DATA TYPES IN COMPUTATIONAL PHONOLOGY

Iwan Klein
University of Edinburgh, Centre for Cognitive Science
2 Buccleuch Place, Edinburgh BY8 91L.W, Scotland
Email: kleinded.ac.uk

ABSTRACT

This paper examines certain aspects of phono-
logical structure from the viewpoint of abstract
data types. Our immediate goal is to find a for-
mat for phonological representation which will
be reasonably faithful to the concerns of theoreti-
cal phonology while being rigorous enough to ad-
mit a computational interpretation. The longer
term goal is to incorporate such representations
into an appropriate general framework for natu-

ral language processing. '

1 Introduction

One of the dominant paradigms in current com-
putational linguistics is provided by unification-
based grammar formalismns. Such formalisms (cf.
(Shieber 1986; Kasper & Rounds 1986)) describe
hierarchical feature structures, which in many
ways would appear to be an ideal setting for
formal phonological analyses.
have long been used by phonologists, and more
recent work on so-called feature geometry (e.g.
(Clements 1985; Sagey 1986)) has introduced hi-
erarchy into such representations. Nevertheless.
there are reasons to step back from standard
feature-based approaches, and instead to adopt
the algebraic perspective of abstract data types
(apT) which has been widely adopted in com-
puter science. Omne general motivation. which
we shall not explore here, is that the activity
of grammar writing, viewed as a process of pro-
gramme specification. should be amenable to sfep-

Feature bundles

wise refinement in which the set of (not neces-
sarily isomorplhic) models admitted by a loose

'The work reported in this paper has been car-
ried ont as part of the research programmes of the
Human Communication Research Centre.
the UK Iconomic and Social Research Council and the
project Computational Phonology: A Constraint-Bascd
Approach, funded by the UK Science and Engincering Re-
scarch Council, under grant GR/G-22081 T am grateful
to Steven Bird, Kimba Newton and “Tanv Simon for dis-
cussions relating to this work.

supported by

Acts DE COLING-92, NANTES, 23-28 AOUT 1992

149

specification is gradually narrowed down to a
unique algebra (cf. (Sannella & Tarlecki 1987)
for an overview, and (Newton in prep.) for the
application to grammar writing). A second mo-
tivation, discussed in detail by (Beierle & Pletat
1988; Beierle & Pletat 1989; Beierle et al. 1988),
is to use equational ApTs to provide a mathemat-
A third
motivation, dominant in this paper, is to use the
ADT approach to provide a richer array of ex-
plicit. data types than are readily admitted by
‘pure’ feature structure approaches. Briefly, in
their raw form. feature terms (i.c., formalisms for
describing feature structures) do not always pro-
vide a perspicuous format for representing struc-
ture.

ical foundation for feature structures.

On the ADT approach, complex data types are
built up from atomic types by means of con-
structor functions. For example, _.. (where
we use the underscore ‘.’ to mark the position
of the function’s arguments) creates elements of
type List. A data type may also have selec-
tor functions for taking data elements apart.
Thus, selectors for the type List are the func-
tions first and last. Standard feature-based
encoding of lists uses only selectors for the data
type; i.e. the feature labels FIRsT and LAST in

(1} FIRST : oy M LAST : (FIRST : 02 M LAST : nil)
However. the list constructor is left implicit. That
is, the feature term encoding tells you how lists
are pulled apart, but does not say how they are
built up. When we confine our attention just to
lists, this is not much to worry about. However.
the situation becomes less satisfactory when we
attempt to encode a larger variety of data struc-
tures into one and the same feature term,; say,
for example, standard lists. associative lists (i.e.
strings), constituent structure hierarchy, and au-
tosegmental association. In order to distinguish
adequately hetween elements of such data types,
we really need to know the logical properties of
their respective constructors, and this is awk-

PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

ward when the constructors are not made ex-
plicit. For computational phonology, it is not an
unlikely scenario to be confronted with such a va-
riety of data structures. since one may well wish
to study the complex interaction between, say.
non-linear temporal relations and prosodic hier-
archy. As a vehicle for computational implemen-
tation, the uniformity of standard attribute/value
notation is extremely useful. As a vehicle for the-
ory development, it can be extraordinarily un-
perspicuous.

