
Unbounded Dependency: Tying strings to rings

Jon M. SLACK
e-mail: slack@irst.uucp

Istituto per la Ricerca Scientifica e Tecnologica (I.R.S.T.)
38050 Povo (TN)

FFALY

Abstract: This paper outlines a framework for
connectionist representation based on the
composition of connectionist states under
vector space operators. The framework is used
to specify a level of connectionist structure
defined in terms of addressable superposition
space hierarchies. Direct and relative address
systems (:an be defined for such structures
which use the functional components of
linguistic structures as labels. Unbounded
dependency phenomena are shown to be related
to the different properties of these labelling
structures.

Introduction

One of the major problems facing
connectionist approaches to NLP is how best to
r~ccommodate the role of structure (Slack,
]984). Fodor and Pylyshyn (1988) have
argued that connectionist representations lack
combinatorial syntactic and semantic structure.
t::urthermore, they claim that the processes that
operate on connectionist representational states
function without regard to the inherent structure
of the encoded data. The thrust of their criticism
is that mental functions, such as NLP, are
appropriately described in terms of the
manipulation of combinatorial structures, such
as formal languages, and that, at best,
connectionisrn provides an implementation
paradigm for mapping NLP structures and
proceses onto their underlying neural
substrates.

If Fodor and Pylyshyn's arguments are
correct then there can be no connectionist
principles which influence the nature of theories
developed at the level of symbol ic
representation. However, the present paper
shows that it is possible to define a level of
connectionist structure, and moreover, that this
level is involved in the explanation of certain
linguistic phenomena, such as unbounded
dependency.

Connectionist Structure

A theory of connectionist representation
must show how combinatorial structure can be
preserved in passing from the symbolic level of
explanation to the connectionist level. One way
of achieving this is by positing an intermediate
level of description, called the level of
Connectionist Structure (CS), at which
combinatorial structure is preserved but in
terms of connectionist combinatory operators
rather than the operators of formal languages.

A framework for connectionist represent-
ation is illustrated in figure 1. In a connectionist
system the formal medium for encoding repre-
sentations is a numerical vector corresponding
to a point in a Vector Space, V. Formally, all
connectionist representanons can be expressed
as vectors of length k, defined over some
numerical range.

alphabet

I o , , 2 . ! f2a

c~nao tOry _ ~ / implementation

mapping
CS

Connectionist
Structure
(V-space

combinatory
operators)

i -

Figure l

Symbolic structures comprise an alphabet of

1 265

atomic symbols, and a set of symbolic
combinatory operators; the symbolic alphabet is
mapped into V-space under the alphabet
mapping, f~a. This mapping might have one or
more desirable properties, such as faid,fulness,
orthogonaIity, etc..

The other major component of the
framework, f~co, maps symbolic combinatory
operators onto cor responding vector
combinatory operators. The CS level is defined
in terms of structured vectors which are
generated through applying the V-space
combinatory operators to the set of vectors in
the codomain of the alphabet mapping. The
main reason for differentiating the CS level of
representation is thatonly certain combinatory
operators are available at this level, the most
useful ones being assoc ia t ion and
superposition, and this restricts the range of
symbolic structures that can be encoded directly
under a connect ionis t representat ion.
Essentially, the CS level preserves the
connectivity properties of the symbolic
structures.

Within this framework the CS level can be
defined formally as a semiring, as follows
D e f i n i t i o n . The CS level comprises the
quintuple (V, +, **, 0, 0) 1 where
1. (V, +, 0) is a commutative monoid defining
the superposition operator;
2. (V, **, 0) is a monoid defining the
association operator;
3. ** distributes over +:
The two identity elements correspond to
identity vectors, where ~ is defined for zero-
centred vectors (Slack, 1984). The vector
combining operations of association and
superposition are used to build connectivity
configurations in memory. Moreover, using an
appropriate threshold function, the super-
position operator can simulate a rudimentary
form of unification (Slack, I986). The most
general ciass of structures that can be defined at
the CS level using the two combinatory
operators are addressable superposition space
hierarchies (refen'ed to as ASSHs).

CS Address Systems

The f~co mapping can be used to define a
correspondence between the symbolic
operations of union and concatenation, and the
CS operations of superposition and association,
respectively. This allows the following

1 Characters in bold denote elements of the
vector space.

homomorphism to be defined .f: S -> CS,
mapping the semiring S into the CS semiring,
where

f(xUy) = f(x) + f(y) and f(x.y) = f(x) ** f(y),

and the semiring S comprises the quintuple
(L x, U, . , 0, {0}) where L x is the finite set of
strings defined over the symbolic alphabet X,
and U and. denote the union and concatenation
operators, respectively, with their correspond-
ing identities. The existence of the homomorph-
ism allows symbolic structures to address CS
representations. However, the restriction on
this mapping is that CS level address systems
cannot capture the full expressive power of
regular languages. This is because no CS level
operator can be defined with the same closure
properties as the Kleene star operator at the
symbolic level. The implications of this con-
straint become apparent in describing how
symbolic structures can function as structural
addresses for the CS level.

