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Abstract 

This paper introduces a new technique of parsing 
sentences from an arbitrary word which is highly reliable or 
semantically important. This technique adopts an efficient 
LR parsing method and uses a reverse LR table constructed 
besides a standard LR table. This technique is particularly 
suitable in parsing a lattice of words hypothesized by a 
speech recognition module. If we choose anchor symbols 
in mlch a way that they art almost always acoustically 
reliable, the bi-directional LR parsing performs better 
against misrecognized words than the regular left-to-right 
LR lmrser, while most of the LR efficiency is preserved. A 
pilot implementation shows a 43 % reduction of the en'or 
rate against the left-to-right LR method in parsing the 
speech input. 

1. I n t r o d u c t i o n  
Parsing a word lattice produced by a speech recognition 

module requires much more search them conventional 
semence parsing, and thmvt'ore an extremely efficient 
par:dng algorithm is needed. A word lattice is a set of 
words hypothesized t,~y a speech recognition system from 
an utterance. A typical word lattice consists of 30 - 200 
words for a 10 word utterance, and each word has a score 
indicating probability of its having been actually uttered. 
Not only are there many junk words which were never 
utteced, some actually uttered words may not be present in 
the lattice (missing words). 

A ,  island growing parsing in A'IN mechanism presented 
the serious maintenance and practical problems [10]. The 
first promising allempt to pmse an incomplete word lattice 
was made by Itayes et al. [2], using semantic caseframes. 
This attempt revealed that, while the semantic caseframes 
can provide a reasonable degree of robustness, a very 
efficient algori[hm is required to be practical. Good efforts 
were made by Poesio et al. [4] and Giachin et al. [1] to 
make the semm~tic caseframe approach more efficient and 
robust. Meanwhile, Tomita modified the generalized LR 
parsing algorithm (GLR)[8] to handle word lattices [91]. 
The GLR algorithm is a very efficient, table-driven, non- 
deterministic context-free parsing algorithm, and it has 

been applied in speech recognition projects with fl~rther 
modification of the algorithm to handle missing words [5]. 
It requires heavy search, however, especially when a word 
is missed in the beginning part of the utterance, since the 
parser guesses missing words only from its left context. 
Thus, the strict left-to-right-heSS sometimes suffers 
inefficieucy, and it is desired to parse occasionally 
backwards from an acoustically reliable word called an 
anchor word [10], Bidirectionality ,also plays an imporlant 
role in Head-Driven parsing and a method of bi-directional 
parsing was presented by Satta et al [7]. 

This paper describes a technique, called bi-directio~ml 

GLR parsing, to Imrse a word lattice occasionally 
backwards without loss of the ruble-driven efficiency. A 
reverse LR table is constructed as well as a standard LR 
table. Section 2 reviews the generalized LR parsing 
algorithm. Section 3 then describes how to consU'uct 
reverse LR tables and how to use them in word lattice 
parsing. Section 4 discusses the robustness of bi- 
directional GLR parsing, and finally concluding remarks 
are made in Section 5. 

2. Background: Generalized LR Parsing 
The LR parsing technique was originally developed for 

compilers of programming languages arid has been 
extended for Natural Language Processing [8]. The LR 
parsing analyzes the input sequence from left to right with 
no backtracking by looking at the parsing table constructed 
from the context-free grammar rules in advance. An 
example grammar and its parsing table are shown in Figure 
2-1 and Figure 2-2 respectively. 

Entries "s n" in the action table (the left part of the table) 
indicate the action "shift one word from input buffer onto 
the stack and go to state n". Entries "r n" indicate the 
action "reduce constituents on the stack using rule n". The 
entry "acc" stands for the action "accept", and blank spaces 
represent "error". '$' in the action table is the end-of-input 
symbol. The goto table (the right part of the table) decides 
to which state the parser should go after a reduce action. 
The LR parsing table in Figure 2-2 is different from the 
regular LR tables utilized by compilers of programming 
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languages in that there are multiple entries, called conflicts, 
on the row of slate 9. While the encountered entry has only 
one action, parsing proceeds exactly the same way as the 
normal LR parsing. In case there are multiple actions in 
one entry, it executes all the actions with the 
graph-structured stack [8]. The bi-directional GLR parsing 
method begins at an arbitrary spot of the input, while the 
conventional GLR parsing analyzes the input sequence only 
from left to right. 