The approach which we present here treats phono-
logical concepts as abstract data types. A par-
ticularly convenient development environment is
provided by the language OBJ (Goguen & Win-
kler 1988), which is based on order sorted equa-
tional logic, and all the examples given below
(except where explicitly indicated to the con-
trary) run in the version of OBJ3 released by sni
in 1988. The denotational semantics of an OBJ
module is an algebra, while its operational se-
mantics is based on order sorted rewriting. § 1.1

and 1.2 give a more detailed introduction into
the formal framework, while § 2 and 3 illustrate
the approach with some phonological examples.

1.1 Abstract Data Types

A data type consists of one or more domains of
data items, of which certain elements aie des-
ignated as basic, together with a set of opera-
tions on the domains which suffice to generate all
data items in the domains from the basic items.
A data type is abstract if it is independent of
any particular representational scheme. A fun-
damental claim of the ApJ group (cf. (Goguen.
Thatcher & Wagner 1976)) and much subsequent
work (cf. (Ehrig & Mahr 1985)) is that abstract
data types are (to be modelled as) algebras: and
moreover, that the maodels of abstract data types
are initial algebras.?

The signature of a many-sorted algebra is a pair
¥ = (5,0) consisting of a set S of sorts and a set
O of constant and operation symbols. A speci-
fication is a pair (L &) consisting of a signature
together with a set & of equations over terms
constructed from synibols in O and variables of
the sorts in 5. A model for a specification is

2 An initial algebra is characterized uniquely up to iso-
morphism as the semantics of a specification: there is a
unique homomorphism from the initial algebra into every
algebra of the specification.

ACTES DE COLING-92, NANTES, 23-28 AoUT 1992

an algebra over the signature which satisfies all
the equations £. Initial algebras play a special
role as the semantics of an algebra. An initial
algebra is minimal. in the sense expressed by the
principles ‘no junk’ and ‘no confusion’. ‘No junk’
means that the algebra only contains data which
are denoted by variable-free terms built up from
operation symbols in the signature. ‘No confu-
sion” means that two such terms ¢ and t’ denote
the same object in the algebra only if the equa-
tion ¢ = ' is derivable from the equations of the
specification.

Specifications are written in a conventional for-
mat consisting of a declaration of sorts, opera-
tion symbols {op), and equations (eq). Preceding
the equations we list all the variables (var) which
figure in them. As an illustration, we give below
an OBJ specification of the data type LIST1.

(2) obj LIST1 is sorts Elt List

op nil : -> List

op .. Elt List -> List
op head_ : List -> Elt .
op tail_ : List -> List

var X @ Elt .

var L : List

eq (X . nil) =

eq head(X . L)

eqg tail(X . L)
endo

[T T
| and

The sort list between the : and the -> in an
operation declaration is called the arity of the
operation, while the sort after the ~> is its value
sort. Together. the arity and value sort consti-
tute the rank ol an operation. The declaration
op nil -> Elt means that nil is a constant
of sort E1t.

The specification (2) fails to guarantee that there
are any ob jects of E1t. While we could of course
add some constants of this sort, we would like
to have a more general solution. In a particular
application. we might want to define phonologi-
cal words as a List of syvllables (plus other con-
straints, of course). and phonological phrases as
a List of words. That is, we need to parame-
terize the type LIST1 with respect to the class
of elements which constitute the lists.

Before turning to parameterization, we will first
see how a many-sorted specification language is
generalized to an order sorted language by intro-
ducing a subsort relation.

Suppose. for example. that we adopt the claim

150 Proc. oF COLING-92, NANTES, AuG. 23-28, 1992

that all syllables have €1 onsets”. Moreover. we
wish to divide syllables into the subclasses heavy
and light. Obviously we want heavy and light
syllables to inherit the properties of the class of
all syllables, e.g., they have O’V onsets, We use
Heavy < Syll to state that Heavy is a subsort of
the sort Sy11. We interpret this to mean that the
class of heavy syllables is a subset of the class of
all syllables. Now, let onset._ Syll -> Mora
be an operation which selects the first mora of
a syllable, and let us impose the following con-
straint (where Cv is a subsort of Mora}):

(3) var s : Syll . var CV : Cv

eq onset S = CV

Then the framework of order sorted algebra en-
sures that onset is also defined for objects of sort
Heavy.

Returning to lists, the specification in (+1) (slightly

simplified from that used by {Goguen & Winkler
1988)) introduces E1t and NeList (non-cmpty
lists) as subsorts of List. and thereby improves
on LIST1 in a number of respects. In addition.
the specification is parameterized. That is. it
characterizes a list of Xs. where the parameter X
can be instantiated to any moduie which satisfies
the condition TRIV; the latier is what (Goguen
& Winkler 1988} call a "requirement theory”, and
in this case simply imposes on any input nmodule
that it have a sort which can be mapped to the
sort E1t.

