
A P D P A R C H I T E C T U R E F O R P R O C E S S I N G S E N T E N C E S W I T H

R E L A T I V E C L A U S E S *

R i s t o M i i k k u l a i n e n

Ar t i f i c i a l I n t e l l i g e n c e L a b o r a t o r y ~ C o m p u t e r Sc ience D c p a r t m e n t
U n i v e r s i t y o f Ca l i fo rn i a , Los Ange le s , C A 90024

r i s t o @ e s . u c l a . e d u

A b s t r a c t

A modular parallel distributed processing architec-
ture for parsing, representing and paraphrasing sen-
tences with multiple hierarchical relative clauses is
presented. A lowel-level network reads the segments
of the sentence word by word into partially specified
case-role representations of the acts. A higher-level
network combines these representations into a list of
complete act representations. This internal represen-
tation stores the information conveyed by the sen-
tence independent of its linguistic form. The infor-
mation can be output in natural language in different
form or style, e,g. as a sequence of simple sentences or
as a complex sentence consisting of relative clauses.
Generating output is independent from parsing, and
what actually gets generated depends on the training
of the generator modules.

1 I n t r o d u c t i o n

Parsing a sentence means reading the input text into
an internal representation, which makes the relations
of the constituents explicit. In symbolic parsing, the
result is usually a semantic network structure, e.g.
a conceptual dependency representation [17; 3], or
a syntactic parse tree augmented with semantic re-
strictions [13; 9]. The advantage of this approach
is that sentences with arbitrary complexity can be
parsed and represented. IIowever, processing knowl-
edge must be hand-coded with specific examples in
mind. Rules for expectations, defaults and general-
izations must be explicitly programmed.

The localist connectionist models [2; 20; 5; 1; 19; 7]
provide more general mechanisms for inferencing and
give a more plausible account of the parsing process
in terms of human performance, ltowever, these net-
works need to be carefiflly crafted for each example.

The main advantage of the distributed connec-
tionist approach [8; 18; 12] is that processing is
learned from examples. Expectations about unspec-
ified constituents arise automatically from the pro-
cessing mechanism, and generalizations into new in-
puts result automatically from the representations.
Any statistical regularity in the training examples
is automatically utilized in making inferences. The
result in distributed parsing at the sentence level is

*This research was supported in part by a grant from
the ITA Foundation, and in part by grants from the
Academy of Finland, the Emil Aaltonen Foundation, the
l;bundation Ibr the Advancement of Technology, and the
Alfred Kordelin Foundation (Finland). The simulations
were carried out on the Cray X-MP/48 at the San Diego
Supereomputer Center.

e.g. an assembly-based case-role representation of the
sentence [8; 10]. The output layer of the network is
divided into partitions, each representing a case role,
and distributed activity patterns in the assemblies in-
dicate the words filling these roles.

Representing complex structures is problematic in
the distributed approach [6; 15]. The proposed sen-
tcncc processing architectures can only deal with sim-
ple, straightforward sentences. Case-role analysis is
feasible only when the sentences consist of single
acts, so that unique case role can be assigned for
each constituent. The approach can be extended and
roles reserved for attributes of the constituents also.
However, sentences with relative clauses remain in-
tractable.

A hierachical PDP architecture for parsing, repre-
senting and paraphrasing sentences with multiple hi-
erarchical relative clauses is described in this paper.
Each relative clause is itself an act, and has its own
case-role representation. The whole sentence is rep-
resented as a collection of these acts. The relations
of the acts are implicit in their content, rather than
explicit in the structure of the representation. The
original eoraplex hierarchical sentence, as well as a
simplified paraphrase of it, can be produced from the
list of the act representations.

2 S y s t e m a r c h i t e c t u r e

2.1 Ove rv i ew

The system consists of four hierarchically organized
subnetworks (figure 1). The act parser reads the in-
put words one at a time, and forms a stationary case-
role representation for each act fragment (defined as
part of sentence separated by commas). The sen-
tence parser reads these case-role representations one
at a time, and forms a stationary representation of
the whole sentence as ~ts output. This is the internal
representation of the sentence.

