its father state; tile degree of violation
of any new local, preference just being found in
the newly bui l t trees; the cost of contextual
preference 6 associated with file new consumed
read in sense. All these costs are tmrmalized and
added to yield the total cost of creating this new
state. The reason for normalization is that, for
example, the cost of applying P-rule (see section
2.1) needs to be norntalized to be positive as it
is required by A* algorithm. Tile relative magni-
tudes of different types of costs need also be
balanced, so that one kind of cosls will not
overwhelm the others. The final states of the
searching are the states where the unparsed sen-
tence is nil and the working stack has only one
complete parsing tree on it. Obviously the out-
put of this searching algorithm is the reading
(represented as the n'ee) of dte input sentence
which violates the least amount of Sylltactic and
semantic preferences.

So far the heuristics used in the A* searching is
simply taken to be:

6 For the idea of contextual prefe.rence~ see (Slator,
1988).

AcrEs DE COLING-92, NANTES, 23-28 AOl'Yr 1992 2 4 1 t'l~nc. Ov COIANG-92, NANTES, AUG. 23-28, 1992

tX/C

where ct is a constant. I is the length of the
unparsed sentence, c is the average cost for pars-
ing each word.

It is needed to mention that the input sentence
we talked above is actually a list of lexical
frames. Each lexical flame contains the follow-
ing information about the word it stands for: the
part of speech, syntactic features, local prefer-
ences, contextual preferences, etc. Since words
can have more than one senses and one lexical
frame will only represent one sense, for each
read-in word, the parser will have to work for
each of its senses and produce all of their chil-
dren.

3. Some Details

3.1. P-rules, Parsing Trees, and P-parsers.

Given an input string a on a vocabulary E 7, a
parsing tree of the input is a trees with all its
nodes corresponding to one of the words in the
input string. For example, one of the parsing
trees for input abcde is:

(e (a) (c (b) (d)))

Here the head of each list is the root of the tree
or the subtree, and the tail of the list are its chil-
dren. Intuitively the parenthood relation reflects
the attachment or dependency relation in the
input expression. For example, given an input
expression a small dog, the dog will be the
father of both a and small. The parsing tree is
more formally defined as follows:

Definition (Parsing Tree): Given an input string
a, the parsing tree on a is recursively defined as
following:

I. (a) is a parsing tree on a, if a is in

2. (a T 1 T 2 Ti) is a parsing tree
on a, if a is in a and T k (l~..<i) is
also a parsing tree on a.

Definition (Complete Parsing Tree): Suppose T
is a parsing tree on a. If for all the a in a, a is
also in T, then T is a complete parsing tree on

To reduce the computational complexity, we
will limit our attentions to only one special type
of parsing trees, namely the normal parsing tree.

7 i n tho ac tua l p a r s ~ I~ is tho ~ t o f all tho par ts o f

Ipeech.
S The order of children for any node is significant

hera, and wo will usa LIsP convention to rapre.lasnt
the par~ing ~a¢ in this paper.

It should not be difficult to see and prove from
the following definition that normal parsing
trees are simply the trees which do not have
"crossing dependencies" (Maling & Zaenen,
1982).

Definition: (Normal Parsing Tree): Suppose T is
a parsing tree on a. T is a normal parsing tree
on a iff for all the nodes in T, if they have chil-
dren, say T . . T, then all the nodes in T

1 ' " "" ' . . I
must be appeared ~fore all nodes m T j m the
input stnng a, where l<i<j~,k.

The P-parser has an input tape, and the reading
head is always moving forward. The P-parser
also keeps a stack of parsing trees which will
represent the parsing result of the part of the
input which has already been read. Besides there
is a working register in the P-parser to store the
current read in word. As you will see later, the
read-in word is actually transformed into a U'ee
before it being stored in the working register.
The configurauon of the P-parser is thus defined
as a triple [<the stack>,<content of working
register>,<unparsed input>]. The P-rule is used
to specify how the P-parser works. If the mput
is of a vocabulary E, the P-rules on it can be
defined as follows:

Definition (P-rule): A P-rule on E is a member
of set E' x E ' x E ' xA, where E' i sE to [nil}
and A is the set of actions defined below.

Definition (Action): Actions are defined as func-
tions of type E ~ E, where E is the set of
configurations. There are total three different
acUons used in P-rules, and they are listed
below:

5~[S,C,R]= [(cons C S), (list (car
R)), (cAr R)]
5?[S,C,R]= [(cdr S), (cons (car C)
(Cons (car S) (cdr C))), R]
5~s[S,C,R]= [(cons (append (car S)

t (cadr S))) (cddr S)), C, R]

Action 1 simply pushes the current read-in on
the stack and then reads the next word from the
input. Action 2 attaches top of the stack as the
first child of the current read-in stored in the
working register. Action 3 pops the top of the
stack first and then attaches it to the second top
of the stack as its last child.