(4) obj LISTLX TRIV] is sorts List NeList
subsorts Elt < NeList < List

op nil ~> List
op _._ : List List ~-> List
op _._ @ NeList List -> NelList
op head_ NeList -> Elt
op tail_ NelList -> List
var X : Elt
var L : List
eq (X . nil) = X .
eq head(X . L) = X
eq tail(X . L) =L
endo
Notice that the list constructor -._ now performs

the additional function ol eppend. allowing twa
lists to be concatenated. Tn addition. the se-
lectors have been made ‘*safe’. in the sense that
they only apply to objects (i.c.. nonempty lists)
for which they give sensible results: for what. iu

LIST1, would have been the meaning of head(nil)?

*Here. the term ONSET refers to the inital mora of a
svllable in Hyman’s (1984) version of the moraic theory.

ACTES DE COLING-92, NANTES, 23-28 AoUT 1992

151

2 Metrical Trees

As a further illustration. we give below a speci-
fication of the data type BINTREE. This module
has two parameters. both of whose requirement
theories are TRIV.Y

(5) obj BINTREE[NONTERM TERM TRIV] is
sorts Tree Netrae

subsorts E1t.TERM Netree < Tree

op _[_..]
op _[_1 : Elt NONTERM El1t.TERM -> Tree

op label_ : Tree -> Elt.NONTERM
op left_. : Netree -> Tree
op right_ : Netree -> Tree

vars E1 E2 : Tree

vars A Elt.NONTERM

eq label (A [Et , E2 1) = &
eq label (A [E1 1) = A .

eq left (A [E1 , E2 1) = E1
eq right (A [E1 , E2]) = E2
endo

We can now instantiate the formal parameters of
the module in (5) with input modules which sup-
ply appropriate sets of nonterminal and terminal
symbols. Let us use uppercase quoted identifiers
(elements of the OBJ mocdule QID) for nontermi-
nals. and lower case for terminals. The specifica-
tion in (H) allows us to treat terminals as trees,
s0 that a binary tree. rooted in a node ’4, can
However, we
also allow terminals to be directly dominated by

have terminals as its daughters.

a non-branching wother node. Both possibilities
occur in the examples below. (6) illustrates the
instantiation of formal parameters by an actual
module, namely QID. using the make construct.

(G) make BINTREE-QID is BINTREE[QID,QID} endm

The next example shows some reductions in this
module, obtained by treating the equations as
rewrite rules applving from left to right.

“I'lie notation E1t . NONTERM, E1t. TERM utilizes a ¢ual-

ification of the sort E1t by the input module’s parameter
label: this is simply to allow disambiguation.

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

E1t .NONTERM Tree Tree ~-> Netree

(7) left (Al’a,’b])

~ ’a

left (PA[’B[’al,’C['p]11)
~r ’B[’a]

left (’A[’B[’a,’bl,’c])
~ 'B[’a,’b]

right(left (*A[(’B[’a,’b]),’c]))
~+ 'b

label (’A[’a,’bl)
~r YA

label(right (’A[’a,’B[’b,’c]]))

~s 'B

Suppose we now wish to modify the definition of
binary trees to obtain metrical trees, These are
binary trees whose branches are ordered accord-
ing to whether they are labelled *s* (strong) or
‘w’ {weak).

In addition, all trees have a distinguished leafl
node called the ‘designated terminal element’ (dte),
which is connected to the root of the tree by a
path of ‘s’ nodes.

Let us define ‘s’ and *w’ to be our nonterminals:

(%) obj MET is
sorts Label
ops s w : -> Label .
endo

In order to build the data tvpe of metrical trees
on top of binary trees, we can import the mod-
ule BINTREE, suitablyv instantiated. using OBJ’s
extending construct. Notice that we use MET to
instantiate the parameter which fixes BINTREE s
set of nonterminal symbols.”

(9) obj METTREE is extending

BINTREE [MET,QID)*(sort Id to Leaf)

op dte_ : Tree -> Leaf
var L : Leaf
vars T1 T2 : Tree

*The * construct tells us that the principal sort of QID.
namely Id,is mapped (by a signalure morphism) to the
sort Leaf in METTREE. ceq signals the presence of a con-
ditional equation. == is a built-in polymorphic cquality
operation in OBJ.