The sentence generator takes the internal represen-
tation as its input, and produces a sequence of case-
role representations of the act fragments as its out-
put. These are fed one at a time to the act generator,
which generates the sequence of words for each act
fragment. During performance, the four nctworks are
connected in a chain, the output of one network feed-
ing the input of another (figure 1). During training,
each network is trained separately with compatible
I /O data (figure 6).

The input /output of each network is composed of
distributed representations of words. These repre-
sentations are stored in a central lexicon (figure 2),

1 201

Input we

Case-re
of the

,rds (text)
r. rep .

l ie reps
acts.

Output words (text)

[~t~iiii[l:!~!:':"~i!ii!~i~!~!ii~!~i~i~iii~Jiii|" Words p~

Case-rio tops
of th I acts

C o m p l e t e s e n t e n c e re..~iiiii~i~i~i!i!i 1

Figure 1: Overview of the model . The model consists
of parsing and generating subsystems, and a central lexi-
con of distributed word representations. Each subsystem
consists of two hierarchically organized modules, with the
case-role assignment of the act as an intermediate repre-
sentation.

lii

Now representations

|:~:,:::;.. :T:;:;:~ :T:,:,:;:;: ..~:..~:~:~: .::] Input layer:
, ~='~" ~ Modify representations

H l d d e n ~ U e n c e memory

. Output layer:
l~ : ; : i " . ' : '~ :m Form error signal

T e a c h i n g pattern

Figure 3: Recurrent FGREP-modu le . At the end of
each backpropagation cycle, the current input represen-
tations are modified at the input layer according to the
error signal. The new representations are loaded back to
the lexicon, replacing the old ones.

m a n = li:::i:il$1: i : i : : ~ | i : i : i ;] ~ :] ~ , ,
woman = ~ : : .::::::

hit = ,.,',,'~; • ~,~- ':i:
blamed = [i~ii ! 11 i!i~l I~!i!i~{[i!i~li~i!ii~)~!~!:'1~1
t h e - - ! ~ : ~ :] [:i:i~i I ~ i ~ : i i ! l i : i : ! ~ l

etc.

Figure 2: Lexicon. The lexicon is an associative mem-
ory, associating the text form of each word with its dis-
tributed representation. The representation is a vector of
real numbers between 0 and 1, shown as grey-scale values
from white to black.

and all networks use the same representations. Each
network is a Recurrent FGREP module, i.e. a three~
layer backpropagation network with sequential input
or output, which develops the word representations
automatically while it is learning the processing task.

2.2 R e c u r r e n t F G R E P - A b u i l d i n g block

The FGREP mechanism (Forming Global Represen-
tations with Extended backPropagation) [10; 12] is
based on a basic three-layer backward error propa-
gation network (figure 3). The network learns the
processing task by adapting the connection weights
according to the standard backpropagation equations
[16, pages 327-329]. At the same time, representa-
tions for the input data are developed at the input
layer according to the error signal extended to the in-
put layer. Input and output layers are divided into as-
semblies and several items are represented and mod-
ified simultaneously.

The representations are stored in an external lex-
icon network. A routing network forms each input
pattern and the corresponding teaching pattern by
concatenating the lexicon entries of the input and
teaching items. Thus the same representation for
each item is used in different parts of the backpropa-
gation network, both in the input and in the output.

The process begins with a random lexicon contain-
ing no pro-encoded information. During the course of
learning, the representations adapt to the regularities
of the task. It turns out that single units in the result-
ing representation do not necessarily have a clear in-
terpretation. The representation does not implement

a classification of the item along identifiable features.
In the most general case, the representations are sim-
ply profiles of continuous activity values over a set
of processing units. This representation pattern as a
whole is meaningful and can bc claimed to code the
meaning of that word. The representations for words
which are used in similar ways become similar.

Recurrent FGREP [11; 12] is an extension of the
basic FGREP architecture to sequentia[input and
output, based on [4]. A copy of the hidden layer at
time step t is saved and used along with the actual in-
put at step t + l as input to the hidden layer (figure 3).
The previous hidden layer serves as a sequence mem-
ory, essentially remembering where in the sequence
the system currently is and what has occurred before.
During learning, the weights from the previous hid-
den layer to the hidden layer proper are modified as
usual according to the backpropagation mechanism.