The symbolic structures that function as
addresses to the CS level can be represented
using directed, acyclic graphs (DAGS), and are
referred to as address structure DAGs (AS-
DAGs). AS-DAGs codify the way in which
symbolic labels address, or map onto, the
nodes and edges of ASStts. In general, two
possible types of address system can be
defined, direct addressing and relative address-
ing. A system of direct addressing involves
specifying unique ASSH addresses explicitly.
That is, a symbolic label functioning as an
address, directly accesses a unique ASSH node.
The alternative addressing scheme involves
specifying nodes in the configuration in terms
of their connectivity paths from some pre-
defined origin node. This form of relative
addressing requires, (a) a pre-specified origin,
or root node, and (b) a labelling system for the
connections within the configuration.

The set of symbolic labels that serve as
addresses in AS-DAGs can be partitioned into
two classes, local and global labels, which m'e
differentiated in terms of their function within
an address structure. Global labels map onto
the nodes of AS-DAGS providing direct address-
es for the superposition spaces in ASSH config-
urations. Local labels, on the other hand, map
onto AS-DAG edges and specify the relative
addresses of ASSH spaces. That is, they specify
the locations of superposition spaces relative to
the addresses of their dominating nodes. This
relationship is illustrated in figure 2 showing
how AS-DAGs map onto ASSHs.

266 2

PERSUADE

vcomp

GIRL

subj

M SG

L SPEC THE

AS-DAG
(consistency)

F igure 2

ASSH
(coherency)

The figure shows the CS level encoding of the
LFG representation of the sentence The girl
persuaded John to go (see Slack, 1990). The
superposition space labelled 'JOIIN' in the AS-
DAG can also be located using the compound
a d d r e s s 'PERSUADE.obj ' . 2 The obvious
question that arises is what possible rationale is
there for this system of double addressing?
With a system of direct addressing for ASSHs,
the relative addressing scheme would appear
redundant.

At the symbolic level, local labels specify
local structure, that is, how a node relates to its
immediate descendents. In situations in which
the local structure is uniform and finite, the V-
space encodings of local labels can be fixed
under O.a, mapping each label onto a constant
vectorial encoding. This allows AS-DAGs to be
viewed as configurations of local structures
which can be located in V-space by fixing the
vectorial encodings of their root-nodes. This
means that global labels must be assigned
dynamically under ~a. Putting the emphasis on
local structure seems to make the direct
addressing system redundant, but there are
good reasons for needing direct access to
superposition spaces.

Defining arbitrary structural addresses as
strings of local labels descending from a root-
node can only be achieved under symbolic level
control as the representational machinary
necessary for interpreting concatenated label
strings does not exist at the CS level. A string
of local labels can only be encoded as a single
AS-DAG edge corresponding to an uninterpreted
label string. That is, the CS level comprises a
set of superposition spaces which support
structured access, and only a single ASSH edge
can link two such spaces. This means that CS
level access through relative addressing is
limited to addresses comprising a single edge
leading from an origin node. Building up
addresses in this way necessitates an AS~DAG
node labelling scheme such that the origin node
can be defined iteratively. In other words,
because the V-space encoding of local structure
is fixed under f~a, relative addressing can only
be specified on a local basis, with the only form
of global addressing involving direct access to
ASSH nodes, or superposition spaces. This
limit on symbolic level access to connectionist
representational states is an important source of
locality constraints in encoding linguistic
structures at the CS level (Slack, 1990) a.

2 In the figure, global labels are shown in
uppercase and local]abels in lowercase.

3 The representational framework has been
implemented on a simple associative memory

3 267

Unbounded Dependency: Connect ivi ty

One linguistic phenomenon which, rnore
than any other, focuses on the problem of
addressing structural configurations is that of
unbounded dependency (UBD). Typically, in
sentences like The boy who John gave the
book to last week was Bill, the phrase The
boy is {aken as the 'filler' for the missing
argument, or 'gap', of the gave predicate, as
indicated by the underline. At the level of
constituent structure there are no constraints on
the number of lexical items that can intervene
between a filler and its corresponding gap.
Such "unbounded dependencies" are typical of
a class of linguistic phenomena in which the
structural address of an element is determined
by information which is only accessible over
some arbitrary distance in the structure. To
build the appropriate memory configuration, it
is necessary to determine the address of the gap
to which a filler belongs. However, because
gaps and fillers can be separated by arbitrary
distance in the input string, it is not possible to
specify the set of potential predicate-argument
relations that the filler can be involved in, and
so a direct address cannot be identified.
Instead, it is necessary to generate a relative
address through the construction of a chain of
global and local labels.