The initial configuration for the P-parser is [nil,
(list (car a)), (cdr ct)], where the a is the input
string to be parsed. There is a set of P-rules in
each P-parser to specify its behavior. The P-
parser will work non-deterministically. A P-rule
can be fired iff its three parameters march the
roots of the top two parsing trees on the stack
and the root of the tree in the working register

ACRES DE COLING-92, NANTES, 23-28 Aotrr 1992 2 4 2 PROC. O1: COLING-92, NANTES, AUG. 23-28, 1992

respectively. Note the P-rule does not care about
the unparsed input part in the configuration tri-
ple. A cmtfiguratiml is a final configuration iff
the unparsed input string and the working regis-
ter are all empty mid the stack only has one
parsing tree on it. A input is grammatical if and
only if the P-parser can reach from the initial
configuration to a final configuration by apply-
ing a sequence of P-rules taken from its gram-
mar set. If there are more than one possible final
states for a given input sWing and the parsing
txees produced at these states are different, then
we say that the input swing is ambiguous. Here
is a simple example to show how the P-parser
works. You may need a pen and a piece of
paper to work it out. Given input abcde (a good
friend of mine, for example), the parsing tree (c
(a) (b) (d (e))) can be constructed fly applying
the following sequence of rules:

(nil,nil,a)=> 1 (a,nil,b)=> 1 (b,a,c)=>2
(a,nil,c)=>2 (nil,nil,c)=>l (c,nil,d)=>l
(d,e,c)=>l (c,d,nil)~.>3 (d,c,nll)=>3

Most properties of this formalism will not be of
the interests of this paper, except this theorem:

Theorem: A P-parser with all the P-rules on E
as its grammar set cm~ produce all the complete
normal parsing trees for any input sWing on Z.
PROOF: It is easy to prove this by induction on
the length of the input string, r2

The theorem tells that a P-parser with all the
possible P-rules as its rule set can produce for
any input string all of its possible parsing trees
which have no crossing dependencies. This
alone may not be very useful since this P-parser
will also accept all the strings over E. However,
as we have shown in the last section, with a
proper weighting scheme, this P-parser offers a
suitable framework for coding syntactic prefer-
ences.

3.2. Syntactic Preferences in the Weights of
P-rules

Each lexical item will have a vector (of a fixed
length) containing syntactic features. The value
of the each feature is either 1 or 0. Each of the
three parameters in the P-rule is associated with
a vector (of the same length) of syntactic feature
roles. Each of these syntactic feature roles is
associated with a weighL Each weight thus
encodes a preference of the P-rule toward the
particular syntactic feature it corresponds to. A
higher weight means the P-rule will be more
sensitive to the appearance of this syntactic
feature, and the result of applying this rule
therefore will be more competitive when it does

appeaa'. The preferences of the language to dilC
ferent P-rules arc 'also ~ellected in weight,s.
Instead of being reflected in each individual
weight, they are reflected in the distribution of
weights in P-rules. A P-rule with a higher aver-
age weight is generally more favored than a P-
ntle with a lower average weight, since the
higher tile average weight is, tile lower the cost
of applying the P-rule tends to be. It is also
necessary to emphasize that these two types of
preferences are closely integrated.

3.3. Weight Learning

The weights of ,all the P-rules will be trained.
The training is supervised. Tllere are two dif-
ferent methods to train the weights, The first
method takes an input string and a correct pars~
ing tree for that stnng. We will use an algoritlmt
to computer a sequence of P-rules that will pro-
duce the given parsing tree from the given input
string. "[qfis algorithm is not difficult to design,
and due to the space limits we will not present it
here. After the P-rule sequence is produced,
each of P-rule in the sexluence will get a bonus
5. The bonus will farther be distributed to the
weights in the P-rule in the same fashion as that
in the single layer perceptron network, that is:

AWij = ~llSF'ij
where r I is the learning factor.

The second method requires less interventions.
The parser is let to work on its own. 'llae user
tufty need to tell the parser whether the output it
gives is correct. If the result is correct, all the
P-rules used to construct this outpnt will get a
bonus and all the rules used during the parsing
which did not contribute to tim output will get a
punishinent. If the answer is wrong, all the Po
rules used to construct this artswer will get a
punishment, and the parser will continue to
search for a second best guess. The Ixmus and
punishment will be diswibuted to the weights of
the P-rule in the san~e maimer as that in the first
method.

The first method is more appropriate at the early
stage of the training when most of the rules
have about the stone weights. It will take much
longer for the parser to find the correct result on
its own at this time. On the other hand, the
second method needs less interventions. So, it
will be more appropriate to be used whenever it
can work reasonably well.