The Recurrent FGREP module can be used for
reading a sequence of input items into a stationary
output representation, or for generating an output
sequence from a stationary input. In a sequential in-
put network, the actual input changes at each time
step, while the teaching pattern stays the same. The
network is forming a stationary representation of the
sequence. In a sequential output network, the actual
input is stationary, but the teaching pattern changes
at each step. The network is producing a sequential
interpretation of its input. The error is backpropa-
gated and weights are changed at each step. Both
types of Recurrent FGREP networks dew;lop repre-
sentations in their input layers.

2.3 Connect ing the bui lding blocks in the
p e r f o r m a n c e phase

Let us present the system with the following
sentence: The woman, who he lped the g i r l , who
the boy hit, blamed the man.

The task of the act parser network (figure 4) is
to form a stationary case-role representation for each
part of the sentence, for complete acts (who helped
the g i r l and who the boy h i t) as well as for act
fragments (the woman and blamed the man). There
is an assembly of units at the output layer of this net-

2 0 2 2

IN: Sequence of input word representations

c
T

P
A
R
S
E
R

OI33": Case-roDe representation of the act fragment

S ~N: Sequence of carla-rata rspresenta!i.ons of the act fragments
E [Agent] Act I Patient

T ~ N blara~d man

p trr~qllllllllIIT[l
A llllllllllmllmllll]llllll|Hlllllll~llllllllllIllllllHgll~
R ~.~7--
s Ill lllillflllillllllJlllllllll|l] ~II~ilI'II IIII H lJlHlm H I ~

n L ~ 2 2 J . A,=tt IPe,ontt I Agen, R I A0,~ 1"'."'"'4 hgen,31 ~A ~3 IP.,ient3J
OUT: Stationary list of complete case-role representations of the ac~s

Figure 4: Ne tworks pars ing the sentence.
Snapshot of the simulation after the whole sen-
tence The uoman, who helped Che girl, who Che boy
h i t , blamed the man has been read in. The output of
the act parser shows the case-role representation of the
last act fragment, blamed the man. The output of the
sentence parser displays the result of the parse, the inter-
nal ;eprescntation of the whole sentence.

OUr: Sequence of output word representations

c
T

G
E
N
E
R

IN: Case-role representation of the act fragment

OUT: Soquonc~ at' cass-role representations of the act fragments

E
N
T

~ ' i l liitiltt~t Hitillitlltl't'tl II'h flt]tt u tit I it u t ~ w,'mt I l i l l l l l l l l l l l /
. l l l l l l l l l t t l l l lEI l i l l f lnl l l l l l l l l l l l l l l~Jl t l l l l l l l l l l l l~ G

ill]!~lt:,!lllllllli ia~-BlolHttl~lill[Hilllnllttt~'~lllllllll[li[illliiN
[/_Agentl_.h_gctl I_Patientl~ Agent2_[Act2 i PatlentL:~ Agent3,~, l, Act3 ~Patient3., ~

IN: Stationary fist of complete case-r0te representations of the acts

F igu re 5: N e t w o r k s g e n e r a t i n g t h e sen tence . The
system is in the beginning of generating The woman, who
helped t he girl, who the boy hi%, blamed %he man.
The sentence generator has produced the case-role rep-
resentation of the first act fragment, The woman, and the
act generator has output the first word of that fragment.
The previous hidden layers are blank during the first step.

work for each case role. Each assembly is to be filled
with the distributed activity pat tern of the word that
fills that role. For example, the correct representation
for who t h e boy h i t is agent=boy, a c t = h i t and p ~
tientwho.

As each word is read, its distributed representa-
tion is obtained from the lexicon; and loaded into the
input layer of the act parser network. The activity
propagates through the network, and a distributed
pat tern forms at the output layer, indicating expecta-
tions about possible act representations at that point.
The activity pat tern at the hidden layer is copied
to the previous-hidden-layer assembly, and the next
word is loaded into the input layer. Each successive
word narrows down the possible interpretations, and
the case-role representation of a specific act gradually
forms at the output.

After reading t h e and woman, the network knows
to generate the pat tern for woman in the agent assem-
bly, because in our training examples, the first noun
is always the agent. The pat tern in the act assembly
is an average of helped and blamed, the two possible
acts for woman in our data. The pat tern in the pa-
tient assembly is an average of all patients for he lped
and blamed. Reading a verb next would establish the
appropriate representation in the act assembly, and
narrow down the possibilities in the patient assembly.