Within the framework of Government-
Binding theory, these phenomena have been
explained through identifying conditions
defined on constituent trees that account for the
distribution of gaps and fillers both within and

system based on a functional partition of V-
space into an Address Space and a Content
Space (Kanerva, 1988). An important feature of
this architecture is that by encoding the
elements of both spaces as k-bit vectors, they are
potentially interchangeable. This allows
elements retrieved from content space to
function as addresses to other memory
locations, and vice versa. Thus, the memory
consists of a set of superposition spaces, where
each space has a label (or address), and where
labels can be encoded as elements of other
spaces resulting in a hierarchical structure. In
a hybrid architecture based on a CS level
memory, symbolic structures are encoded
through symbolic labels addressing elements
of the homomorphic ASSH configurations in
memory. In other words, symbolic level
activity is implemented as the manipulation of
address space labels (see Slack, 1990).

across natural languages. One such principle is
based on the structural geomeu'y of constituent
trees, in particular, their connectivity properties
(Kayne, 1983). Kaplan and Zaenen (1988)
have taken a different approach to UBD
restrictions arguing that they are best explained
at the level of predicate-argument relations,
rather than in terms of constituent structure.
Working within the LFG framework, their
formal system is based on the idea of functional
uncertainty expressions. For example, for
topic-alization sentences these expessions have
the general form (,x TOPIC)= (^ GF* GF)
involving the Kleene closure operator, where
GF stands tbr the set of primitive grammatical
functions. These equations express an uncertain
binding between the TOPIC function and some
argument of a distant predicate. The uncertain-
ty relates to the identification of the appropriate
predicate. To resolve the uncertainty it is
necessary to expand this expression and match
it against the functional paths of missing
arguments. Different computational strategies
can be used to optimise the resolution process
(Kaplan & Maxwell, 1988). What is common
to both approaches is that they define a system
for specifying the structural address of a gap
relative to its corresponding filler.

The notion of functional uncertainty, in
common with other linguistic feature struct-
ures, uses an address system based on regular
languages (Kasper & Rounds, 1986). It is
impossible, however, to use such addresses to
access the CS level directly as the Kleene
closure operator cannot be interpreted at this
level. In their present form, functional uncert-
ainty algorithms require some kind of 'sym-
bolic level' memory in which to expand uncert-
ainty expressions.

An alternative account of UBD phenomena,
also based on predicate-argument relations, can
be tbunded on the notion of symbolic labels
functioning as local and global addresses to the
CS level. The problem of UBD can be decomp-
osed into two sub-problems, one relating to
local structure, the other relating to global
indeterminacy. Consider the sentence fragment
The girl John saw Bill talking to where
the problem is to specify the struci-ural address
of the topicalised NP, The girl, as the missing
argument of some COMP function 4. At the level
of local structure, the structural address of the
filler is minimally uncertain in that it can fulfil

4 As the present discussion focuses on
predicate-argument relations, we will continue
to make use of LFG notation and constructs,
such as grammatical functions.

268 4

only a small set of local roles, for the present
case the OBJ function. However, the structural
address of the appropriate local structure is
maximally uncm~ain, as the filler item carries no
information to constrain it.

Before considering solutions to these two
crab-problems, it is necessm'y to clarify how the
in fo rmat iona l componen t s of l inguist ic
structures such as f-structures function as
addresses to the CS level. Elements of the set
GF can function as both local and global
addresses to memory configurations. Each GF
~:lement defines a component of local structure
~md as such can function as a local label in the
:relative address chain for an AS-DAG node. In
addition, GF labels can be associated with fixed
memory locations, thereby funct ioning as
:;~lobal addresses. For example, the symbol
COMP can be used to label an AS-DAG edge
ibrming a constituent of a relative address, and
at the same time provide direct access to a fixed
k)cation, that is, label an AS-DAG node. These
~:wo addressing functions can be distinguished
~y usm~ the labels COMP and COMP to

1 P g ~ ,enote the local and global addresses, respect-
ively°

in encoding f--structures at the CS level,
each sub-structure maps onto a separate
:¢uperpositon space (Slack, 1986). This form of
direct addressing requires a set of global
~,'~ymbolic labels that uniquely identify each sub-
s!:ructure. The predicate names of f-structures
provide such a labeling system. In this case,
each predicate name constitutes a unique origin
fi~r definir,,g relative local addresses° Hence,
!,:~cal labets like COMPp specify locations
rc:lative to a predicate 'p', that is, their immedi~
ate dominating node in the AS.-DA(L

