
Bi-direct ional LR Parsing fi'om an A n c h o r W o r d
for Speech Recognition

ltiroaki Saito

Center for Machine Translation
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Net Address: saito+@cs.cmu.edu

Abstract

This paper introduces a new technique of parsing
sentences from an arbitrary word which is highly reliable or
semantically important. This technique adopts an efficient
LR parsing method and uses a reverse LR table constructed
besides a standard LR table. This technique is particularly
suitable in parsing a lattice of words hypothesized by a
speech recognition module. If we choose anchor symbols
in mlch a way that they art almost always acoustically
reliable, the bi-directional LR parsing performs better
against misrecognized words than the regular left-to-right
LR lmrser, while most of the LR efficiency is preserved. A
pilot implementation shows a 43 % reduction of the en'or
rate against the left-to-right LR method in parsing the
speech input.

1. I n t r o d u c t i o n
Parsing a word lattice produced by a speech recognition

module requires much more search them conventional
semence parsing, and thmvt'ore an extremely efficient
par:dng algorithm is needed. A word lattice is a set of
words hypothesized t,~y a speech recognition system from
an utterance. A typical word lattice consists of 30 - 200
words for a 10 word utterance, and each word has a score
indicating probability of its having been actually uttered.
Not only are there many junk words which were never
utteced, some actually uttered words may not be present in
the lattice (missing words).

A , island growing parsing in A'IN mechanism presented
the serious maintenance and practical problems [10]. The
first promising allempt to pmse an incomplete word lattice
was made by Itayes et al. [2], using semantic caseframes.
This attempt revealed that, while the semantic caseframes
can provide a reasonable degree of robustness, a very
efficient algori[hm is required to be practical. Good efforts
were made by Poesio et al. [4] and Giachin et al. [1] to
make the semm~tic caseframe approach more efficient and
robust. Meanwhile, Tomita modified the generalized LR
parsing algorithm (GLR)[8] to handle word lattices [91].
The GLR algorithm is a very efficient, table-driven, non-
deterministic context-free parsing algorithm, and it has

been applied in speech recognition projects with fl~rther
modification of the algorithm to handle missing words [5].
It requires heavy search, however, especially when a word
is missed in the beginning part of the utterance, since the
parser guesses missing words only from its left context.
Thus, the strict left-to-right-heSS sometimes suffers
inefficieucy, and it is desired to parse occasionally
backwards from an acoustically reliable word called an
anchor word [10], Bidirectionality ,also plays an imporlant
role in Head-Driven parsing and a method of bi-directional
parsing was presented by Satta et al [7].

This paper describes a technique, called bi-directio~ml

GLR parsing, to Imrse a word lattice occasionally
backwards without loss of the ruble-driven efficiency. A
reverse LR table is constructed as well as a standard LR
table. Section 2 reviews the generalized LR parsing
algorithm. Section 3 then describes how to consU'uct
reverse LR tables and how to use them in word lattice
parsing. Section 4 discusses the robustness of bi-
directional GLR parsing, and finally concluding remarks
are made in Section 5.

2. Background: Generalized LR Parsing
The LR parsing technique was originally developed for

compilers of programming languages arid has been
extended for Natural Language Processing [8]. The LR
parsing analyzes the input sequence from left to right with
no backtracking by looking at the parsing table constructed
from the context-free grammar rules in advance. An
example grammar and its parsing table are shown in Figure
2-1 and Figure 2-2 respectively.

Entries "s n" in the action table (the left part of the table)
indicate the action "shift one word from input buffer onto
the stack and go to state n". Entries "r n" indicate the
action "reduce constituents on the stack using rule n". The
entry "acc" stands for the action "accept", and blank spaces
represent "error". '$' in the action table is the end-of-input
symbol. The goto table (the right part of the table) decides
to which state the parser should go after a reduce action.
The LR parsing table in Figure 2-2 is different from the
regular LR tables utilized by compilers of programming

i 237

languages in that there are multiple entries, called conflicts,
on the row of slate 9. While the encountered entry has only
one action, parsing proceeds exactly the same way as the
normal LR parsing. In case there are multiple actions in
one entry, it executes all the actions with the
graph-structured stack [8]. The bi-directional GLR parsing
method begins at an arbitrary spot of the input, while the
conventional GLR parsing analyzes the input sequence only
from left to right.

