Compiling and Using Finite-State Syntactic Rules

Kimmo Koskenniemi, Pasi Tapanainen and Atro Voutilainen

University of Helsinki
Research Unit for Computational Linguistics
Hallituskatu 11
SF-00100 Helsinki
Finland

Abstract

A language-independent framework for syntac-
tic finite-state parsing is discussed. The article
presents a framework, a formalism, a compiler
and a parser for grammars written in this for-
malism. As a substantial example, fragments
from a nontrivial finite-state grammar of Eng-
lish are discussed.

The linguistic framework of the present
approach is based on a surface syntactic tag-
ging scheme by F. Karlsson. This representa-
tion is slightly less powerful than phrase
structure tree notation, letting some ambigu-
ous constructions be described more concisely.

The finite-state rule compiler implements what
was briefly sketched by Koskenniemi (1990). It
is based on the calculus of finite-state
machines. The compiler transforms rules tnto
rule-automata. The run-time parser exploits
one of certain alternative strategies in perform-
ing the effective intersection of the rule autom-
ata and the sentence automaton.

Fragments of a fairly comprehensive finite-state
grammar of English are presented here, includ-
ing samples from non-finite constructions as a
demonstration of the capacity of the present
formalism, which goes far beyond plain disam-
biguation or part of speech tagging. The
grammar itself is directly related to a parser
and tagging system for English created as a
part of project SIMPR! using Karlsson's CG
(Constraint Grammar) formalism.

1. Introduction

The present finite-state approach to syntax
should not be confused with eg. attempts to
characterize syntactic structures with regular

1. Esprit 1 project No. 2083, Structured
Information Management: Processing and
Retrieval.

AcTES DE COLING-92, NANTES, 23-28 A0UT 1992

phrase structure grammars. Instead of using
trees as a means of representing structures, we
use syntactic tags assoclated with words, and
the finite-state rules constrain the choice of
tags. This style of representation was adopted
from Karlsson's CG approach and an earlier
Finnish parser called FPARSE (Karlsson 1985,
1990).

The current approach employs a shallow sur-
face ordented syntax. We expect it to be useful
in syntactic tagging of large text corpora, infor-
mation retrieval, and as a starting point for
more elaborate syntactic or semantic analysis.

1.1 Representation of sentences

We represent the sentences as regular expres-
sions, or equivalently, as finite-state networks,
which list all combinatory posstibilities to inter-
pret them. Consider the sentence:

the program runs.

A (simplified) representation for the morpholog-
ically processed but syntactically unanalyzed
sentence as a regular expression could be
roughly as follows:

ae

the DEF ART

(@ | @/ | @< | @>]

{ [program N NOM SG [@SUBJ | @OBJ |
@PREDC} |

[program V PRES NON-SG3 @FINV @MAINV] |

[program V INF]]

[@ | @/ 1 e< | @)

{[run V PRES SG3 @FINV @MAINV] |

[run N NOM PL [8SUBJ | Q@OBJ | @PREDC]]]

[clc)

Here @@ represents a sentence boundary, @ a
word boundary, @/ an ordinary clause bound-
ary, @< a beginning of a center embedded
clause, and @> the end of such an embedding.

Square brackets ‘[...]' are used for grouping,
and vertical bars ‘|’ separate alternatives. Each
word has been assigned all possible syntactic
roles it could assume in sentences (eg. @SUBJ

156 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

or GOBJ or @PREDC). Note that between each two
words there might be a clause boundary or a
plain word boundary. The regular expression
represents a number of strings (some 320)
which we call the readings of the (unanalyzed)
sentence. The following is one of them:

@@ the DEF ART @/
program V PRES NON-SG3 @FINV @MAINV @
run N NOM PL @PREDC @@

This one is very ungrammatical, though. It will
be the task of the rule component to exclude
such, and leave only the grammatical one(s)
intact:
@@ the DEF ART @

program N NOM SG @SUBJ @

run V PRES SG3 @FINV @MAINV @@

Note that in this framework, the parsing does
not build any new structures. The grammatical
reading is already present in the input repre-
sentation.

