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A modular parallel distributed processing architec- 
ture for parsing, representing and paraphrasing sen- 
tences with multiple hierarchical relative clauses is 
presented. A lowel-level network reads the segments 
of the sentence word by word into partially specified 
case-role representations of the acts. A higher-level 
network combines these representations into a list of 
complete act representations. This internal represen- 
tation stores the information conveyed by the sen- 
tence independent of its linguistic form. The infor- 
mation can be output in natural language in different 
form or style, e,g. as a sequence of simple sentences or 
as a complex sentence consisting of relative clauses. 
Generating output is independent from parsing, and 
what actually gets generated depends on the training 
of the generator modules. 

1 I n t r o d u c t i o n  

Parsing a sentence means reading the input text into 
an internal representation, which makes the relations 
of the constituents explicit. In symbolic parsing, the 
result is usually a semantic network structure, e.g. 
a conceptual dependency representation [17; 3], or 
a syntactic parse tree augmented with semantic re- 
strictions [13; 9]. The advantage of this approach 
is that sentences with arbitrary complexity can be 
parsed and represented. IIowever, processing knowl- 
edge must be hand-coded with specific examples in 
mind. Rules for expectations, defaults and general- 
izations must be explicitly programmed. 

The localist connectionist models [2; 20; 5; 1; 19; 7] 
provide more general mechanisms for inferencing and 
give a more plausible account of the parsing process 
in terms of human performance, ltowever, these net- 
works need to be carefiflly crafted for each example. 

The main advantage of the distributed connec- 
tionist approach [8; 18; 12] is that processing is 
learned from examples. Expectations about unspec- 
ified constituents arise automatically from the pro- 
cessing mechanism, and generalizations into new in- 
puts result automatically from the representations. 
Any statistical regularity in the training examples 
is automatically utilized in making inferences. The 
result in distributed parsing at the sentence level is 
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e.g. an assembly-based case-role representation of the 
sentence [8; 10]. The output layer of the network is 
divided into partitions, each representing a case role, 
and distributed activity patterns in the assemblies in- 
dicate the words filling these roles. 

Representing complex structures is problematic in 
the distributed approach [6; 15]. The proposed sen- 
tcncc processing architectures can only deal with sim- 
ple, straightforward sentences. Case-role analysis is 
feasible only when the sentences consist of single 
acts, so that  unique case role can be assigned for 
each constituent. The approach can be extended and 
roles reserved for attributes of the constituents also. 
However, sentences with relative clauses remain in- 
tractable. 

A hierachical PDP architecture for parsing, repre- 
senting and paraphrasing sentences with multiple hi- 
erarchical relative clauses is described in this paper. 
Each relative clause is itself an act, and has its own 
case-role representation. The whole sentence is rep- 
resented as a collection of these acts. The relations 
of the acts are implicit in their content, rather than 
explicit in the structure of the representation. The 
original eoraplex hierarchical sentence, as well as a 
simplified paraphrase of it, can be produced from the 
list of the act representations. 

2 S y s t e m  a r c h i t e c t u r e  

2.1 Ove rv i ew 

The system consists of four hierarchically organized 
subnetworks (figure 1). The act parser reads the in- 
put words one at a time, and forms a stationary case- 
role representation for each act fragment (defined as 
part of sentence separated by commas). The sen- 
tence parser reads these case-role representations one 
at a time, and forms a stationary representation of 
the whole sentence as ~ts output. This is the internal 
representation of the sentence. 

The sentence generator takes the internal represen- 
tation as its input, and produces a sequence of case- 
role representations of the act fragments as its out- 
put. These are fed one at a time to the act generator, 
which generates the sequence of words for each act 
fragment. During performance, the four nctworks are 
connected in a chain, the output of one network feed- 
ing the input of another (figure 1). During training, 
each network is trained separately with compatible 
I /O data (figure 6). 

