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Abstract. Lexical Grammars are a class of unification grammars which share a fixed rule component,
for which there exists a simple left-recursion elimination transformation. The parsing and generation
programs arc seen as two dual non-left-recursive versions of the original grammar, and are implemented
through a standard top-down Prolog interpreter. Formal criteria for termination are given as conditions
on lexical entrics: during parsing as well as during generation the processing of a lexical entry consumes
some amount of a guide; the guide used for parsing is a list of words remaining to be analyzed, while the
guide for generation is a list of the semantics of constituents waiting to be generated.

1. Introduction

Svmmetry hetween parsing and
generation. There is a natural appeal to the attempt
to characterize parsing and gencration in a symmetrical
way. This is because the staiement of the problem of
reversibility is nawurally symmetrical: parsing is
concerned with recovering semantic content from
phonological content, generation phonological content
from semantic content. [t has been noted by scveral
researchers ([S88], [N89], [SNMPg9]) that certain
problems (left-recursion) and techniques (left-corner
processing. linking. Earley deduction) encountered in
the parsing domuin have correlates in the generation
domain. It is then notural 1o iy and see parsing and
gseneration as instances of a single paradigm; [S88] and
IDISS, DIY0} are attempts in this direction, but are
hindered by the fact that there is no obvious correlate
in generation of the string indexing techniques so
prominent in parsing (string indices in chart parsing,
ditferential lists in DCG parsing).

(ruides. What we propose here is to take a step
back and sbstract the notion of string index to that of a
Qiide. This general notion will apply to both parsing
aud generation, but it will be instantiated differently in
the two modes. The purpose of a guide is to orient the
proof  procedure, specific to either parsing or
generation, in such a way thatt (i) the guide is
initialized as a direct function of the input (the string
in parsing, the semantics 1 generation), (ii) the current
state of the guide strongly constrains the next access to
the lexicon, (ii1) after lexical access, the size of the
guide sirictly decreases (guide-consumption condition,
see section 3). Once a guide ts specified, the generation
problem (respectively the parsing problem!) then
reduces to a probleny formally similar to the problem of
parsing with a DCG [PWS80] containing no cmpty
productions? (ie rules whose right-hand side is the
empty string {]).

Several parsing techniques can be applied to this
problem; we will be concerned here with a top-down
parsing approach directly implementable through a
standard Prolog interpreter. This approach relies on a
left-recursion-elimination transformation for a certain
class of definite clause programs (see section 3).

The ability to specify guides, for parsing or for
generation, depends on  certain  compositionality
hypotheses which the underlying grammar has to
satisfy.

U This half of the statement may seem tautological, but it is not: see the attempt
at a reinterpretation of left extraposition in terms of guides in section 5.

2 Aso called nafi ruies |H7R).

90

Hypotheses on  compositionality. The
parsing and generation problems can be rendered
tractable only if certain hypotheses are made
concerning the composition of linguistic structures.
Thus generation can be arduous if the semantics
associated with the composition of two structures is the
unrestricted lambda-application? of the first structure’s
semantics on the second structure's semantics: this is
because knowledge of the mother's semantics does not
constrain in a usable way the semantics of the
daughters.* On the contrarv, parsing is greatly
simplified if the string associated with the composition
of two structures is the concatenation of the strings
assoctated with each structure: one can then use string
indexing to orient and control the progression of the
parsing process, as is done in DCG under the guise of
"differential lists".

Lexical Grammar. The formalism of Lexical
Grammar (LG) makes explicit certain compositionality
hypotheses which ensure the existence of guides for
parsing as well as for generation.

A Lexical Grammar has two parts: a (variable)
lexicon and a {fixed) rule component. The rule
component, a definite clause specification, spells out
basic tinguistic compositionality rules: (i) how a well-
formed linguistic structure A is composed from well-
formed structures B and €' (i) what are the respective
statuses of B and C (Jeft constituent vs right
constituent, syntactic head vs syntactic dependent,
semantic fread vs semantic dependent): and (iii) how the
string  (resp. semantics, subcategorization list, ...)
assoctated with A is related to the strings (resp.
semantics, subcategorization lists, ...) associated with
B and C (sec section 2).

The ability to define a guide for parsing is a
(simple) consequence of the fact that the string
associated with A is the concatenation of the strings
associated with B and €3, The ability to define a guide
for generation is a (less simple) consequence of LG's
hypotheses on subcategorization (see sections 2 and 4).

© By unresiricted lambda-application, we mean functional application
followed by rewriting to a normal form,
" In theorics favoring such an approach (such as GPSG {GKPS871), parsing
may be computationally tractable, but generation does not seem to be. These
theories can be questioned as plausible computational models, for they should
be judged on their ability to account for production behavior (generation) as
well as for understanding behavior (parsing).

A fairly standard assumption. 1 empty string realizations arc allowed. then
extraposition can still be handled. as sketched in section 5.
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Fig. 1. A symmetrical approach to parsing and
generation: paper overview

Parsing and Generation with Lexical
Grammar. Fig. | gives an overview of our approach
to parsing and generation. Let us briefly review the
main points:

— (P0Y is a definite clavse specification of the
original LG rules. It contains a purely
declarative definition of linguistic
compositionality, but is unsuitable for direct
implementation (see section 2).

-~ (P1p) (resp (Plg)) is a guided conservative
extension of (PO) for parsing (resp. for
generation); that 1s, (P1p) (resp (P1g)) is &
specification which describes the same
linguistic structures as (P0), but adds a certain
redundancy {guiding) to help constrain the
parsing (resp. generation) process. However,
these definite clause programs are not yet
adequate for direct top-down implementation,
since they are left-recursive (see section 3).

— (P1p) and (Plg) can be seen as symmetrical
instantiations of a common program schema
(P1); (P1) can be transformed into (P2), an
equivalent non-left-recursive program schema
(sce section 3).