These labeling systems can be used to solve
the two UBD sub-problems. On encountering a
filler item in the input string, the analyser must
allocate some structural location in memory at
which to store the infi,mnation carried by the
• .5 J~ern . Part of that information specifies the
fi/!er's local address. For example, the inform--
a i.ion carried by the phrase the girl might
include an encoding of the functional sub-
s, ructure [OBJ ** [pred 'girl' + spec the + hum sg]] 6.
At some later point in processing, this
information will be superposed, or unified,
with stored information about the structm'e of
some local tree. For example, the predicate talk

5 Problems of structural ambiguity are not
being considered at this point.
6 This encoding utilises the fact that memory
acldresses carl also be encoded as memory
contents, and vice versa.

may encode through subcategorisation tile local
structure talk(subj, obj, comp). If the OgJ func-
tion remains unspecified, the filler information
will unify at this location in memory, enabling
its structural address to be specified ielative to
the address of the predicate talk. The syntactic
analyser can solve the memory allocation prob-
lem by generating the label TOPIC, enabling the
encoding: TOPICg -> [OBJ*a[NP features]]Tto be
created. This encoding solves the local depend~-
ency problem.

To solve the problem of global indete>
minacy, the analyser must also build an
encoding like

COMPp -> TOPICg

the effect of which is to move the topicalised
information through connected COMP locations.
in other words, it corresponds to the control
equat ion TOPIC = COMP* at the symbolic

level a.
The principle underlying this latter encoding

is that COMP labels a specific location in
memory determined relative to the locanon with
the global address 'p'. This means that the local
label is automatically reassigned as each new
local structure unfolds. The operation of
reassignment involves two concurrent actions:
1) Direct labelling - the structural location
labelled by COMPp is reqabelled using the new
predicate name as a global label; 2) Bui ld
connection - a new location is connected into
the structm'e with the label COMPpwhere 'p' is
bound to the new predicate name. The effect of
the last action is to p a s s the topicalised
information onto the next connected level of
local structure. Obviously, if the first action
occurs without the second, the filler label will
not be passed as the COMPp -> TOPICg
encoding will become undefined. Once this
happens the COMP~ address is no longer
retrievable mr further processing. However,
the second action can only ¢mcur if the building
of a COMPp edge is licensed by the information
carried by the predicate 'p'. For example,
consider the partial fostructure shown in figure
3 and the corresponding AS-DAG configuration.
A topicalised NP originating at the top-level

7 This notation specifies address-content
associations;
AS-DAG address -> superposition space
contents.
8 As stated previously, the operator * cannot be
mapped directly to the CS level.

5 269

Partial y-structure

COMP [- -[k

L \ L j
',5"

C

Figure 3

node can be passed down the COMPp reassign-
ment chain descending from the same node, but
it cannot be passed to the COMP embedded in
the SUBJ f-structure. The COMPp -> TOPICg
encoding is undefined at the location addressed
by the SUBJp label, because the COMP function
cannot be licensed by the SUBJ predicate.

In brief, functional uncertainty expressions
such as (^ TOPIC) = (^ COMP* OBJ) cannot be
mapped directly to the CS level as structural
addresses. Instead, the uncertainty is captured
by the CS encodings COMPp-> TOPICg and
TO. PICg -> OBJ**[NP features]. As the connect-
lvxty structure unfolds in memory, the action of
reassigning COMPp places restrictions on the set
of structural addresses to which the topicalised
information can be passed. Using predicate-
argument structures as address systems for the
CS level leads to the conclusion that
connectivity, defined at this level of linguistic
structure, determines the distribution of fillers
and gaps within a language.

References

Fodor, J.A., and Pylyshyn. Z.W. (1988)
Connectionism and cognitive architecture: A
critical analysis. Cognition, 28, 3-71.
Kanerva, P. (1988) Sparse distributed
memory. MIT Press, Cambridge, Mass..
Kaplan, R.M. & Maxwell, J.T. (1988) An
algorithm for functional uncertainty. COLING
88, Budapest.
Kaplan, R.M. and Zaenen, A. (1988) Long-
distance dependencies, constituent structure,
and functional uncertainty. In M. Baltin and A.
Kroch (eds.), Alternative Conceptions of
Phrase Structure. Chicago: Chicago University
Press.
Kasper, R.T. and Rounds, W.C. (1986) A
logical semantics for feature structures. In the
Proceedings of the 24th meeting of the
Association of Computational Linguistics,
Colombia University, New York.
Kayne, R.S. (1983) Connectedness.
Linguistic Inquiry, 14, 223-249.
Slack, J.M. (1984) A parsing architecture
based on distributed memory machines. In
Proceedings of COLING-84, Stanford,
California.
Slack, J.M. (1986) Distributed memory: a
basis for chart parsing. In Proceedings of
COLING-86, Bonn, West Germany.
Slack, J.M. (1990) Getting structure from
subsymbolic interactions. In G. Adriaens and
U. Hahn (eds.), Parallel Models of Natural
Language Computation. New Jersey: Ablex
Publishing Co..

270 6