However, the network reads a comma next, which
means that the top-level act is interrupted by the
relative clause (commas separate clause fragments in
our data; a way to segment clauses without commas
is outlined in section 4). The network is trained to
clear the expectations in the unspecified assemblies,

i.e. to form an incomplete case-role interpretation of
the top-level act so far. This representation is passed
on as the first input to the sentence parser module.

The act parser then goes on to parse the rel-
ative clause who helped the girl independently
from what it read before, i.e. the pat tern in its
previous-hidden-layer assembly is cleared before read-
ing who. The complete case-role representation of the
relative clause is passed on to the sentence parser
as its second input. Similarly, who t h e boy h i t is
parsed and its representation passed on to tile sen-
tence parser. The act parser then receives the rest
of the top-level act, blamed the man, wlfich is again
parsed independently, and its incomplete case-role
representation (figure 4) passed on to the sentence
parser.

The sentence parser reads the sequence of these
four case-role representations, combines the incom-
plete case-role representations into a complete rep-
resentation of the top-level act, and determines tim
referents of the who pronouns. The result is a list
of three completely specified case-role representa-
tions, lwoman blamed man I, [woman helped girl I
and J boy hit girl] (bottom of figure 4).

The list of case-role representations is the final re-
sult of the parse, the internal representation of the
sentence. It is a canonical representation with all the
structural information coded into simple acts. All in-
formation is accessible in parallel, and can be directly
used for further processing.

The output side of the system (figure 5) d e m o n
strates how the inibrmation in the internM represen--
ration can be output in different ways in natural Inn-

3 203

guage. The output process is basically the reverse
of the reading process. The sentence generator net-
work takes the internal representation as its input
and produces the case-role representation of the first
act fragment, l woman (b lank) (blank) I as its out-
put (figure 5). This is fed to the act generator, which
generates the distributed representation of the , the
first word of the act fragment. The representation in
the lexicon closest to the output pattern is obtained,
and the text form of that entry is put into the stream
of output text.

The hidden layer pattern of the word generator is
copied into its previous-hidden-layer assembly, and
the next word is output. The commas segment the
output as well. As soon as a comma is output, the
sentence generator network is allowed to generate the
case-role representation of the next act fragment.

The sentence generator can produce different out-
put versions from the same internal representation,
depending on its training. (1) The acts can be out-
put sequentially one at a time as separate simple sen-
tences, or (2) a single output sentence with a complex
relative clause structure can be generated. The point
is that it does not mat ter how the internal represen-
tation is arrived at, i.e. whether it was read in as a
single sentence, as several sentences, or maybe pro-
duced as a result of a reasoning process. Generating
output sentences is independent from parsing, and the
form and style of the output depends on the processing
knowledge of the sentence generator.

In case (1) the sentence generator produces
the case-role representations I woman blamed man I,
Iwomaxt helped girll and [boy hit girll, and
the act generator generates The woman blamed t h e
man, The woman helped the girl, The boy hit the
g i r l . In case (2) the sentence generator produces the
sequence l woman (blank) (blank)l, I who helped
girl I, [boy hit who [, [(blank) blamed man [,
and the output text reads The woman, who helped
the girl, who the boy hit, blamed the man.

2.4 Training phase

A good advantage of the modular architecture can
be made in training the networks. The tasks of the
four networks are separable, and they can be trained
separately as long as compatible I /O material is used.
The networks must be trained simultaneously, so that
they are always using and developing the same rep-
resentations (figure 6).

The lexicon ties the separated tasks together. Each
network modifies the representations to improve its
performance in its own task. The pressure from other
networks modifies the representations also, and they
evolve slightly differently than would be the most ef-
ficient for each network independently. The networks
compensate by adapting their weights, so that in the
end the representations and the weights of all net-
works are in harmony. The requirements of the differ-
ent tasks are combined, and the final representations
reflect the total use of the words.

If the training is successful, the output patterns
produced by one network are exactly what the next

s
E
R

S
E
N
T

P
A
R
S
E
R

Figure 6: Training configuration.