1.2 The role of rules

The task for the rules here is (as is the case with
the CG approach by Karlsson) to:

* exclude those interpretations of ambiguous
words which are not possible in the current
sentence,

* choose the correct type of boundaries
between each two words, and

» determine which syntactic tags are the
appropriate ones.

Rules should preferably express meaningful
constraints which result in the exclusion of all
ungrammatical alternatives. Each rule should
thus be a grammatical statement which effec-
tively forbids certain tag combinations.

Rules in the CG formalism are typically ded{-
cated for one of the above tasks, and they are
executed as successive groups.

In finite-state syntax, rules are logically unor-
dered. Furthermore, in order to achieve word
level disambiguation, one typically uses rules
which describe the occurrences of boundaries
and syntactic tags in grammatically correct
structures rather than indicating how the
incorrect interpretations can be identified.
Thus, the three effects are achieved, even if
individual finite-state rules cannot be classified
into corresponding three groups.

1.3 Rule automata

Finite-state rules are represented using regular
expressions and they are transformed into
finite-state automata by a rule compiler.

The whole finite-state grammar consists of a set
of rules which constrain the possible choices of
word Interpretations, tags and boundaries to

AcrEs DE COLING-92, NaNTS, 23-28 AoUT 1992

only those which are considered grammatical.
The entire grammar is effectively equivalent to
the (theoretical) intersection of all individual
rule automata. However, such an intersection
would be impractical to compute due to its
huge size.

The logical task for any finite-state parser inthe
current approach is to compute the intersec-
tion of the unanalyzed sentence automaton and
each rule automaton. Actual parsing can be
done in several alternative ways which are
guaranteed to yield the same result, but which
vary in terms of efficlency.

2. The finite-state rule formalism

Tapanainen (1991) has timplemented a compiler
and a parser for finite-state grammars. The
compilation and the parsing is based on a Com-
mon Lisp finite-state program package written
by him. Tapanainen also reports in his Master’s
thesis (1991) new methods for optimizing the
result of the compilation and tmproving the
speed of parsing.

The current rule compiler has only few built-in
rules or definitions. Instead, it has a formalism
for defining relevant expressions and new rule
types. There are two types of definitions for
this purpose. The first one defines a constant
regular expression which can later on be
referred to by its name:

name = expression;

Some basic notations are defined in this way
such as the dot which stands for a sequence of
tokens within a single word:

o= \[@R] @ | @/ | @< | @],

The backslash ‘\" denotes any sequence of
tokens not containing occurrences of its argu-
ment (which here lists all types of word and
clause boundaries). A variation of the dot is a
dot-dot *. . which represents a sequence of
tokens within the same clause:

@G> = @< [. | @] @/1* @>;
L= [.] @] @l

The second type of definitions has parameters,
and it can be used for expressions which vary
according to their values:

name(param;, .., param,) = expression;

The expression is a regular expression formu-
lated using constant terms and the parameter
symbols param;. An example of this type of def-
initions is the following which requires every
clause to be of a given form X:

clause(X) = \ [[@@ | @/ | @<]
~[X | ~..]
[@> | @/ | @@l);

157 Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

The formula forbids subsequences which are
clauses but not of form X (the middle term is
easier to understand as [-X & ..]).

Experience with writing actual large scale
grammmars within the finite-state framework
has indicated that we need more flexibility in
defining rules than what was first expected.
This flexibility is achieved by having one very
general rule format:

expression;

The expression simply defines a constraint for
all sentences, le. it 1s already as such equiva-
lent to a rule automaton. Forbidding unwanted
combinations or sequences, such as two finite
verbs within the same clause, can be excluded
eg. by a rule:

UNIQUE(FINV);

Here, UNIQUE is a definition which has been
made using the formalisms above, and is avail-
able for the grammar writer. Using the UNIQUE
definition, one can express general principles,
such as that there is at most one main verb, at
most one subject etc. in each clause.

Most of the actual rules still use the right
arrow format:

expression =»>
left-context _ right-context;

All three parts of the rules are regular expres-
sions. The rule requires that any occurrence of
expression must be surrounded by the given
context.

3. English finite-state grammar

The English finite-state grammar discussed
here was written by Voutilainen. The grarnmar
itself s much more comprehensive than what
can be described in this paper. Although the
grammar already covers most of the areas of
English grammar that it is intended to cover, it
is still far from complete in details. The gram-
mar, when complete, will be part of Voutilai-
nen’s PhD dissertation (forthcoming). This sec-
tion presents some general principles from
that grammar, and a few examples from more
complex phenomena.