(i) S --> NP VP

(2) NP --> n

(3) NP --> NP PP

(4) VP --> v NP

(5) PP --> p NP

Figure 2-1: An Example Ambiguous Grammar

Action Table Goto Table

n v p $ NP VP PP S

1

2

3

4

5

6

7

8

9

I0

s2

s2

s2

r2 r2 r2

s6 s5

rl

r3 r3 r3

r5 r5,s5 r5

s5 r4

aCC

3

7

9

I0

Figure 2-2: Generalized LR Parsing Table

3. Bi-directional GLR parsing
In this section we describe the bi-directional GLR

parsing algorithm ,and an example of parsing a word lattice.

3.1. Reverse LR table
Bi-directional GLR parsing uses a reverse LR table

besides a standard LR table. The reverse LR table is
constructed from the context-free gralnmar in which the
order of right-hand-side symbols is reversed in each rule.
For example, the grammar in Figure 3-1 is the set of
reverse rules built from the exmnple grammar in Figure
2-1. Its parsing table (Figure 3-2), which is a reverse LR
table, is constructed from the reversed grammar in Figure
3-1.

(i) S --> VP NP

(2) NP --> n

(3) NP --> PP NP

(4) VP --> NP v

(5) PP --> NP p

Figure 3-1: Reversed Grammar

Action Table Goto

n v p $ NP VP

Table

PP S

1 s3

2

3

4 s3

5 s3

6

7 r4

8 r5

9

i0

s7 s8

r2 r2 r2

acc

r 3 s8,r3 r3

s8 rl

2 5 4 6

9 4

I0 4

Figure 3-2: Reverse LR Table for Right-to-left Parsing

3.2. P a r s i n g f r o m the A n c h o r W o r d in Both
Directions

Here we describe the algorithm for parsing the lattice
starting from an anchor symbol and exp~mding in both left
,and right directions.

Parsing Procedure:
1. Choose the anchor symbol A from the lattice.

2. Because A is a terminal symbol, the initial
state(s) are determined from the action table.
Note that only the states in which the shift
action(s) are performed are valid. There are
two kinds of starting states:

• initial states for left-to-right p,'u'sing
from the standard LR table

• initial states for right-to-left parsing
from the reverse LR table

Start GLR parsing from the initial states in
both directions independently until the reduce
action is suspended due to the lack of the
reduce constituents. (Since the parsing starts
in the middle of the input, this could happen
unless A is located on the edge of the lattice.)
The standard LR table is used when the
parsing proceeds from left to right and the
reverse LR table is used when the parse
proceeds in the opposite direction.

3. Perform the suspended reduce action when
the same number reduce action from the other
direction is ready.

Here we show how this procedure works in parsing the

238 2

lattice in Figure 3-3 using the grammars and the tables in
Figures 2-1, 2-2, 3-1 and 3-2. In parsing a lattice, the
juncture verifier JUNCT(Wi, Wi) should be prepared which

returns TRUE if W i and Wj can abut. 1

5 10 15 20 25 30

V

W-2
n

n W-3

35 40 45
[I I ~ TIME

n

W-5
P

W-4

Figure 3-3: Word Latlice

First we choose the most probable word from the lattice,
i.e. W-2 (v). The standard LR table indicates that v is
expected at lhe states 2, 3, 8, and 9. Only the state 3 is
valid because the other states require reduce actions which
need previous words. Thus the parse starts from state 3.
"Itae current word v is shifted and the next state 6 is
de, termined which is expecting n. Figure 3-4 shows this
situation.