It is well known that the single layea" perception
net can not be trained to deal with exclusive-or.
The same situation will also happea here. Since
exclusive-or relations do exist between syntactic

AcrEs DE COLING-92, NAm'.ES, 23-28 AO~" 1992 2 4 3 I'ROC. OF COLING-92, NANTES, AU(L 23-28, 1992

features, we need to solve this problem. The
simplest solution is to make multiple copies for
the P-role, and, hopefully, each copy will con-
verge to each side of the exclusive-or relation.

3.4. Measuring Preference Violations
The syntactic preference violation is measured
by formula (*) in section 2. Both action 2 and
action 3 of P-rule actions make an aaachrnent,
and some semantic preferences may be either
violated or satisfied by the attachment. So, after
each application of such p-ride actions, the
parser needs to check whether there are some
new preferences being violated or satisfied. If
there are, it will computer the cost of these vio-
lations and report it to the searching process.
Similarly, eacli action 1 will cause a new con-
textual preference being reported. The measure-
ment for the violation degree of both local
preferences and contextual preferences is basi-
cally taken from PREMO (Slator, 1988), which
we will not repeat here.

4. Conclusion and Comparisons

Preference Semantics offers an excellent frame-
work for robust parsing. However, how to make
full use of syntactic constraints has not been
addressed. Using weights to code syntactic con-
straints on a relatively small set of P-rules (from
which all the possible syntactic structures can be
derived) enables us to expand the philosophy of
Preference Semantics from semantic constraints
to syntactic constraints. The weighting system
not only reflects the preferences of the language,
say English, to different P-rnles but also reflects
the preferences of each P-rule to each syntactic
feature. Besides of this, it also offers a nice
interface so that we can integrate the application
of these syntactic preferences nicely with the
application of both local semantic preferences
and contextual preferences by using a highly
efficient searching algorithm.

This project has also shown that some of the
techniques commonly associated with the con-
nectionism, such as coding information as
weights, training the weights, and so on, can
also be used to benefit symbolic computing. The
result is gaining the robustness and adaptability
while not losing the advantages of symbolic
computing such as recursion, variable binding,
etc.

The notion 'syntactic preference' has been used
in (Pereira, 1985) (Frazier & Fodor, 1978)
(Kimball. 1973) to describe the preference
between Right Association and Minimal Attach-
ment. Our approach shares some similarities

with (Pereira, 1985), in that MA and RA simply
"corresponds to two precise roles on how to
choose between alternative parsing actions" at
certain parsing configurations. However, he did
not offer a framework for how one of them will
be preferred. According to our model the prefer-
ence between them will be based on the weights
associated with the two rules, the syntactic
features of the words involved and the semantic
preferences found between these words. Besides,
the idea of syntactic preferences in this paper is
more general than the one used in their work,
since it includes not only the preference between
MA or RA but other kinds of syntactic prefer-
ences as well.

Wilks, Huang and Fass (1985) showed that
prepositmnal phrase attachments are possible
with only semantic information. In their
approach syntactical preferences are limited to
the order of matchings and the default attaching.
Their atxaching algorithm can be seen as a spe-
cial case of the model we proposed here, in that,
if they are correct, the preferences between the
sequences of rules used for RA and MA would
turn out to be very similar so that the semantic
preferences involved would generally over sha-
dow their effects.

There are some significant differences between
our approach and some hybrid systems (Kwasny
& FaJsal, 1989) (Simmons & Yu, 1990). First,
our approach is not a hybrid approach. Every-
thing in our approach is still symbolic comput-
ing. Second, in our approach the costs of the
applications of syntactic constraints are passed
to a global search process. The search process
will consider these costs along with the costs
given by other types of constraints and make a
decision globally. In a hybrid system, the syn-
tactic decision is made by the network locally,
and there is no intervention from the semantic
processing. Third, our parser is non-
deterministic while the parsers in hybrid systems
are deterministic since there is no easy way to
do backtracking. It is also easy to see that
without the intervention of semantic processing,
lacking the ability of backtracking is hardly an
acceptable s~ategy for a practical natural
language parser. Finally, in our approach each
P-rule has its own set of weights, while in the
hybrid systems all the grammar rules share a
common network, and it is quite likely that this
net will be overloaded with information when a
reasonably large grammar is used.

ACTES DE COIANG-92, NANTES, 23-28 ̂ Ot~T 1992 2 4 4 PROC. OF COLING-92, NANTES, Aun. 23-28, 1992

Acknowledgment

All the experiments for this project are carried
on the platform given by PREMO which was
designed and implemented by Brian Slator when
he was here in CRL. The author "also wants to
thank Dr Yorick WiNs, Dr David Farwell, Dr
John Barnden and one referee for their com-
ments. Of course, the author is solely responsi~
ble for all the mistakes in the paper.

References

1. J .G. Carbonell and P. J. Hayes, "Recovery
Strategies for Parsing Extragrammtical
Language," American Journal of Computa-
tional Linguistics, vol. 9(3-4), pp. 123-146,
1983.