ACTES DE COLING-92, NANTES, 23-28 A00T 1992

152

vars X : Label .

eqdte (X [L])=1L.

ceq dte (X [T1 , T2]) = dte T1
if label T1 == s .

ceqdte (X [T1 , T2 1) dte T2
if label T2 ==

endo

The equations state that the dte (designated ter-
minal element) of a tree is the dte of its strong
subtree. Another way of stating this is that the
information about dte element of a subtree T is
percolated up to its parent node, just in case T
is the *s’ branch of that node.

The specification METTREE can be criticised on
a number of grounds. It has to use conditional
equations in a cumbersome way to test which
daughter of a binary tree is labelled ‘s’. More-
over. it fails to capture the restriction that no
binary trec can have daughters which are both
weak. or both strong. That is, it fails to capture
the essential property of metrical trees, namely
that metrical strength is a relational notion.

What we require is a method for encoding the fol-
lowing information at a node: “my left (or right)
daughter is strong”. One economical method of
doing this is to label (all and only) branching
nodes in a binary tree with one of the following
two labels: “sw’ (my left daughter is strong), ‘ws’
(my right danghter is strong). Thus, we replace
MET with the following:

obj MET2 is
sorts Label
ops 8w ws : -> Label

endo

We can now simplify both BINTREL and ME-
TRER:

obj BINTREE2[NONTERM TERM :: TRIV] is
sorts Tree Netree

subsorts Elt.TERM Netree < Tree .

op _[_,.]1 : E1t.NONTERM Tree Tree -> Netres .
op label_ : Tree -> E1t.NONTERM .

op left_ : Netree -> Tree

op right_ : Netree -> Tree .

vars E1 E2 : Tree .

vars A : E1t.NONTERM .

eq label (A [E1 , E2]) = & .
eq lett (A [Et , E2 1) = E1 .
eq right (A [E1 , E2 J) = E2 .
endo

obj METTREE2 is extending
BINTREE2[MET2,QID]*(sort Id to Leaf)
op hte_ : Tree -> Leaf .

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

var L. : Leaf
vars Tt T2 : Tree
eq dte L = L .
aq dte T = if label T == sw
then dte(left T)
else dte(right T) fi
endo

3 Feature Geometry

The particular feature geometry we shall specify
here is based on the articulatory structure de-
fined in (Browman & Goldstein 1989).% The five
active articulators arc grouped into a hierarchi-
cal structure involving a tongue node and an oral
node, as shown in the following diagram.

root
glottal velic oral
tongue labial
coronal dorsal

This structure is specified via term constructors
{--}and {__,_} which give a standard positional
encoding of features. Fach feature value is ex-
pressed as a natural number between 0 and .
representing the constriction degree of the cor-
responding articulator. For example. the term
{4,0}: Tongue is an item of sort Tongue con-
sisting of the value 4 for the feature coroxatl
and 0 for the porsAL; this in turn expresses a
situation where there is maximal constriction of
the tongue tip, and minimal constriction of the
tongue body. Of course, this encoding is rather
crude, and possibly sacrifices clarity for conci-
ston. However, it suffices as a working example.
We will return to constriction degrees helow.

The four sorts Gesture, Root. Oral and Tongue
in (10) and the first three operators capture the

SFor space reasons we have omitted any discission ol
Browman & Goldstein’s constriction location (¢'L) and
constriction shape {CS) parameters. We also have omit-
ted the supralaryngeal node, since its phonological role i~
somewlhat dubjous.

ACTES DE COLING-92, NANTES, 23-28 AOUT 1992

153

desired tree structure, using an approach which
should be familiar by now. For example, the
third constructor takes the constriction degrees
of Glottal and Velic gestures, and combines
them with a complex item of sort 0Oral to build
an item of sort Root. The specification imports
the module NAT of natural numbers to provide
values for constriction degrees.

(10) obj FEATS is
extending NAT .
sorts Gesture Root Oral Tongue
subsorts Nat Root Oral Tongue < Gesture

op {_,_} : Nat Nat -> Tongue
op {_,_} : Tongue Nat -> Oral
op {_._,_} Nat Nat Oral -> Root .
op _l!coronal : Tongue -> Nat
op _'dorsal : Tongue -> Nat

op _!labial Oral -> Nat

op _'tongue : Oral -> Tongue
op _'glottal : Root -> Nat

op _l!velic Root -> Nat

op _l'oral Root —> 0Oral

vars ¢ C1 C2 Nat

vars 0 : Oral

vars T : Tongue

eq { C1 , C2 } fcoromal = Ci
eq { C1 , C2 } !dorsal = C2
eq { T, C} !tongue = T .