The input /output  of each network is composed of 
distributed representations of words. These repre- 
sentations are stored in a central lexicon (figure 2), 
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Figure 1: Overview of the model .  The model consists 
of parsing and generating subsystems, and a central lexi- 
con of distributed word representations. Each subsystem 
consists of two hierarchically organized modules, with the 
case-role assignment of the act as an intermediate repre- 
sentation. 
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Figure 3: Recurrent  FGREP-modu le .  At the end of 
each backpropagation cycle, the current input represen- 
tations are modified at the input layer according to the 
error signal. The new representations are loaded back to 
the lexicon, replacing the old ones. 
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Figure 2: Lexicon. The lexicon is an associative mem- 
ory, associating the text form of each word with its dis- 
tributed representation. The representation is a vector of 
real numbers between 0 and 1, shown as grey-scale values 
from white to black. 

and all networks use the same representations. Each 
network is a Recurrent FGREP module, i.e. a three~ 
layer backpropagation network with sequential input 
or output, which develops the word representations 
automatically while it is learning the processing task. 

2.2 R e c u r r e n t  F G R E P  - A b u i l d i n g  block 

The FGREP mechanism (Forming Global Represen- 
tations with Extended backPropagation) [10; 12] is 
based on a basic three-layer backward error propa- 
gation network (figure 3). The network learns the 
processing task by adapting the connection weights 
according to the standard backpropagation equations 
[16, pages 327-329]. At the same time, representa- 
tions for the input data  are developed at the input 
layer according to the error signal extended to the in- 
put layer. Input and output layers are divided into as- 
semblies and several items are represented and mod- 
ified simultaneously. 

The representations are stored in an external lex- 
icon network. A routing network forms each input 
pattern and the corresponding teaching pattern by 
concatenating the lexicon entries of the input and 
teaching items. Thus the same representation for 
each item is used in different parts of the backpropa- 
gation network, both in the input and in the output. 

The process begins with a random lexicon contain- 
ing no pro-encoded information. During the course of 
learning, the representations adapt to the regularities 
of the task. It turns out that  single units in the result- 
ing representation do not necessarily have a clear in- 
terpretation. The representation does not implement 

a classification of the item along identifiable features. 
In the most general case, the representations are sim- 
ply profiles of continuous activity values over a set 
of processing units. This representation pattern as a 
whole is meaningful and can bc claimed to code the 
meaning of that  word. The representations for words 
which are used in similar ways become similar. 

Recurrent FGREP [11; 12] is an extension of the 
basic FGREP architecture to sequentia[ input and 
output, based on [4]. A copy of the hidden layer at 
time step t is saved and used along with the actual in- 
put at step t + l  as input to the hidden layer (figure 3). 
The previous hidden layer serves as a sequence mem- 
ory, essentially remembering where in the sequence 
the system currently is and what has occurred before. 
During learning, the weights from the previous hid- 
den layer to the hidden layer proper are modified as 
usual according to the backpropagation mechanism. 

The Recurrent FGREP module can be used for 
reading a sequence of input items into a stationary 
output representation, or for generating an output 
sequence from a stationary input. In a sequential in- 
put network, the actual input changes at each time 
step, while the teaching pattern stays the same. The 
network is forming a stationary representation of the 
sequence. In a sequential output network, the actual 
input is stationary, but the teaching pattern changes 
at each step. The network is producing a sequential 
interpretation of its input. The error is backpropa- 
gated and weights are changed at each step. Both 
types of Recurrent FGREP networks dew;lop repre- 
sentations in their input layers. 

2.3 Connect ing  the bui lding blocks in the 
p e r f o r m a n c e  phase 

Let us present the system with the following 
sentence: The woman, who he lped  the  g i r l ,  who 
the boy hit, blamed the man. 