(i) S --> NP VP 

(2) NP --> n 

(3) NP --> NP PP 

(4) VP --> v NP 

(5) PP --> p NP 

Figure 2-1: An Example Ambiguous Grammar 

Action Table Goto Table 

n v p $ NP VP PP S 

1 

2 

3 

4 

5 

6 

7 

8 

9 

I0 

s2 

s2 

s2 

r2 r2 r2 

s6 s5 

rl 

r3 r3 r3 

r5 r5,s5 r5 

s5 r4 

aCC 

3 

7 

9 

I0 

Figure 2-2: Generalized LR Parsing Table 

3. Bi-directional GLR parsing 
In this section we describe the bi-directional GLR 

parsing algorithm ,and an example of parsing a word lattice. 

3.1. Reverse LR table 
Bi-directional GLR parsing uses a reverse LR table 

besides a standard LR table. The reverse LR table is 
constructed from the context-free gralnmar in which the 
order of right-hand-side symbols is reversed in each rule. 
For example, the grammar in Figure 3-1 is the set of 
reverse rules built from the exmnple grammar in Figure 
2-1. Its parsing table (Figure 3-2), which is a reverse LR 
table, is constructed from the reversed grammar in Figure 
3-1. 

( i ) S --> VP NP 

(2) NP --> n 

(3) NP --> PP NP 

(4) VP --> NP v 

(5) PP --> NP p 

Figure 3-1: Reversed Grammar 

Action Table Goto 

n v p $ NP VP 

Table 

PP S 

1 s3 

2 

3 

4 s3 

5 s3 

6 

7 r4 

8 r5 

9 

i0 

s7 s8 

r2 r2 r2 

acc 

r 3  s8,r3 r3 

s8 rl 

2 5 4 6 

9 4 

I0 4 

Figure 3-2: Reverse LR Table for Right-to-left Parsing 

3.2. P a r s i n g  f r o m  the A n c h o r  W o r d  in Both  
Directions 

Here we describe the algorithm for parsing the lattice 
starting from an anchor symbol and exp~mding in both left 
,and right directions. 

Parsing Procedure: 
1. Choose the anchor symbol A from the lattice. 

2. Because A is a terminal symbol, the initial 
state(s) are determined from the action table. 
Note that only the states in which the shift 
action(s) are performed are valid. There are 
two kinds of starting states: 

• initial states for left-to-right p,'u'sing 
from the standard LR table 

• initial states for right-to-left parsing 
from the reverse LR table 

Start GLR parsing from the initial states in 
both directions independently until the reduce 
action is suspended due to the lack of the 
reduce constituents. (Since the parsing starts 
in the middle of the input, this could happen 
unless A is located on the edge of the lattice.) 
The standard LR table is used when the 
parsing proceeds from left to right and the 
reverse LR table is used when the parse 
proceeds in the opposite direction. 

3. Perform the suspended reduce action when 
the same number reduce action from the other 
direction is ready. 

Here we show how this procedure works in parsing the 

238 2 



lattice in Figure 3-3 using the grammars and the tables in 
Figures 2-1, 2-2, 3-1 and 3-2. In parsing a lattice, the 
juncture verifier JUNCT(Wi, Wi ) should be prepared which 

returns TRUE if W i and Wj can abut. 1 

5 10 15 20 25 30 

V 

W-2 
n 

n W-3 

35 40 45 
[ I I ~ TIME 

n 

W-5 
P 

W-4 

Figure 3-3: Word Latlice 

First we choose the most probable word from the lattice, 
i.e. W-2 (v). The standard LR table indicates that v is 
expected at lhe states 2, 3, 8, and 9. Only the state 3 is 
valid because the other states require reduce actions which 
need previous words. Thus the parse starts from state 3. 
"Itae current word v is shifted and the next state 6 is 
de, termined which is expecting n. Figure 3-4 shows this 
situation. 

We consult the reverse LR table in the same way. 
Namely the right-to-left parse starts from the state 2 and the 
next state _7 it; decided after v is shifted. (Figure 3-5. States 
numbers and the expecting terminals for the left-bound 
parsing are written hi italic fonts with underscore bars.) 

Here we perform the right-to-left parse first. State 7 is 
ready for the reduce action 4 by n. But the action "reduce 
4" can not be performed now even on the assumption that 
JUNCT(W-1, W-2) returns TRUE, because the current 
stack does not contain enough reduce constituents. That 
means the reduce action 4 is suspended until the left-to- 
right parsing is ready for the.reduce action 4. 

Therefore we proceed with the right-bound parsing now. 
W.-3 (n) is expected by state 6. On the assumption that 
JUNCT(W-2, W-3) returns TRUE, n is shifted and the new 
state 2 is determined from the left-to-right action table 
(Figure 3-6). 