eq { T, ¢} !'labial = C

eq { C1 , C2 , 0} tglottal = C1
eq { C1 , €2, 0} tvelic = C2
eq { C1 , C2, 0} toral = 0
endo

We adopt the notational convention of prepend
ing a " to the name of selectors which cor-
respond directly to features.
'coronal selector is a function defined on com-

plex items of sort Tongue which returns an item

For example, the

of sort Nat. representing the constriction degree
value for coronality.
Some illustrative reductions in the FEATS module
are given below.
(11) {3,4,{{4,1}.1}) toral
~ {{4,1},1}
{3,4,{{4,1},1}} 'oral t!tongue
~r {4,1}

{3,4,{{4,1},1}} toral 'tongue !coronal

o 4

In the ap1 approach to feature structures, reen-
traney is represented by equating the valuwes of
selectors. Thus. suppose that two segments S1,
52 share a voicing specification. We can write
this as follows:

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

(12)S1 !glottal = S2 !glottal

This structure sharing is consistent with one of
the main motivating factors behind autosegmen-
tal phonology, namely, the undesirability of rules
such as [a voice] — [a nasal].

Now we can illustrate the function of selectors
in phonological rules. Consider the case of kn-
glish regular plural formation (—s), where the
voicing of the suffix segment agrees with that of
the immediately preceding segment. unless it is
a coronal fricative (in which case there must be
an intervening vowel). Suppose we introduce the
variables 81 S2 : Root. where S1 is the stem-
final segment and 82 is the suffix. The rule must
also be able to access the coronal node of S1.
Making use of the selectors. this is simply 82
‘oral !tongue !coronal (a notation reminis-
cent of paths in feature logic. (Kasper & Rounds
1986}). The rule must test whether this coronal
node contains a fricative specification. This ne-
cessitates an extension to our specification. which
is described below.

Browman & Goldstein (1989. 234ff') define “con-
striction degree percolation’. based on what they
call ‘tube geometry’. The vocal tract can be
viewed as an interconnected set of tubes. and
the articulators correspond to valves which have
a number of settings ranging from fully open to
fully closed. As alrcady mentioned. these set-
tings are called constriction degrees (!cds). where
fully closed is the maximal constriction and fully
open is the minimal constriction.

The net constriction degree of the oral cavity
may be expressed as the maximuwm of the con-
striction degrees of the lips, tongue tip and tougue
body. The net constriction degree of the oral and
nasal cavities together is simply the minimum of
the two component constriction degrees. To re-
cast this in the present framework is straightfor-
ward. However, we need to first define the op-
erations max and min over pairs of natural num-
bers:
(13) obj MINMAX

is protecting NAT .

ops min max : Nat Nat -> Nat .

vars M N : Nat

eq min(M,N) = if

endo

(14) obj CD is

AcTEs DE COLING-92, NANTES, 23-28 A0UT 1992

M <= N then M else N fi .
oq max(M,N) = if M >= N then M else N fi .

extending FEATS + MINMAX .
op .lcd : Gesture -> Nat
ops clo crit narrow
mid wide obs open :
var G : Gesture .
var N N1 N2 : Nat
vars 0 : Oral .
vars T : Tongue .
eq N lcd = N .
eq {N1,N2} !cd = max(N1,N2)
eq {T,N} lcd = max(T !cd,N)
eq {N1,N2,0} 'cd = max{(N1,min(N2,0 'cd))
eq clo(G) = 6 led ==
eg crit(G) = 6 ted ==
eq narrow(G) = G lcd ==
eq mid(6) = G 'ed ==
eq wide(G) = G !cd ==
eq obs{G) = G 'ed > 2 .
eq open(G) = G 'cd < 3 .
endo

The specification CD allows classification into five
basic constriction degrees (clo, crit, narrow,
mid. and wide) by means of corresponding one-
place predicates. i.e. boolean-valued operations
over gestures. For example, the fifth equation
above states that G has the constriction degree
clo (i.e. ¢10(G) is true} if and only if G 'cd ==
4.

The working of these predicates is illustrated be-
low:

(15) {3,0,{{4.1},1}} toral !tongue 'cd

~ 4

{3,0,{{4,1},1}} toral 'cd
~ 4

{3,0,{{4,1},1}} tcd .
~ 3

mid({3,0,{{4,1},1}} tforal !labial)
~+ true

wide({3,0,{{4,1},1}} toral !'labial)
~+» false

open({3,0,{{4,1},1}} toral !'labial)
~+ true

c1o0({3,0,{{4,1},1}} toral !tongue)
~» true

References

Beierle. C. & U. Pletat (198R). Feature Graphs
and Abstract Data Types: A Unifying Ap-
proach. Proceedings of the 12th Interna-
tional Conference on Computational Lin-
qurstics, pp40--45, Budapest, Hungary.