A
C
T

G
E
N
E
R

S
E
N
T

G
E
N
E
R

Each network
is truined separately and simultaneously, developing the
same lexicon.

network learned to process as its input. But even
if the learning is less than complete, the networks
perform well together. Erroneous output patterns
are noisy input to the next network, and neural net-
works in general tolerate, even filter out noise very
efficiently.

3 Experiments

3.1 Training data

The system was trained with sentences generated us-
ing the 17 templates shown in table 1. The acts con-
sisted of three case-roles: agent, the act (i.e. the
verb), and patient. A relative clause could be at-
tached to the agent or to the patient, and these could
fill the role of the agent or the patient in the relative
clause.

Certain semantic restrictions were imposed on the
templates to obtain more meaningful sentences. The
restrictions also create enough differences in the us-
age of the words, so that their representations do not
become identical (see [12]). A verb could have only
specified nouns as its agent and patient, listed in ta-
ble 2. Sentences with two instances of the same noun
were also excluded. With these restrictions, the tem-
plates generate a total of 388 sentences. All sentences
were used to train the system. Generalization was
not studied in these experiments (for a discussion of
the generalization capabilities of FGREP systems see
[121).

Two different versions of the sentence generator
were trained: one to produce the output as a sequence
of simple sentences, and another to produce a single
sentence with hierarchical relative clauses~ i.e. to re-
produce the input sentence. The act generator was
trained only with the act fragments from the complex
sentences. Because these contain the simple acts, the
act generator network effectively learned to process
the ouput of the first version of the sentence genera-
tor as well.

204 4

" I ' i ~ ~ i f f 6 - sentence
--~FTq'TTh-~wb'WaK Wl~m~---ff-gh~ man

2. 24 The woman
3. 20 The woman
~. 24 The woman
5. 20 The woman
6. 28 The woman
7. 24 The woman
8. 24 The woman
9. 28 The woman

lO. 20 The ~oman
11. 24 The ~oman
12, 2~ The woman
13. 24 The woman
14. 28 The woman
i[~. 20 The womml
16. 24 The woman
17. 20 The woman

blamed the man, who hit the girl
blamed the man, who hit the girl, who blamed the boy
blamed the man, who hit the girl, .ho the boy hi~
blamed the mml, who the girl blamed
blamed the man, who the girl, who blamed the boy, blamed
blamed the man, who the girl, who the boy hit, blamed
who helped the boy, blamed the man, who helped the girl
who helped the boy, blamed ~he man, who the girl blamed
who the boy hit, blamed the man. who helped ~he girl
who the boy hit, blamed the man, who ~he girl blamed
who helped the girl, blamed the man
who helped the girl, who blamed the boy, blamed the man
who helped the girl, who the boy hit, blamed the man
who the boy hit, blamed the man
who the boy, who hit the giml, hit, blamed %he man
who the boy, who the girl blamed, hit, blamed the man _

[h e l p e d Agent: mini,woman
I Pat ient : bo y, g i r l

I h i t Agent: man,boy
Pat ient : ~oman, g i r l

b l amed Agent: w o m a n , g i r l
I Pat ient : man,boy
t

Table 1: Sentence templates . Table 2: Restr ict ions .
There are 3 different verbs, with 2 possible agents and patients each (table 2). These words are used to generate sentences
with the 17 different sentence templates (table 1). The same noun cannot occur in two places in the same sentence. An
example sentence for each template is given, together with the number of different sentences the template generates.

Act. parser
Sentence parser
Sentence gener(simple)
--~ Act generator
Sentence gener(clauses)
--~ Act generator

100] 100 .027
93] 86 .083

100 I 96 .047
100] 98 .039

98 I 87 .071
_ .06__A0

Table 3: Pe r fo rmance . The first column indicates the
percentage of correct words out of all output words. The
second column indicates the percentage of output units
which were within 0.15 of the correct value, and the last
column shows the average error per output unit.

The four networks were trained separately and si-
multaneously with compatible I / O data. This means
that the output patterns, which are more or less in-
correct during training, were not directly fed into the
next network. They were replaced by the correct pat~
terns, obtained by concatenating the current word
representations in the lexicon. The word representa-
tions consisted of 12 units, the hidden layers of the
act networks of 25 units, and the hidden layers of
the sentence networks of 75 traits. The system was
trained for the first 100 epochs with 0.1 learning rate,
then 25 epochs with 0.05 and another 25 epochs with
0.025. The training process took about one hour on
a Cray X-MP/48.