The task of the act parser network (figure 4) is 
to form a stationary case-role representation for each 
part of the sentence, for complete acts (who helped 
the  g i r l  and who the  boy h i t )  as well as for act 
fragments ( the woman and blamed the  man). There 
is an assembly of units at the output layer of this net- 
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Figure 4: Ne tworks  pars ing  the  sentence.  
Snapshot of the simulation after the whole sen- 
tence The uoman, who helped Che girl, who Che boy 
h i t ,  blamed the man has been read in. The output of 
the act parser shows the case-role representation of the 
last act fragment, blamed the man. The output of the 
sentence parser displays the result of the parse, the inter- 
nal ;eprescntation of the whole sentence. 
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F igu re  5: N e t w o r k s  g e n e r a t i n g  t h e  sen tence .  The 
system is in the beginning of generating The woman, who 
helped t he  girl, who the boy hi%, blamed %he man. 
The sentence generator has produced the case-role rep- 
resentation of the first act fragment, The woman, and the 
act generator has output the first word of that fragment. 
The previous hidden layers are blank during the first step. 

work for each case role. Each assembly is to be filled 
with the distributed activity pat tern of the word that  
fills that  role. For example,  the correct representation 
for who t h e  boy h i t  is agent=boy,  a c t = h i t  and p ~  
tientwho. 

As each word is read, its distributed representa- 
tion is obtained from the lexicon; and loaded into the 
input layer of the act parser network. The activity 
propagates through the network, and a distributed 
pat tern  forms at  the output  layer, indicating expecta- 
tions about  possible act representations at that  point. 
The activity pat tern at the hidden layer is copied 
to the previous-hidden-layer assembly, and the next 
word is loaded into the input layer. Each successive 
word narrows down the possible interpretations, and 
the case-role representation of a specific act gradually 
forms at  the output.  

After reading t h e  and woman, the network knows 
to generate the pat tern for woman in the agent assem- 
bly, because in our training examples, the first noun 
is always the agent. The pat tern  in the act assembly 
is an average of helped and blamed, the two possible 
acts for woman in our data.  The pat tern in the pa- 
tient assembly is an average of all patients for he lped  
and blamed. Reading a verb next would establish the 
appropriate  representation in the act assembly, and 
narrow down the possibilities in the patient assembly. 

However, the network reads a comma  next, which 
means that  the top-level act is interrupted by the 
relative clause (commas separate clause fragments in 
our data;  a way to segment clauses without commas 
is outlined in section 4). The network is trained to 
clear the expectations in the unspecified assemblies, 

i.e. to form an incomplete case-role interpretation of 
the top-level act so far. This representation is passed 
on as the first input to the sentence parser module. 

The act parser then goes on to parse the rel- 
ative clause who helped the girl independently 
from what it read before, i.e. the pat tern in its 
previous-hidden-layer assembly is cleared before read- 
ing who. The complete case-role representation of the 
relative clause is passed on to the sentence parser 
as its second input. Similarly, who t h e  boy h i t  is 
parsed and its representation passed on to tile sen- 
tence parser. The act parser then receives the rest 
of the top-level act, blamed the  man, wlfich is again 
parsed independently, and its incomplete case-role 
representation (figure 4) passed on to the sentence 
parser. 

The sentence parser reads the sequence of these 
four case-role representations, combines the incom- 
plete case-role representations into a complete rep- 
resentation of the top-level act, and determines tim 
referents of the who pronouns. The result is a list 
of three completely specified case-role representa- 
tions, lwoman blamed man I, [ woman helped girl I 
and J boy hit girl] (bottom of figure 4). 

The list of case-role representations is the final re- 
sult of the parse, the internal representation of the 
sentence. It is a canonical representation with all the 
structural information coded into simple acts. All in- 
formation is accessible in parallel, and can be directly 
used for further processing. 

The output  side of the system (figure 5) d e m o n  
strates how the inibrmation in the internM represen-- 
ration can be output  in different ways in natural Inn- 
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guage. The output  process is basically the reverse 
of the reading process. The sentence generator net- 
work takes the internal representation as its input 
and produces the case-role representation of the first 
act fragment, l woman (b lank)  (blank) I as its out- 
put (figure 5). This is fed to the act generator, which 
generates the distributed representation of the ,  the 
first word of the act fragment. The representation in 
the lexicon closest to the output  pattern is obtained, 
and the text form of that  entry is put into the stream 
of output  text. 