3.1 Goals of the grammar

The present grammar has many goals and

characteristics similar to those of the SIMPR

Constraint Grammar:

¢ the ability to parse unrestricted running -
texts with a large dictionary,

* concrete, surface-oriented description in
terms of dependency syntax.

ACTES DE COLING-92, NANTES, 23-28 A0UT 1992

The current finite-state syntax uses, indeed,
the same ENGTWOL lexicon as the SIMPR CG
syntax (Karlsson et al. 1991). The set of syn-
tactic features are adopted from the CG
description almost as such with a few addi-
tions.

In the present finite-state approach, however,
we aim at:

= more general and linguistically motivated
rules {fewer, more powerful and general
rules in the grarmmar),

» more accurate treatment of intrasentential
structure {three types of clause boundaries
instead of one), and

* a satisfactory description of certain complex
constructions and sentence structures.

The present formalism can achieve somewhat

more general and powerful rules than the cur-

rent CG formalism through the use of full reg-
ular expression notation.

3.2 Clause boundarles

Some power and accuracy is gained through a
commitment to use a notation for clause
boundaries which is exact in defining when
words belong to the same or a different clause.
The two formalisms are equivalent in many
cases:

@@ The dog chased a cat

@/ which ate the mouse @@
The more elaborate clause boundary marking
makes a difference in case of center-embed-
ding:

@@ The man @< who came first @> got the job @@

This convention indicates that there are two
clauses:

The man .. got the job
.. who came first ..

3.3 Constituent structure

Head-modifier relations are expressed (here
and in the CG) with tags, eg.:

a DET @DN>

big A @AN>

cat N @SUBJ
The head of a NP is tagged as a major constitu-
ent, here as a subject. In case the constituent
is a coordinated one, each of the coordinated
head gets the same tag:

John's N GEN @GN>
brother N NOM SG @SuBJ
and COORD @CC

aunts N NOM PL @SUBJ

The genitival attribute @>GN modifies at least
the next noun (brother) but possibly also
some further ones at the same level of coordi-
nation (aunts).

158 ProC. OF COLING-92, NANTES, AUG. 23-28, 1992

3.4 An example

Let us consider the following (classical) sen-
tence

Time fiies like an arrow,

The input to the finite-state syntax comes from
the ENGTWOL morphological analyzer with
some modifications and extensions in the sets
of features associated with words:

ee
[{time N NOM s¢
[@<P | @NN> | @APP |@PCOMPL-O/N/-F |
@PCOMPL-O/N | @PCOMPL-S/N/-F |
@PCOMPL-S/N | @I-OBJ/-F | @QI-OBJ |
@QOBJ/-F | @OBJ | @SUBJ/-F | @SUBJ]] |
[time <S8VO>
{[V IMP VFIN @+FMAINV] |
[V INF [@<NOM-FMAINV |
@-FMAINV/-F | @-FMAINV]]1}]}
e | e/ | e< | @1
[(fly <8VO> <SV> V PRES SG3 VFIN Q+FMAINV]
(fly N NOM PL
[@<P | @APP | @PCOMPL-O/N/-F |
@PCOMPL-O/N | @PCOMPL-S/N/-F |
@PCOMPL-S/N | @I-OBJ/-F | @I-OBJ |
@OBJ/-F | Q@OBJ | @SUBJ/-F | @SUBRJ]]]
[@ | e/ | @< | @)
{[like PREP [@<NOM | @ADVL, | @ADVL/INV]] |
{like N NOM SG
[@<P | @NN> | @APP | @PCOMPL-O/N/-F |
@PCOMPL~O/N | @PCOMPL-S/N/-F |
@PCOMPL-S/N | @I-OBJ/-F | @€I-OBJ |
BOBJ/-F | @OBJ | @SUBJ/-F | @SUBJ]]
[1ike <SVOC/A> <SVO> <SV> V
[[SUBJUNCTIVE VFIN @+FMAINV] |
[IMP VFIN @+FMAINV] |
{INF [@<NOM~FMAINV | @-FMAINV/-F |
@-FMAINV] |
[PRES NON-SG3 VFIN @+FMAINV]]]]
(@) e/ | @< | @)
{an <Indef> DET CENTRAL ART SG @DN>]
(6 { @/ | @< | @»]
[[arrow V [{IMP VFIN @+FMAINV] |
{INF [@<NOM-FMAINV |
@-FMAINV/-F | @-FMAINV]]])
{arrow N NOM SG
[@<P | @NN> | @APP | @PCOMPL-O/N/-F |
@PCOMPL-O/N | @PCOMPL-S/N/-F |
@PCOMPL-S/N | @I-OBJ/-F | @I-OBJ |
@QOBJ/-F | @OBJ | @SUBJ/-F | @SUBJ))]
Qg