3°2 R e s u R s

The performance of the system was tested with the
same set of sentences as used in the training. Table 3
show the performance figures for each network. In
the output text, the system gets approximately 97%
of the words (and punctuation) correct.

Even when the networks arc connected in a chain
(output of one network feeding the input of the next),
the errors do not cumulate in the chain. The noise
in the input is efficiently filtered out, and each net-
work performs approximately at the same level. The
figures for the sentence parser are somewhat lower
because it generates expectations for the second aim
third acts. For some one and two act sentences these

patterns remain active after the whole sentence has
been read in. For example, after reading The woman
blamed the man the network generates an expecta-
tion for a relative clause at tached to man. The act
generator network learns not to output the expecta-
tions, but they are counted as errors in the perfor-
mance figures for the sentence generator.

4 D i s c u s s i o n

It is interesting to speculate how the model would
map onto human sentence processing. The act parser
network models the lowest level of processing. As
each act fragment is read in, a surface semantic in-
terpretation of it is immediately formed in terms of
case roles. Each act fragment is parsed independently
from others. A higher-level process (the sentence
parser) keeps track of the recursive relations of tile
act fragments and combines them into complete rep-
resentations. It also ties the different acts together by
determining the referents of the relative pronouns.

The acts are stored in the memory as separate facts,
without explicit high-level structure. The structure is
represented in the facts themself, e.g. two acts have
the same agent, the agent of one act is the patient of
another etc. Sentences with relative clauses can be
produced from this unstructured internal representa-
tion.

In other words, the recursive structure is a prop-
erty of the language, not the information itself. Inter-
nally, the information can be represented in a parallel,
canonical form, which makes all information directly
accessible. In communication through narrow chan-
nels, i.e. in language, it is necessary to transform
the knowledge into a sequential form [12]. Parallel
dependencies in the knowledge are then coded with
recursion.

Generating output is seen as a task separate from
parsing. Sentence generation is performed by a differ-
ent module and learned separately. The same module
can learn to paraphrase the stone internal represen-
tation in different ways, e.g. as a single sentence con--
sisting of relative clauses, or as a sequence of several
simple sentences. Wha t actually gets generated de--
pends on the connection weights of this module.

5 205

It would be possible to add a higher-level decision-
making network to the system, which controls the
connection weight values in the sentence generator
network through multiplicative connections [14]. A
decision about the style, detail etc. of the paraphrase
would be made by this module, and its output would
assign the appropriate function to the sentence gen-
erator.

The model exhibits certain features of hu-
man performance. As recursion gets deeper,
the sentence networks have to keep more in-
formation in their sequence memories, and the
performance degrades. Moreover, tail recursion
(e.g. The woman blamed the man, who hit the
girl, ~ho blamed the boy) is easier than relative
clauses in the middle of the sentence (e.g. The
woman, who the boy, who the girl blamed, hit,
blamed the man), because the latter case involves
more steps in the sequence, taxing the memory ca-
pacity more. Note that in symbolic modeling, the
depth or the type of the recursion makes absolutely
no difference.

The scale-up prospects of the architecture seem
fairly good. The simple data used in the experiments
did not come close to exhausting the processing power
of the system. Larger vocabulary, more case roles
and sentences consisting with more acts could well
be processed. It seems possible to represent a wide
range of acts by their case-role assignments. Com-
plex attributes, such as PPs, can be represented as
additional relative clauses (e.g. The man wi th the
hat... --+ The man, who has the hat...).

Currently, the system depends on commas to sep-
arate the clause fragments. This is not a very seri-
ous limitation, as segmenting could be based other
markers such as the relative pronouns. A more fun-
damental limitation, characteristic to PDP systems
in general, is that the system needs to be trained
with a good statistical sample of the input /output
space. It does not have an abstract representation
of the clause structure, and it cannot generalize into
sentence structures it has not seen before.