The hidden layer pattern of the word generator is 
copied into its previous-hidden-layer assembly, and 
the next word is output.  The commas segment the 
output  as well. As soon as a comma is output,  the 
sentence generator network is allowed to generate the 
case-role representation of the next act fragment. 

The sentence generator can produce different out- 
put versions from the same internal representation, 
depending on its training. (1) The acts can be out- 
put  sequentially one at a time as separate simple sen- 
tences, or (2) a single output  sentence with a complex 
relative clause structure can be generated. The point 
is that it does not mat ter  how the internal represen- 
tation is arrived at, i.e. whether it was read in as a 
single sentence, as several sentences, or maybe pro- 
duced as a result of a reasoning process. Generating 
output sentences is independent from parsing, and the 
form and style of the output depends on the processing 
knowledge of the sentence generator. 

In case (1) the sentence generator produces 
the case-role representations I woman blamed man I, 
Iwomaxt helped girll and [boy hit girll, and 
the act generator generates The woman blamed t h e  
man, The woman helped the girl, The boy hit the 
g i r l .  In case (2) the sentence generator produces the 
sequence l woman (blank) (blank)l, I who helped 
girl I, [ boy hit who [, [ (blank) blamed man [, 
and the output  text reads The woman, who helped 
the girl, who the boy hit, blamed the man. 

2.4 Training phase 

A good advantage of the modular architecture can 
be made in training the networks. The tasks of the 
four networks are separable, and they can be trained 
separately as long as compatible I /O material is used. 
The networks must be trained simultaneously, so that 
they are always using and developing the same rep- 
resentations (figure 6). 

The lexicon ties the separated tasks together. Each 
network modifies the representations to improve its 
performance in its own task. The pressure from other 
networks modifies the representations also, and they 
evolve slightly differently than would be the most ef- 
ficient for each network independently. The networks 
compensate by adapting their weights, so that  in the 
end the representations and the weights of all net- 
works are in harmony. The requirements of the differ- 
ent tasks are combined, and the final representations 
reflect the total use of the words. 

If the training is successful, the output  patterns 
produced by one network are exactly what the next 
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Each network 
is truined separately and simultaneously, developing the 
same lexicon. 

network learned to process as its input. But even 
if the learning is less than complete, the networks 
perform well together. Erroneous output  patterns 
are noisy input to the next network, and neural net- 
works in general tolerate, even filter out noise very 
efficiently. 

3 Experiments 

3.1 Training data 

The system was trained with sentences generated us- 
ing the 17 templates shown in table 1. The acts con- 
sisted of three case-roles: agent, the act (i.e. the 
verb), and patient. A relative clause could be at- 
tached to the agent or to the patient, and these could 
fill the role of the agent or the patient in the relative 
clause. 

Certain semantic restrictions were imposed on the 
templates to obtain more meaningful sentences. The 
restrictions also create enough differences in the us- 
age of the words, so that  their representations do not 
become identical (see [12]). A verb could have only 
specified nouns as its agent and patient, listed in ta- 
ble 2. Sentences with two instances of the same noun 
were also excluded. With these restrictions, the tem- 
plates generate a total of 388 sentences. All sentences 
were used to train the system. Generalization was 
not studied in these experiments (for a discussion of 
the generalization capabilities of FGREP systems see 
[121). 

Two different versions of the sentence generator 
were trained: one to produce the output as a sequence 
of simple sentences, and another to produce a single 
sentence with hierarchical relative clauses~ i.e. to re- 
produce the input sentence. The act generator was 
trained only with the act fragments from the complex 
sentences. Because these contain the simple acts, the 
act generator network effectively learned to process 
the ouput of the first version of the sentence genera- 
tor as well. 
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" I ' i ~ ~ i f f 6 -  sentence 
--~FTq'TTh-~wb'WaK Wl~m~---ff-gh~ man 