This small sample sentence representation
contains some 21 million readings.

Each syntactic-function label starts with @,
Many of the common labels like 8SUBJ have
been replaced by the combination of @sUBJI/-F
‘and @SUBJ to reflect the distinction of subjects
of non-finite constructions from those of the
main verb. A similar distinction {s made in the
verbal entries.

The grammar is committed to exclude only
those readings which are ungrammatical.

ACTES DE COLING-92, NANTES, 23-28 AoUT 1992

Thus, several readings may pass the rules, in
this case, the following six:

1. @@ time N NOM SC @NN> @
fly N NOM PL @SUBJ @
like <SVOC/A> <SVO> <SV>
V PRES NON-SG3 VFIN @+FMAINV @
an <Indef> DET CENTRAL ART SG @DN> @
arrow N NOM SG @OBJ @¢@

2. @@ time N NOM SG @SUBJ @
fly <SVO> «<SV> V PRES SG3 VFIN @+FMAINV @
like PREP @AIVL @
an <Indef> DET CENTRAL ART SG @DN> @
arrow N NOM SG @<P @@

w

. @@ time N NOM SG @SUBJ @
fly <SVO> <S8V> V PRES SG3 VFIN @+FMAINV @
like N NCM SG QOBJ @
an <Indef> DET CENTRAL ARY SG @DN> @
arrow N NOM SG @APP @@

4. @@ time <8VO> V IMP VFIN @+FMAINV @
fly N NOM PL @SUBJ @
like <SVOC/A> <SVO> <SV>
V PRES NON-SG3 VFIN @+FMAINV @
an <Indef> DET CENTRAL ART SG @DN> @
arrow N NOM SG @OBJ @@

5. 8@ time <SVO> V IMP VFIN @+FMAINV @
fly N NOM PL @OBJ @
like PREP @<NOM &
an <Indef> DET CENTRAL ART SG @DN> @
arrow N NOM SG @<P @@

6. @@ time <SVO> V IMP VFIN @+FMAINV @
fly N NOM PL @OBJ @
like PREP QADVL @
an <Indef> DET CENTRAL ART SG @DN> @
arrow N NOM SG @<P @@

3.5 Overview of rules

The finite-state grammar for English consists
of some 200 rules dedicated for several areas of
the grammar:

* Internal structure of nominal and non-finite
verbal phrases. The structure is described
as head-modifier relations, including deter-
miners, premodifiers and postmodifiers.

¢ Coordination at various levels of the gram-
mar.

« Surface-syntactic functions of nominal
phrases.

The structure of noun phrases Is described
using two approaches together. A coarse struc-
ture is fixed with the mechanism of definitions.
It would not be feasible to use that mechanism
alone {because it would lead to a context-free
description). The deflnitions are supplemented
with ordinary finite-state rules which enforce
further restrictions.

159 Proc. oF COLING-92, NANTES, Aug. 23-28, 1992

3.6 Non-finite Constructions

Between the level of the nominal phrase and the
finite clause, there Is an intermediary level, that
of non-finlte constructions (see Quirk & al.
1985). These constructions resemble noun
phrases when seen as parts of the surrounding
clause because they act eg. as subjects, objects,
preposition complements, etc., postmodifiers,
or adverbials, eg.:

{Walking home} was wearisome.
. She wants {to come}'.

Sha was fond of {singing in the dark}.

The dog {barking in the corridor} was irritable.