As sentences become more complex, a mechanism
for maintaining unique identities for the words is
needed. For example, in representing The man, who
helped the boy, blamed the man, who hit the girl
it is crucial to indicate that the man-who-helped is
the same as the man-who-blamed, but different from
the man-who-hit. A possible technique for doing this
has been proposed in [12]. The representation of the
word could consist of two parts: the content part,
which is developed by FGREP and codes the pro-
cessing properties of the word, and an ID part, which
is unique for each separate instance of the word. The
ID approximates sensory grounding of the word, and
allows us to tag the different instances and keep them
separate.

5 C o n c l u s i o n

Dividing the task of parsing and generating sentences
with complex clause structure into hierarchical sub-
tasks makes the task tractable with distributed neu-

ral networks. The scale-up prospects of the approach
into larger vocabulary and more complex sentences
seem fairly good. The main drawback is that the sys-
tem does not develop an abstract representation of
recursive structures, but must be exposed to exam-
ples of all possibilities. The content of the sentences
can be represented internally in canonical form as a
collection of simple acts, without explicit structure.
The knowledge for generating different linguistic ex-
pressions of the same content resides in the generating
modules.

R e f e r e n c e s
[1] E. Charniak. A neat theory of marker passing. In

Proceedings of AAA[-86,, Kaufmann, 1986.
[2] G. W. Cottrell and S. L. Small. A connection-

ist scheme for modelling word sense disambiguation.
Cognition and Brain Theory, 6(1):89-120, 1983.

[3] M. G. Dyer. In-Depth Understanding. MIT Press,
1983.

[4] J. L. Elman. Finding Structure in Time. 'Feehni-
cal Report 8801, Center for Research in Language,
UCSD, 1988.

[5] R. Granger, K. Eiselt, and J. Holbrook. Parsing with
parallelism. In Kolodner and Riesbeck, eds, Experi-
ence, Memory and Reasoning, LEA, 1986.

[6] G. E. Hinton. Representing part-whole hierarchies in
connectionist networks. In Proceedings of CogSei.88.
LEA, 1988.

[7] T. E. Lunge and M. G. Dyer. High-level inferene-
ing in a connectionist network. Connection Science,
1(2), 1989.

[8] J. L. McClelland and A. H. Kawamoto. Mechanisms
of sentence processing. In McClelland and Rumel-
hart, eds, Parallel Distributed Processing, MIT Press,
1986.

[9] M. C. McCord: Using slots and ruodifiers in logic
grammars for natural language. Artificial httelli-
gence, 18:327-367, 1982.

[10] R. Miikkulalnen and M. G. Dyer. Encoding in-
put/output representations in connectionist cogni-
tive systems. In Touretzky, Hinton, ~ Sejnowski,
eds, Proceedings of the 1988 Connectionist Models
Summer School, Kaufmann, 1989.

[11] R. Miikkulainen and M. G. Dyer. A modular neu-
ral network architecture for sequential paraphrasing
of script-based stories. In P,vceedings of IJCNN.89,
1989.

[12] R. Miikkulainen and M. G. Dyer. Natural Language
Processing with Modular Neural Networks and Dis-
tributed Lexicon. Technical Report UCLA-AL90-02,
Computer Science Department, UCLA, 1990.

[13] F. C. N. Pereira and D. H. Warren. Definite clause
grammars for language analysis. Artificial h~telli-
gence, 13:231-278, 1980.

[14] d. Pollack. Cascaded back-propagation on dynamic
eonnectionist networks. In Proceedings of CogSci-87,
LEA, 1987.

[15] J. Pollack. Recursive auto-associative memory. In
Proceedings of CogSci.88, LEA, 1988.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propaga-
tion. In Rumelhart and McClelland, eds, Parallel
Distributed Processing, MIT Press, 1986.

[17] R. Sehank and R. Abelson. Scripts, Plans, Goals,
and Understanding. LEA, 1977.

[18] M. F. St. John and J. L. McClelland. Learning and
applying contextual constraints in sentence compre-
hension. In Proceedings of CogSci-88, LEA, 1988.

[19] R. A. Sumida, M. G. Dyer, and M. Flowers. Integrat-
ing market passing and eonnectionism for handling
conceptual and structural ambiguities. In Proceed-
ings el CogSei-88, LEA, 1988.

[20] D. L. Waltz and J. B. Pollack. Massively parallel
parsing. Cognitive Science, 9:51-74, 1985.

206 6