2. 24 The woman 
3. 20 The woman 
~. 24 The woman 
5. 20 The woman 
6. 28 The woman 
7. 24 The woman 
8. 24 The woman 
9. 28 The woman 

lO. 20 The ~oman 
11. 24 The ~oman 
12, 2~ The woman 
13. 24 The woman 
14. 28 The woman 
i[~. 20 The womml 
16. 24 The woman 
17. 20 The woman 

blamed the man, who hit the girl 
blamed the man, who hit the girl, who blamed the boy 
blamed the man, who hit the girl, .ho the boy hi~ 
blamed the mml, who the girl blamed 
blamed the man, who the girl, who blamed the boy, blamed 
blamed the man, who the girl, who the boy hit, blamed 
who helped the boy, blamed the man, who helped the girl 
who helped the boy, blamed ~he man, who the girl blamed 
who the boy hit, blamed the man. who helped ~he girl 
who the boy hit, blamed the man, who ~he girl blamed 
who helped the girl, blamed the man 
who helped the girl, who blamed the boy, blamed the man 
who helped the girl, who the boy hit, blamed the man 
who the boy hit, blamed the man 
who the boy, who hit the giml, hit, blamed %he man 
who the boy, who the girl blamed, hit, blamed the man _ 

[ h e l p e d  Agent:  mini,woman 
I Pat ient :  bo y,  g i r l  

I h i t  Agent:  man,boy 
Pat ient :  ~oman, g i r l  

b l amed  Agent:  w o m a n , g i r l  
I Pat ient :  man,boy 
t 

Table 1: Sentence  templates .  Table 2: Restr ict ions .  
There are 3 different verbs, with 2 possible agents and patients each (table 2). These words are used to generate sentences 
with the 17 different sentence templates (table 1). The same noun cannot occur in two places in the same sentence. An 
example sentence for each template is given, together with the number of different sentences the template generates. 

Act. parser 
Sentence parser 
Sentence gener(simple) 
--~ Act generator 
Sentence gener(clauses) 
--~ Act generator 

100 ] 100 .027 
93 ]  86 .083 

100 I 96 .047 
100] 98 .039 

98 I 87 .071 
_ .06__A0 

Table 3: Pe r fo rmance .  The first column indicates the 
percentage of correct words out of all output words. The 
second column indicates the percentage of output units 
which were within 0.15 of the correct value, and the last 
column shows the average error per output unit. 

The four networks were trained separately and si- 
multaneously with compatible I / O  data.  This means 
that  the output  patterns,  which are more or less in- 
correct during training, were not directly fed into the 
next network. They were replaced by the correct pat~ 
terns, obtained by concatenating the current word 
representations in the lexicon. The word representa- 
tions consisted of 12 units, the hidden layers of the 
act networks of 25 units, and the hidden layers of 
the sentence networks of 75 traits. The system was 
trained for the first 100 epochs with 0.1 learning rate, 
then 25 epochs with 0.05 and another 25 epochs with 
0.025. The training process took about  one hour on 
a Cray X-MP/48.  

3°2 R e s u R s  

The performance of the system was tested with the 
same set of sentences as used in the training. Table 3 
show the performance figures for each network. In 
the output  text, the system gets approximately 97% 
of the words (and punctuation) correct. 

Even when the networks arc connected in a chain 
(output of one network feeding the input of the next), 
the errors do not cumulate in the chain. The noise 
in the input is efficiently filtered out, and each net- 
work performs approximately at the same level. The 
figures for the sentence parser are somewhat  lower 
because it generates expectations for the second aim 
third acts. For some one and two act sentences these 

patterns remain active after the whole sentence has 
been read in. For example,  after reading The woman 
blamed the  man the network generates an expecta- 
tion for a relative clause at tached to man. The act 
generator network learns not to output  the expecta- 
tions, but they are counted as errors in the perfor- 
mance figures for the sentence generator. 

4 D i s c u s s i o n  

It  is interesting to speculate how the model would 
map  onto human sentence processing. The act parser 
network models the lowest level of processing. As 
each act fragment  is read in, a surface semantic in- 
terpretation of it is immediately formed in terms of 
case roles. Each act fragment  is parsed independently 
from others. A higher-level process (the sentence 
parser) keeps track of the recursive relations of tile 
act fragments and combines them into complete rep- 
resentations. It  also ties the different acts together by 
determining the referents of the relative pronouns. 