The new state 2 is ready for the reduce action 2 (NP 
- - >  n) by v, p, $. On the assumption that JUNCT(W-3, 
W.4) returns TRUE, this reduce action is performed. The 
left-to-right goto table indicates that the new state is 10. 
(Figure 3-7) 

The next word W-4 is expected by state 10. On the 
assumption that JUNCT(W-3, W-4) returns TRUE, W - 4  is 

1In practice tile juncture verifier should return file probability of 
juncture instead of just TRUE / FALSE, 

a v 6 In} 

Figure  3 - 4 

3 v 6 [n} 

Zo.LZ Z 

F i g . r e  3 - S 

3 v 6 {n} 

,~ n 2 {vp$} 

Figure  3 - 6 

3 v 6 {hi 

3 

3 

lak2 

Figure  3-7 

6 {n} 

N , ~ . . _ ~ I  o {p$} 

5 in} 

Figure  3-8 

6 {n} V 

~ I o  {p $i n 

Figure  3-9 

2 {vp$} 

3 

nmL2 
6 In} 

,~ NP lo {p$} 
13 

Figure  3.10 

shifted and the new state 5 is determined (Figure 3--8). 

The parse continues in this way (Figure 3-9 - Figure 
3-12). 

In Figure 3-12 the new state 10 is ready for the reduce 
action by $ according to the left-to-right action table. Thus 
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3 
~LZ 

6 {hi 

~ . , . ~ 1 0  {p $} n 

In} 

PP 

Figure 3-11 

g {vp$} 

B {vp$} 

3 6 {n} 
,?. 

~ N ~ P  Io {p$} n 

1 N ~ P  g {vp$} 

~L_ pP 8 {vp$} 

i NP 10 {p $} 

Figure 3-12 

3 
,5 

6 In} 

}~ NP .10 {p$} n 

! 1 /' . .  

i P" 

Figure 3-13 

VP 

9 {vp$} 

B {vp$} 

Io (p $} 

7 {$} 

the action "reduce 4" is performed. The next state 7 is also 
ready for the reduce action by $. But this reduce action (s 
- - >  NP VP) is interrupted because the parsing stack does 
not have enough constituents. At this point the suspended 
right-to-left parse can be resumed because the suspended 
action "reduce 4" is done. The new state number 5 is 
determined from the right-to-left goto table. (Figure 3-13) 

The first word W-1 is expected by state _5. On the 
assumption that JUNCT(W-1, W-2) returns TRUE, W-I is 
shifted and the new state number 3 is detemfined from the 
reverse LR table. (Figure 3-14) 

The new state 3_ is ready for the reduce action by v, p and 
$. Since W-1 is the first word in the lattice, the action 
"reduce 2 (Np - - >  n)" is performed. (Figure 3-15) 

n 

I 

!a 
5 

{n} 

rl 

~ 10 [P $} n 

a {vp$} 

. . . . . . . . .  NP 10 {p $} 

v p  7 {$} 

Figure 3-14 

3 v 

I'll 

NP 

# 

{n} 

r NP Io {p$} n 

[ N P g {v p $} 

p p  B {vp$l 

i NP . . . .  10 {p $} 

vp 7 {$1 
./ 

Figure 3-15 

n 

NP 

3 v 

3 

6 {n} 

't 
~ 1 o  {p$} n 

{v p $} 

P P 8 {v p $} 

,~ NP 10 {p $} 

vP 7 {$} 
# 

1 S acc 
acc J 

Figure 3-16 

State 10 is ready for the reduce action by $. Thus the 
action "reduce 1 (S - - >  vP NP)" is performed, which 
indicates that the suspended left-to-right action "reduce 1" 
is also done. (Figure 3-16 shows the end of parsing.) 
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3.3. B i -d i rec t iona l  G L R  f r o m  Mul t ip le  A n c h o r s  
We have considered the parse from one anchor word in 

the previous example. The bi-direcfional GLR can be 
started from more than one word in the following way. 

[l] Provide each word with its starting states for both 
right-bound and left-bound parsing from the action tables. 

[2] Start bi-directional GLR parsing from each word in 
parallel. 

[3] At the reached skate s i ,  check if there any 
nontenninals already exist which s i is expecting according 
to the goto table [along the row of state s i under the column 
labeled with the nonterminal symbol]. (Since parsing 
proceeds in parallel, the nonterminal may have been created 
already.) If JUNCT(current-word,previously-created- 
nonterrninal) returns TRUE, shift this nonterminal onto the 
current word just tile same way as the standard "shill 
action" for terminals. Note that this "nonterminal shift 
action" does not prevent the reguhtr shift/reduce/accept 
actions at s t a t e  Si. 2 

3.4~ P a r s i n g  W o r d s  in O r d e r  o f  P robab i l i t y  
In the previous section we showed that the parsing cm~ 

start from multiple anchors. This assures that tile parse can 
start from any word in any order. This parsing method is 
very suitable :for speech recognition, because the parsing 
can proceed in tile order of probability of each word in the 
lattice. 