2, D. Fass and Y. Wilks, "Preference Semantics,
Ill-Formedness, and Metaphor," American
Journal of Computational Linguistics, voL
9(3-4), pp. 178-187, 1983.

3. M.G. Dyer, "Symbolic NeuroEngmeelmg md
natural language processing: a multilevel
research approach.," in Advances in Conaec-
tionist and Neural Computation Theory, Vol.
1., ed. J.A. Bmnden and J.B. Pollack, pp. 32--
86, Ablex Pnblishing Corp. , Norwood, N.J.,
1991.

4. L. Frazter and J. D. Fodor, "The Sausage
Machine: A New Two-Stage Parsing Model,"
Cognition, vol. 6, pp. 291-325, 1978.

5. X. Huang, "XTRA: 'Ihe design and Implemen-
tation of A Fully Automatic Machine Transla-
tton System (Doctoral Dissertation),"
Memoranda in Computer and Cognitive Sci-
ence, vol. MCCS-88-121, Computing Research
Laboratory, New Mexico State University, Las
Cruces, NM 88003, USA, 1988.

J. Kimball, "Seven Principles of Surface
Structure Parsing in Natural Language," Cog-
nition, vol. 2, pp. 15-47, 1973.

S. C. Kwasny and N. K. Sondheimer, "Relaxa-
tion theories for parsing ill-forared input,"
American Journal of Computational Linguis-
tics, vol. 7, no. 2, pp. 99-108, 1981.

S. C. Kwasny aruJ K. A. Faisal, "Competition
and Learmng in a Coanectiohist Deterministic
Parser," Procs. 11 th Annual Conf. of the Cog-
nitive Science Society, pp. 635-642, Lawrea~ce
Erlbaum, Hillsdale, N.J., 1989.

W. G. Lehnert, "Symbolic/Sabsymbolic Sen-
tence Analysis: Exploiting the best of two
worlds.," in Advances in Com~ectionist and
Neural Computation Theory, Vol. 1., ed. J.A.
Banlden and J.B. Pollack, pp. 32--86, Ablex
Publishing Corp. , Norwood, N.J., 1991.

10. J. Maling and A. Zaeslen, "A Phrase Structure
Account of Scandinavian Extraction

6.

7.

8.

Phenomeala," in The Nature of Syntactical
Representation, ed. P. Jacobsun and G. K. Pul-
lure, pp. 229--282, Reidel Publishing Com-
pany, Holland, 1982.

11. N. Nilsson, Principles of A/, Tioga pulishing
co., Mtaflo Park, 1980.

12. F . C . N . Pereira, "A New Characterization of
Attachment Preference," in Natural Language
Pursing, exl. D. R. Dowry, L. Kalltunen & A.
M. Zwicky, pp. 307-319, Cmnhiidge Univer-
sity Press, C,'unb[idge, 1985.

13. M. Selfridge, "Integrated Pr~essing Produces
Robust Understanding," Computational
Linguistics, wfl. 12(2), pp. 89-106, 1986.

14. R. 17 . Sinanons mad Y. II. Yu, "Training a
Neural Network to be a Context Sensitive
Grmnmar," Proceedings of the 5th Rocky
Moant<¢in Co@rence on AI, pp. 25t-256, Las
Cruces, NM., 1990.

15. B.M. Slator, "Lexical Semantics and Prefer-
ence Semantics Atmlysis (Doctoral Disserta-
tion)," Memorandn in Computer and Cogni-
tive Science, vol MCCS-88-1, Compnting
Research Laboratory, New Mexico State
University, L~s Cruces, NM 88003, USA,
1988.

16. D.L. Waltz and J. 13. Pollack, "Massive Paral-
lel Prosing: A Strongly h~teractive Model of
Natural Language hlterpretation," Cognitive
Science, vol. 9, pp. 51-74, 1985.

17. R. M. Weischedel and N. K. Soodheitner,
"Meta-rules as a basis for processing ill-
formed output," Americcul Journal of Compu-
tational Linguistics, vol. 9, no. 3-4, pp. 161-
177, 1983.

18. Y. Wilks, "A Prefereaaial Pattern-Seeking
Semamtcs for Natural Language lnferalce,"
Artificial Intelligence, vol. 6, pp. 53-74, 1975.

19. Y. Wi|ks, "Making Preferences More Active,"
Artificial Intelligence, vol. 11, pp. 197-223,
1978.

20. Y.A. Wilks, X Huang and D. Fass, "Syntax,
plefercalcc and nght artaclmmnt," IJCA[-85,
pp. 635-642. 1985

Actas DE COLING-92, NANTES, 23-28 AoOr 1992 2 4 5 I'R(){:. OF COLING.92, NAN-rES, AUU. 23-28, 1992