We consult the reverse LR table in the same way.
Namely the right-to-left parse starts from the state 2 and the
next state _7 it; decided after v is shifted. (Figure 3-5. States
numbers and the expecting terminals for the left-bound
parsing are written hi italic fonts with underscore bars.)

Here we perform the right-to-left parse first. State 7 is
ready for the reduce action 4 by n. But the action "reduce
4" can not be performed now even on the assumption that
JUNCT(W-1, W-2) returns TRUE, because the current
stack does not contain enough reduce constituents. That
means the reduce action 4 is suspended until the left-to-
right parsing is ready for the.reduce action 4.

Therefore we proceed with the right-bound parsing now.
W.-3 (n) is expected by state 6. On the assumption that
JUNCT(W-2, W-3) returns TRUE, n is shifted and the new
state 2 is determined from the left-to-right action table
(Figure 3-6).

The new state 2 is ready for the reduce action 2 (NP
- - > n) by v, p, $. On the assumption that JUNCT(W-3,
W.4) returns TRUE, this reduce action is performed. The
left-to-right goto table indicates that the new state is 10.
(Figure 3-7)

The next word W-4 is expected by state 10. On the
assumption that JUNCT(W-3, W-4) returns TRUE, W - 4 is

1In practice tile juncture verifier should return file probability of
juncture instead of just TRUE / FALSE,

a v 6 In}

Figure 3 - 4

3 v 6 [n}

Zo.LZ Z

F i g . r e 3 - S

3 v 6 {n}

,~ n 2 {vp$}

Figure 3 - 6

3 v 6 {hi

3

3

lak2

Figure 3-7

6 {n}

N , ~ . . _ ~ I o {p$}

5 in}

Figure 3-8

6 {n} V

~ I o {p $i n

Figure 3-9

2 {vp$}

3

nmL2
6 In}

,~ NP lo {p$}
13

Figure 3.10

shifted and the new state 5 is determined (Figure 3--8).

The parse continues in this way (Figure 3-9 - Figure
3-12).

In Figure 3-12 the new state 10 is ready for the reduce
action by $ according to the left-to-right action table. Thus

3 239

3
~LZ

6 {hi

~ . , . ~ 1 0 {p $} n

In}

PP

Figure 3-11

g {vp$}

B {vp$}

3 6 {n}
,?.

~ N ~ P Io {p$} n

1 N ~ P g {vp$}

~L_ pP 8 {vp$}

i NP 10 {p $}

Figure 3-12

3
,5

6 In}

}~ NP .10 {p$} n

! 1 /' . .

i P"

Figure 3-13

VP

9 {vp$}

B {vp$}

Io (p $}

7 {$}

the action "reduce 4" is performed. The next state 7 is also
ready for the reduce action by $. But this reduce action (s
- - > NP VP) is interrupted because the parsing stack does
not have enough constituents. At this point the suspended
right-to-left parse can be resumed because the suspended
action "reduce 4" is done. The new state number 5 is
determined from the right-to-left goto table. (Figure 3-13)

The first word W-1 is expected by state _5. On the
assumption that JUNCT(W-1, W-2) returns TRUE, W-I is
shifted and the new state number 3 is detemfined from the
reverse LR table. (Figure 3-14)

The new state 3_ is ready for the reduce action by v, p and
$. Since W-1 is the first word in the lattice, the action
"reduce 2 (Np - - > n)" is performed. (Figure 3-15)

n

I

!a
5

{n}

rl

~ 10 [P $} n

a {vp$}

. NP 10 {p $}

v p 7 {$}

Figure 3-14

3 v

I'll

NP

{n}

r NP Io {p$} n

[N P g {v p $}

p p B {vp$l

i NP 10 {p $}

vp 7 {$1
./

Figure 3-15

n

NP

3 v

3

6 {n}

't
~ 1 o {p$} n

{v p $}

P P 8 {v p $}

,~ NP 10 {p $}

vP 7 {$}

1 S acc
acc J

Figure 3-16

State 10 is ready for the reduce action by $. Thus the
action "reduce 1 (S - - > vP NP)" is performed, which
indicates that the suspended left-to-right action "reduce 1"
is also done. (Figure 3-16 shows the end of parsing.)