{Tired by her journey}, she fell asleap.
Internally, non-finite constructions are ltke
finite clauses because the main verb of a non-
finite construction can have subjects, objects,
adverbials etc. of its own.
Both finite and non-finite constructions have a
verbal skeleton, which in a finite construction
starts with a finite verb and ends with the first
main verb. The finite verbal skeletons in the
following examples are underlined:

She sings.

Will she ba singing?

She would not have been singing uniess ..
A non-finite verbal skeleton starts with certain
kinds of non-finite verb (to+infinitive, present
participle, past participle, non-finite auxiliary)
and ends with the first main verb to the right:

ftis easy lodoit.

Tired by her journey, she went into her room,

They knew it all, having been there before.

Non-finite verb chains do not contain center-
embedded verbs, whereas a non-finite con-
struction can be center-embedded within a
finite verb chain only if it is (a part of) a nomi-
nal phrase:
Can {shooting hunters} be dangerous?
Can men {shooting hunters} be dangerous?
The use of syntactic tags instead of a hierar-
chical tree-structure forces us to a very flat
description of sentences. This might result in
problems when describing clauses with non-
finite constructions with a small set of tags,
eg.:

The boy [Kicking @MAINV] the [ball @OBJ]

[saw @MAINV] the [cow @OBJ).

A useful concept in clause-level syntax is the
uniqueness principle. We wish to say, for
instance, that in a clause, there is at most one

1. There is another way to interpret this
sentence without any non-finite construc-
tions by Including ‘to come’ in the finite verb
chain. We have adopted the current inter-
pretation in order to achieve certaing lin-
guistic generalizations.

ACTES DE COLING-92, NANTES, 23-28 AoUT 1992

(possibly co-ordinated) subject, object, or pred-
icate complement. Uniqueness holds for the
finite clause, and each non-finite construction
separately, and this will be very difficult to for-
mulate, if we use same tags for both domains
{as in the above example).

The syntactic tags as given in the finite-state
version of ENGTWOL capitalize heavily on non-
finite constructions in order to overcome this
problem:

The boy [kicking @MAINV/-F] the {ball @OBJ/-F]
[saw @MAINV] the [cow @OBJ].

Here, the object in the non-finite construction
is furnished with a label different from the cor-
responding label used in the finite construc-
tion, so there is no risk of confusion between
the two levels.

The duplication of certain labels for certain
categories increases the amount of ambiguity,
but, on the other hand, the new ambiguity
seems to be of a fairly controllable type, The
description of non-finite constructions botls
down to two subtasks. One iIs to express con-
straints on the internal structure of non-finite
constructions; the other, the control on their
distribution,

In terms of verb chain and constituent struc-
ture, non-finite constructions resemble finite
constructions. Their main difference is that
word order in non-finite constructions is much
more rigid.

We proceed with some examples of rules
describing non-finite constructions. An infini-
tive acting as main verb in a non-finite con-
struction is preceded by to acting as an
Infinitive marker or by a subject of a non-finite
phrase or by a co-ordinated infinitive,

So we wish, for instance, the following utter-
ances to be accepted:

He wants [to @INFMARK>] [go INF @-FMAINV/-F).
She saw [her @SUBJ/-F] [go INF @-FMAINV/-F],

She saw [her @SUBJ/-F]

[come INF @-FMAINV/-F] and [go INF @-FMAINV/-F].

The constraint is expressed as a rule:

{inf-main/-f =>
[[@INFMARK> [@ ladvl]*] |
[taub]j/-f 1<*] |
[tinf-main/-f t/-f* Iphr-ccl] @ _ ;

Items preceded by an exclamation mark are
constant definitions. ! /-f signals any constit-
uent that can occur in a postverbal position in
a non-finite construction.

A past participle as a main verb in a non-finite
construction must always be preceded by an
appropriate kind of auxiliary or clause bound-
ary.

160 PROC. OF COLING-92, NANTES, AuG. 23-28, 1992

For example:

[Having @-FAUXV/-F] [gone PCP2 @-FMAINV/-F]
home, they rested.