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

Gesture -> Bool .

Beierle, C. & U. Pletat (1988). The Algebra
of Feature Graph Specifications. TWBS Re-
port 94, tsm TR-80.89-029, 1BM Germany.
Institute for Knowledge Based Systems.
Stuttgart,

Beierle, C., U. Pletat & H. Uszkoreit (1988). An
Algebraic Characterization of sTUF.

LILOG Report 40, 1BM Germany, Stuttgart.

Bird, S. (1990). Constraint-Based Phonology.
PhD Thesis. University of Edinburgh.

Bird, S. & E. Klein {1990). Phonological events.
Journal of Linguistics. 26, 33-56.

Browman, C. & L. Goldstein (1989). Articula-
tory gestures as phonological units. Phonol-
ogy, 6, 201--251.

Cardelli, L. (1988) A Semantics of Multiple
Inheritance. Information and Computation.
76, 138-164.

Clements, G.N. (1985) The Geometry of Phono-
logical Features. Phonology Yearbook. 2.
225-252.

Dérre, J. & A. Eisele (1991). A Comprehensive
Unification-Based Grammar Formalism. De-
liverable R3.1.B. DYANA- ESPRIT Basic Re-
search Action BR3175, January 1991,

Fhrig, H. & B. Mahr (1985) Fundamentals of Al
gebraic Speeification 1: Fquations and Ini-
tial Semantics, Berlin: Springer Verlag.

Goguen, J.A., & 1. Winkler (1988} ~Introduc-
ing OBJ3’. Technical Report SRI-CSL-88-9.
SR1 International, Computer Science Labo-
ratory, Menlo Park, CA.

Goguen, J.A., J.W. Thatcher and I1.G. Wag-
ner (1976) *An Initial Algebra Approach to
the Specification, Correctness and Imple-
mentation of Abstract Data Types'. In R.
Yeh (ed.) Current Trends in Programming
Methodology IV: Data Structuring. ppR0-
144. Englewood Cliffs. NJ : Prentice Ilall.

Hyman, L. M. (1984). On the weightlessness of
syllable onsets. In Brugman & Macaulay
(eds.) Proceedings of the Tenth Annual
Meeting of the Berkeley Linguistics Socicty.
University of California, Berkeley.

AcTEs DE COLING-92, NANTES, 23-28 AoUT 1992

Kasper, R. & W. Rounds (1986). A Togical Se-
mantics for Feature Structures. Proceedings
of the 24th Annual Meecting of the ACL,
Columbia University, New York, NY, 1986,
pp257-265.

Klein, E. (1991). Phonological Data Types. In
Klein, E. and I, Veltman (eds) The Dynam-
ics of Interpretation: Proceedings of a Sym-
posium on Natural Language and Speech,
Brussels, November 26/27, 1991. Springer
Verlag,

Newton, M. (in preparation). Grammars and
Specification Languages. PhD Thesis, Cen-
tre for Copnitive Science, University of Ed-
inburgh.

Reape, M. (1991). Foundations of Unification-
Based Grammar Formalism. Deliverable
R3.2.A. pvANA- kEsPRIT Basic Research
Action BR3175, July 1991.

Rounds, W. & A, Manaster-Ramer (1987). A
Logical Version of TFunctional Grammar.
Proceedings of 25th Annual Meeting of the
Association for Computational Linguistics,
69 July 1987, Stanford University, Stan-
ford, CA, 89-96.

Sagey. I. (1986). The Representation of Fea-
tures and Relations in Non-Linear Phonol-
ogy. PhD Thesis, MIT, Cambridge, Mass.

Sannella . & A, Tarlecki (1987) Some thoughts
on algehraic specification. Lres Report Se-
ries BOS-LFCS-87-21, Laboratory for Foun-
dations of Computer Science, University of
Ldinhurgh.

Shieber, S. (1986). An Introduction to Uni-
fication-Based Approaches to Grammmar.
CSLI Lecture Note Series, University of
Chicago Press. Chicago.

Smolka, G. and II. Aft-Kaci (1989) ‘Inheri-
tance Hierarchies: Semantics and Unifica-
tion’. Journal of Symbolic Computation, 7,
S48 370,

155 Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