2 4 0 4

3.3. B i -d i rec t iona l G L R f r o m Mul t ip le A n c h o r s
We have considered the parse from one anchor word in

the previous example. The bi-direcfional GLR can be
started from more than one word in the following way.

[l] Provide each word with its starting states for both
right-bound and left-bound parsing from the action tables.

[2] Start bi-directional GLR parsing from each word in
parallel.

[3] At the reached skate s i , check if there any
nontenninals already exist which s i is expecting according
to the goto table [along the row of state s i under the column
labeled with the nonterminal symbol]. (Since parsing
proceeds in parallel, the nonterminal may have been created
already.) If JUNCT(current-word,previously-created-
nonterrninal) returns TRUE, shift this nonterminal onto the
current word just tile same way as the standard "shill
action" for terminals. Note that this "nonterminal shift
action" does not prevent the reguhtr shift/reduce/accept
actions at s t a t e Si. 2

3.4~ P a r s i n g W o r d s in O r d e r o f P robab i l i t y
In the previous section we showed that the parsing cm~

start from multiple anchors. This assures that tile parse can
start from any word in any order. This parsing method is
very suitable :for speech recognition, because the parsing
can proceed in tile order of probability of each word in the
lattice.

3.5, Pa r s ing I n c o m p l e t e Lattice
In the previous example the lattice contained every

necessary word. If the lattice is complete, the generalized
LR parsing method suffices [91. It is often the case,
however, that some words are missing in the output from
the speech recognizer. In an attempt to use the generalized
LR parsing technique for parsing an incomplete lattice
[6] or for parsing a noisy input sequence [5], all possibly

viable symbols are checked. Especially, handling missing
symbols in the e~ly slage of parsing requires a lot of
search. The bi-directional GLR parsing can handle missing
words more elegantly in that only highly plat, siNe missing
candidates are explored as follows.

Suppose W-4("p") is missing from the lattice in Figure
3-3 3 . In parsing the lattice in the order of probability, the

2lxt practice, however, regular shift actions do not have to be Ixzffommd
in many cases, because the nonterminals previously created are likely to
have a high score due to the fact that the parse starts with anchor symbols.
This heuristic method can reduce search.

3Such function words as prepositions and articles are likely to be
missing in speech recognition.

pzu:se is suspended after W-3 is shifted. At this moment tl~c
left-to-right parsing is expecting "p" as the following word
of W-3 and the right-to-left parsing is expecting "p" as the
previous word of W-5. Therefore we can assuredly predict
"p" is missing between W-3 and W-5.

In case more th,'m one word is missed in the gap, creating
expected dummy words tentatively from one side or both
from left side and from right side can solve the problem. A
top-down speech input verifier which checks the likelihood
of dummy words should be incorporated, because search
may grow significantly by indiscreet creation of dummy
words.

4. P a r s i n g N o i s y S p e e c h I n p u t
Saito et al. implemented the system which parses the

noisy speech input [15]. In that system the parser analyzes
the phoneme sequence from left to right as exploring the
possibilities of substituted, inserted, and missing phonemes.
Consequently a much bigger search was required than
conventional text parsing. Thus the efficient GLR parsing
technique was adopted. Since the parse proceeds strictly
from left to right pruning the low-scored partial parses, it is
sometimes hard to parse the speech input whose beginning
part is very noisy. For example, the speech input
"ROEAIBIGAZUZIQKISURU" (the correct phoneme
sequence is "OYAYUBIGAZUKIZUKISURU" which
means "I have a burning pain in the thumb.") can not lv
parsed correctly by the GLR parser, because of the noisy
initial part. To apply the bi-directional parsing technique to
this problem, we need to make a word lattice from the
phoneme sequence, because

® The current speech recognition device [3] does
not give us the probability of each phoneme in
the sequence.