This constraint corresponds to a rule:

Ipepl-main/-f =>
[{prim-aux/~f | 1clb] ladvl* __ ;

There are further rules for the distribution of
non-finite constructions with present partict-
ples, etc. Further rules have been written for
the description of the internal structure of non-
finite constructions which, in turn, is fairly
straight-forward. The overall experience is that
a fairly adequate description of these types of
phenomena can be achieved by the set of syn-
tactic tags proposed above accompanied by a
manageable set of finite-state rules.

4. Implementation

We need a compller for transforming the rules
written in the finite-state formalism into finite-
state automnata, and a parser which first trans-
forms sentences into finite-state networks, and
then computes the logical intersection of the
rule-automata and the sentence automaton.

4.1 Compilation of the rules

The grammar consisting of rules is first parsed
and checked for formal errors using a GNU
flex and bison parser generator programs.
The rest of the compilation is done in Common
Lisp by transforming the rules written in the
regular expression formalism Into finite-state
autornata.

Full-scale grammars tend to be large contain-
ing maybe a few hundred finite-state rules. In
order to facilitate the parsing of sentences, the
compiler tries to reduce the number of rule
automata after each rule has been compiled.
Methods were developed for determining which
of the automata should be merged together by
intersecting them (Tapanainen 1991). The key
idea behind this is the concept of an activation
alphabet. Some rule-automata turn out to be
irrelevant for certain sentences, simply
because the sentences do not contain any
symbols (or combinations of symbols) neces-
sary to cause the automaton to fail. Such rule-
automata can be ignored when parsing those
sentences. Furthermore, it turned out to be a
good strategy to merge automata with similar
activation alphabets (rather than arbitrary
ones, or those resulting in smallest intersec-
tions).

4.2 Parsing sentences

The implementation of the parsing process is
open to many choices which do not change the

ACTES DE COLING-92, NANTES, 23-28 AOUT 1992

results of the parsing, but which may have a
significant effect on the time and space require-
ments of the parsing. As a theoretical starting
point one could take the following setup.

Parser A: Assume that we first enumerate all
readings of a sentence-automaton. Each read-
ing is, in turn, fed to each of the rule-automata.
Those readings that are accepted by all rule-
automata form the set of parses,

Parser A is clearly infeasible in practice because
of the immense number of readings repre-
sented by the sentence-automaton (millions
even in relatively simple sentences, and the
number grows exponentially with sentence
length).

A second elementary and theoretical approach:

Parser B: Take the sentence automaton and
intersect with each rule-automaton in turn.

This is more feasible, but experiments have
shown that the number of stales in the inter-
medlate results tends to grow prohibitively
large when we work with full scale gramnmars
and complex sentences (Tapanainen 1991).
This is an important property of finite-state
automata. All automata involved are reasona-
bly small, and even the end result is very small,
but the intermediate results can be extremely
large (more than 100,000 states and beyond
the capacity of the machines and algorithms we
have).

A further refinement of the above strategy B
would be to carefully choose the order in which
the intersecting is done:

Parser C: Intersect the rule-automata with the
sentence automaton in the order where you
first evaluate each of the remaining automata
according to how much they reduce the
number of readings remaining. ‘The one which
makes the greatest reduction is chosen at each
step.

This strategy seems to be feasible but much
effort s spent on the repeated evaluation. It
turns out that one may even use a one-time
estimation for the order:

Parser Ix. Perform a tentative intersection of the
sentence automaton and cach of the rules first.
Then intersect the rules with the sentence
automaton one by one In the decreasing order
of their capacity to reduce the number of read-
ings from the origtnal sentence automaton.

We may also choouse to operate In parallel
instead of rule by rule:

Parser E: Simulate the intersection of all rules
and the sentence automaton by trying to enu-
merate readings in the sentence automaton but
constraining the process by the rule-automata.
Each time when a rule rejects the next token

161 Proc. or COLING-92, NANTES, AuG, 23-28, 1992

proposed, the corresponding branch in the
search process is abandoned.

This strategy seems to work fairly satisfactorily.
It was used In the initfal stages of the grammar
development and testing together with two
other principles:

* merging of automata into a smaller set of
automata during the compilation phase
using the activation alphabet of each
automaton as a guideline

* excluding some automata before the parsing
of each sentence according to the presence
of tokens in the sentence and the activation
alphabets of the merged autornata.