3.5, Pa r s ing  I n c o m p l e t e  Lattice 
In the previous example the lattice contained every 

necessary word. If the lattice is complete, the generalized 
LR parsing method suffices [91. It is often the case, 
however, that some words are missing in the output from 
the speech recognizer. In an attempt to use the generalized 
LR parsing technique for parsing an incomplete lattice 
[6] or for parsing a noisy input sequence [5], all possibly 

viable symbols are checked. Especially, handling missing 
symbols in the e~ly  slage of parsing requires a lot of 
search. The bi-directional GLR parsing can handle missing 
words more elegantly in that only highly plat, siNe missing 
candidates are explored as follows. 

Suppose W-4("p") is missing from the lattice in Figure 
3-3 3 . In parsing the lattice in the order of probability, the 

2lxt practice, however, regular shift actions do not have to be Ixzffommd 
in many cases, because the nonterminals previously created are likely to 
have a high score due to the fact that the parse starts with anchor symbols. 
This heuristic method can reduce search. 

3Such function words as prepositions and articles are likely to be 
missing in speech recognition. 

pzu:se is suspended after W-3 is shifted. At this moment tl~c 
left-to-right parsing is expecting "p" as the following word 
of W-3 and the right-to-left parsing is expecting "p" as the 
previous word of W-5. Therefore we can assuredly predict 
"p" is missing between W-3 and W-5. 

In case more th,'m one word is missed in the gap, creating 
expected dummy words tentatively from one side or both 
from left side and from right side can solve the problem. A 
top-down speech input verifier which checks the likelihood 
of dummy words should be incorporated, because search 
may grow significantly by indiscreet creation of dummy 
words. 

4. P a r s i n g  N o i s y  S p e e c h  I n p u t  
Saito et al. implemented the system which parses the 

noisy speech input [15]. In that system the parser analyzes 
the phoneme sequence from left to right as exploring the 
possibilities of substituted, inserted, and missing phonemes. 
Consequently a much bigger search was required than 
conventional text parsing. Thus the efficient GLR parsing 
technique was adopted. Since the parse proceeds strictly 
from left to right pruning the low-scored partial parses, it is 
sometimes hard to parse the speech input whose beginning 
part is very noisy. For example, the speech input 
"ROEAIBIGAZUZIQKISURU" (the correct phoneme 
sequence is "OYAYUBIGAZUKIZUKISURU" which 
means "I have a burning pain in the thumb.") can not lv 
parsed correctly by the GLR parser, because of the noisy 
initial part. To apply the bi-directional parsing technique to 
this problem, we need to make a word lattice from the 
phoneme sequence, because 

® The current speech recognition device [3] does 
not give us the probability of each phoneme in 
the sequence. 

. A single phoneme is too primitive to be an 
anchor symbol. 

The word lattice built from the phoneme sequence 
"ROEAIBIGAZUZIQKISURU" is shown in Figure 4-1. 
This lattice clearly shows that the correct parse 
"OYAYUBI GA ZUKIZUKI SURU" can be obtained. 

5 10 15 20 25 30 35 40 45 

[ J_ ] l [ . L ~  [ ~ TIME 
"~ [95] 

SURU [80] 
GA [70] 

KUSURI [61] 

ZUKIZUKI [56] 
OYAYU81 [54] 

HIZA [52] 

Figure 4-1: Word Lattice from the Phoneme Sequence 

5 2 4 i  



We tested 125 sentences (5 speakers spoke 25 
sentences.) in the domain of doctor-patient conversation. 
111 sentences were parsed correctly by the regular GLR 
method (recognition rate: 89.6 %). 6 more sentences were 
parsed correctly by the bbdirectional parsing of the word 
lattice (recognition rate: 93.6 %). The remaining 8 
sentences were very badly pronounced, in which content 
words are missing. It is necessary to ask the speaker to say 
the sentence again or to only speak the unclear portion. 

5. Concluding Remarks 
We have introduced the bi-directional GLR parsing as a 

robust parsing technique and how the method is applied, 
especially for parsing the lattice of words hypothesized by 
the speech recognizer using the strong power of handling 
missing words. 

The prototype parser has been implemented. Preliminary 
results show that the robusmess power is very effective 
especially for the lattice where missing words exist in the 
beginning part. 
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