. A single phoneme is too primitive to be an
anchor symbol.

The word lattice built from the phoneme sequence
"ROEAIBIGAZUZIQKISURU" is shown in Figure 4-1.
This lattice clearly shows that the correct parse
"OYAYUBI GA ZUKIZUKI SURU" can be obtained.

5 10 15 20 25 30 35 40 45

[J_] l [. L ~ [~ TIME
"~ [95]

SURU [80]
GA [70]

KUSURI [61]

ZUKIZUKI [56]
OYAYU81 [54]

HIZA [52]

Figure 4-1: Word Lattice from the Phoneme Sequence

5 2 4 i

We tested 125 sentences (5 speakers spoke 25
sentences.) in the domain of doctor-patient conversation.
111 sentences were parsed correctly by the regular GLR
method (recognition rate: 89.6 %). 6 more sentences were
parsed correctly by the bbdirectional parsing of the word
lattice (recognition rate: 93.6 %). The remaining 8
sentences were very badly pronounced, in which content
words are missing. It is necessary to ask the speaker to say
the sentence again or to only speak the unclear portion.

5. Concluding Remarks
We have introduced the bi-directional GLR parsing as a

robust parsing technique and how the method is applied,
especially for parsing the lattice of words hypothesized by
the speech recognizer using the strong power of handling
missing words.

The prototype parser has been implemented. Preliminary
results show that the robusmess power is very effective
especially for the lattice where missing words exist in the
beginning part.

6. Saito, H. A Phoneme Lattice Parsing for Continuous
Speech Recognition. Tech. Rept. TR-I-0033, ATR
Interpreting Telephony Research Laboratories, July, 1988.

7. Satta, G. and Stock, O. Head-Driven Bidirectional
Parsing: A Tabular Method. 1st International Workshop oa
Parsing Technologies, Pittsburgh, USA, August, 1989.

8. Tomita, M.. Efficient Parsing for Natural Language: A
Fast Algorithm for Practical Systems. Kluwer Academic
Publishers, Boston, MA, 1985.

9. Tomita, M. An Efficient Word Lattice Parsing
Algorithm for Continuous Speech Recognition. IEEE-
IECEJ-ASJ International Conference on Acoustics, Speech,
and Signal Processing (ICASSP86), Tokyo, April, 1986.

10. Woods, W. A., Bates, M., Brown, G., Bruce, B., Cook,
C., Klovstad, J., Makhoul, J., Nash-Webber, B., Schwartz,
R., Wolf, J., and Zue, V. Speech Understanding Systems -
Final Technical Report. Tech. Rept. 3438, Bolt, Beranek,
and Newman, Inc., Cambridge, Mass., 1976.

Acknowledgements

The author is grateful to Dr. Masaru Tomita for the
useful comments on this work. The author also thanks the
members of the Center for Machine Translation for
comments and advice.

References

1. Giachin, E. and Rullent, C. Robust parsing of severely
corrupted spoken utterances. 12th International Conference
on Computational Linguistics (COLING88), Budapest,
Hungary, August, 1988.

2. Hayes, P. J., Hauptmann, A. G., Carbonell, J. G., and
Tomita, M. Parsing Spoken Language: a Semantic
Caseframe Approach. COLING86, Bonn, August, 1986.

3. Hiraoka, S., Morii, S., Hoshimi, M. and Niyada, K.
Compact Isolated Word Recognition System for Large
Vocabulary. IEEE-IECEJ-ASJ International Conference on
Acoustics, Speech, and Signal Processing (ICASSP86),
Tokyo, April, 1986.

4. Massimo Poesio and Claudio Rullent. Modified
Caseframe Parsing for Speech Understanding Systems.
Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, Milan, August, 1987.

5. Saito, H. and Tomita, M. Parsing Noisy Sentences.
12th International Conference on Computational
Linguistics (COLING88), Budapest, Hungary, August,
1988.

2 4 2 6