The acts are stored in the memory  as separate facts, 
without explicit high-level structure. The structure is 
represented in the facts themself, e.g. two acts have 
the same agent, the agent of one act is the patient of 
another etc. Sentences with relative clauses can be 
produced from this unstructured internal representa- 
tion. 

In other words, the recursive structure is a prop- 
erty of the language, not the information itself. Inter- 
nally, the information can be represented in a parallel, 
canonical form, which makes all information directly 
accessible. In communication through narrow chan- 
nels, i.e. in language, it is necessary to transform 
the knowledge into a sequential form [12]. Parallel 
dependencies in the knowledge are then coded with 
recursion. 

Generating output  is seen as a task separate from 
parsing. Sentence generation is performed by a differ- 
ent module and learned separately. The same module 
can learn to paraphrase the stone internal represen- 
tation in different ways, e.g. as a single sentence con-- 
sisting of relative clauses, or as a sequence of several 
simple sentences. Wha t  actually gets generated de-- 
pends on the connection weights of this module. 
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It would be possible to add a higher-level decision- 
making network to the system, which controls the 
connection weight values in the sentence generator 
network through multiplicative connections [14]. A 
decision about the style, detail etc. of the paraphrase 
would be made by this module, and its output  would 
assign the appropriate function to the sentence gen- 
erator. 

The model exhibits certain features of hu- 
man performance. As recursion gets deeper, 
the sentence networks have to keep more in- 
formation in their sequence memories, and the 
performance degrades. Moreover, tail recursion 
(e.g. The woman blamed the man, who hit the 
girl, ~ho blamed the boy) is easier than relative 
clauses in the middle of the sentence (e.g. The 
woman, who the boy, who the girl blamed, hit, 
blamed the man), because the latter case involves 
more steps in the sequence, taxing the memory ca- 
pacity more. Note that in symbolic modeling, the 
depth or the type of the recursion makes absolutely 
no difference. 

The scale-up prospects of the architecture seem 
fairly good. The simple data  used in the experiments 
did not come close to exhausting the processing power 
of the system. Larger vocabulary, more case roles 
and sentences consisting with more acts could well 
be processed. It seems possible to represent a wide 
range of acts by their case-role assignments. Com- 
plex attributes, such as PPs, can be represented as 
additional relative clauses (e.g. The man wi th  the  
hat... --+ The man, who has the hat...). 

Currently, the system depends on commas to sep- 
arate the clause fragments. This is not a very seri- 
ous limitation, as segmenting could be based other 
markers such as the relative pronouns. A more fun- 
damental limitation, characteristic to PDP systems 
in general, is that the system needs to be trained 
with a good statistical sample of the input /output  
space. It does not have an abstract representation 
of the clause structure, and it cannot generalize into 
sentence structures it has not seen before. 

As sentences become more complex, a mechanism 
for maintaining unique identities for the words is 
needed. For example, in representing The man, who 
helped the boy, blamed the man, who hit the girl 
it is crucial to indicate that the man-who-helped is 
the same as the man-who-blamed, but different from 
the man-who-hit. A possible technique for doing this 
has been proposed in [12]. The representation of the 
word could consist of two parts: the content part, 
which is developed by FGREP and codes the pro- 
cessing properties of the word, and an ID part, which 
is unique for each separate instance of the word. The 
ID approximates sensory grounding of the word, and 
allows us to tag the different instances and keep them 
separate. 

5 C o n c l u s i o n  

Dividing the task of parsing and generating sentences 
with complex clause structure into hierarchical sub- 
tasks makes the task tractable with distributed neu- 

ral networks. The scale-up prospects of the approach 
into larger vocabulary and more complex sentences 
seem fairly good. The main drawback is that  the sys- 
tem does not develop an abstract representation of 
recursive structures, but must be exposed to exam- 
ples of all possibilities. The content of the sentences 
can be represented internally in canonical form as a 
collection of simple acts, without explicit structure. 
The knowledge for generating different linguistic ex- 
pressions of the same content resides in the generating 
modules. 
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