Some further tmprovements were achieved by
the following:

Parser F: Manually separate a set of rules defin-
ing the coarse clause structure into a phase to
be first intersected with the sentence automa-
ton. Then use the strategy E with the remaining
rules. The initial step establishes a fairly good
approximation of feasible clause boundaries.
This helps the parsing of the rest of the rules by
rejecting many incorrect readings earlier.

Parsing simple sentences like “time flies like an
arrow” takes some 1.5 seconds, whereas the
following fairly complex sentence takes some 10
seconds to parse on a SUN SPARCstation2:

Nevertheless the number of cases in which
assessment could not be related to factual rental
evidence has so far not been so great as to render the
whole systemn suspect.

The sentence automaton is small in terms of
the number of states, but #t represents some
10%5 distinct readings.

5. Acknowledgments

The work of Tapanainen! is a part of the activily
of the Research Unit for Computational Lin-
guistics (RUCL) partly sponsored by the Acad-
emy of Finland. Voutilainen is a member of the
SIMPR project at RUCL, sponsored by the Finn-
ish Technology Development Center (TEKES).
The SIMPR CG parser, grammars and diction-
ariles were designed and written by F. Karlsson,
A. Voutilainen, J. Heikkild, and A. Anttiia.
Many of these results and innovations are
either directly used here, or have had a direct
influence on the present results.

1. Electronic mall addresses of the authors
are: Kimmo.Koskenniemi@Helstnk!.FI,
Pasl. Tapanainen@Helsinki.FI,
avoutila@ling. helsinki. fi

ACTES DE COLING-92, NANTES, 23-28 A0UT 1992

6. References

E. Ejerhed, K. Church: Finite-State Parsing.
F. Karlsson (ed.) Papers from the Seventh Scan-
dinaviun Conference on Linguistics. University
of Helsinki, Department of General Linguistics,
Publications, No. 10, pp. 410-432.

F. Karlsson 1985. Parsing Finnish in terms
of Process Grammar. F. Karlsson (ed.) Computa-
tiornal Morphosyntax: Report on Research 1981-
84. University of Helsinki, Department of Gen-
eral Linguistics, Publications, No. 13.

F. Karlsson 1990. Constraint Grammar as a
Framework for Parsing Running Text. H. Karl-
gren (ed.) COLING-90: Papers Presented to the
13th International Conference on Computational
Linguistics. Helsinkd, Vol. 3, pp. 168-173.

F. Karlsson, A. Voutilainen, J. Hefkkild, A.
Anttila, 7 January 1991. Natural Language Pro-
cessing for Information Retrieval Purposes.
SIMPR Document No. SIMPR-RUCL-1990-
13.4e. Research Unit for Computational Lin-
guistics, University of Helsinki, Finland. 220
pp.

F. Karlsson, A. Voutilainen, J. Heikkils, A.
Anttila (forthcoming), Constraint Grammar: A
Language-Independent System for Parsing Run-
ning Text.

L. Karttunen, K.Koskenniemi, R. Kaplan
1987. A Compiler for Two-level Phonological
Rules. Tools for Morphological Analysis (M. Dal-
rymple, R. Kaplan, L. Karttunen, K. Kosken-
niemi, S. Shalo, M. Wescoat). Center for the
Study of Language and Information, Stanford.
Report No. CSLI-87-108.

K. Koskenniemi 1983. Two-level Morphology:
A General Computational Model for Word-Form
Recognition and Production. University of Hel-
sinki, Department of General Linguistics, Pub-
lications, No. 11. 160 pp.

K. Koskenniemi 1990. Finite-state Parsing
and Disambiguation. H. Karlgren {ed.) COLING-
90: Papers Presented to the 13th International
Conference on Computational Linguistics. Hel-
sinki, Vol. 2, pp. 229-232.

R. Quirk, S. Greenbaum, G. Leech, J. Svart-
vik 1985. A Comprehensive Grammar of the

English Language. London, Longman.

P. Tapanainen 1991. Adrellisind automaat-
tetna esitettyjen kielloppisadintdjen sovel-
taminen luonywllisen kielen jasentdjassa.
(“Natural language parsing with finite-state
syntactic rules.”) Master’s Thesis. Department
of Computer Science, University of Helsinki.

162 Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