— (P2p) (resp (P2g)) is the non-left-recursive
version of (Plp) (resp. (Plg)). Under the
guide-consumption condition, it is guaranteed
to terminate in top-down interpretation, and to
enumerate all solutions to the parsing (resp.
generation) problem (sce scciion 4),

For lack of space, theorems are stated here without
proofs; these, and more details, can be found in [D90b].

2. Lexical Grammar

Rule component The fixed rule component of
LG (see Fig. 3) describes in a gencric way the
combination of constituents. A constituent A is cither
lexically specified (second clause in the phrase
definition), or is a combination of two constituents B
and C (first clause in the phrase definition). B and C
play complementary roles along the following three
dimensions:

— combine strings : B is to the left of C in the
surface order, or conversely to the right of C.
This information is attached to each
constituent through the srring order feature.

— combine_syns 1 B is the syntactic-head and C
the syntactic-dependent, or converscly
(syn_order feature).

— combine_sems : B is the semantic-head and C
the semantic-dependent, or conversely
(sem_order feature).

Because B and C play symmetrical roles®, these
seemingly cight combinations actually reduce to four
different cases. To avoid duplicating cases, in the
definition of the phrase predicate, the symmetry has
been "broken” by arbitrarily imposing that B be the
left constituent.’

Fig. 2 gives an cxample of a derivation tree in LG,
using the lexicon of Fig. 4.

A
,//"
B e
mary C
/\\\
D .
often 3
F G
visited notre dane
A.subcat =[] Asem = C.sem
B.subcat =[] = D.sem
C.subcat = [B] = often{visit{mary,nd))
D.subcat = [E] E.sem = F.sem
E.subcat = [B] = visit{mary.nd)
F.subcat = [G,B] B.sem = mary
G.subcat =[] G.sem  =nd

Fig. 2. A derivation in LG
(heavy lines correspond to semantic-heads)

Our notion of semantic-head is a variant of that
given in [SNMP8Y], where a daughter is said to be a
scmantic-head if it shares the semantics of its mother.
The combine sems predicate is responsible for
assigning sem_head status (versus sem_dep status) 1o a
phrase, and for imposing the following constraints:

1. the sernantic-head shares its semantics with its
mother,

it. the semantic-head always subcategorizes its sister
((b) in Fig. 3),

{ii. the mother's subcategorization list is the
concatenation of the semantic-dependent list and
of the semantic-head list minus the element just
incorporated ((c) in Fig. 3).%

The subcategorization list attached to a constituent X
corresponds to constituents higher in the derivation
tree which are expected to fill semanric roles inside X.
Subcategorization lists arc percolated from the lexical
entries up the derivation tree according to iii.

6 Remark: the rales ate not DCG rules, but simply definite (or Horn) clauses

7 If line (a) in the definition of phrase were omitted. the same ses of linguistic
structures would result, but some structures would be described twice. Line
(a) is simply one means of climinating these spurious ambiguitics. The same
effeet would be produced by replacing (2) by B.sem_order = sem head or by
Boxyn_order = syn_head.

)

8 In fact, because of the constrainls imposed by combine svas (see discussion
below) one of these two lists has to be empty.



phrase(A) :- phrase(B), phrase(C), (a)
B.string_order = left,
combine(B,C,A).

phrase(A) :- term(A).

combine(B,C,A) :-
(combine_strings(B,C,A);combine_strings(C,B,A)),
(combine_syns(B,C,A);combine_syns(C,B,A)),
(combine_sems(B,C,A);combine_sems(C,B,A)).
combine_strings(B,C,A) :-
B.string_order = left, C.string_order = right,
append(B.string,C.string, A string).
combine_sems(B,C,A) :-
B.sem_order = sem_head, C.sem_order = sem_dep,
A.sem = B.sem,
B.subcat = [CIRest], (b)
append(C.subcat,Rest,A . subcat). (c)
combine_syns(B,C,A) -
B.syn_order = syn_hecad, C.syn_order = syn_dep,
A.cat = B.cat,
( B.sem_order = sem_head, C.subcat = []
% complement
; C.sem_order = sem_head, C.subcat = [ _ ).
% modifier

Fig. 3. The rules of Lexical Grammar®

Semantic-neads need not correspond to svatactic-
heads. In the case of a modifier like often, in paris, or
hidden by john, the modifier phrase, which is the
syntactic-dependenr, is the semantic-head and
semantically subcategorizes its sister: thus, in the
example of Fig. 2, the modifier phrase D semantically
subcategorizes its sister K combine _sems has then the
effect of unifying the semantics of E (visit(mary,nd)) to
the substructure X in the semantics (often(X)) attached
to D (see the lexical entry for eften in Fig. 4). This is
reminiscent of work done in categorial grammar (see for
instance [ZKCS87]), where a modifier is seen as having a
category of the form A/A. and acts as a functor on the
group it modifies.

The combine syns predicate is responsible for
assigning syn_fead status (versus syn_dep status) to a
phrase. and for ensuring the following counstraints:

i. The category cat of the syntactic-head is
transmitted to the mother. The category of a
phrase is therefore always a projection of the
category (n,v.p.a...) of some lexical item.

ii. When the syntactic-dependent is the same as the
semantic-dependent, then the syntactic-
dependent is semantically saturated (its subcat
is empty). This is the case when the syntactic-
dependent plays the syntactic role of a
complement to its syntactic-head.

iit. When the syntactic-dependent is the same as
the semantic-head, then the syntactic-
dependent's subcat contains only one
element!®, This is the case when the syntactic-
dependent plays the syntactic role ol a
modifier to its syntactic-head.

The lexicon in LG Because LGs have a
fixed rule component, all specific linguistic knowledge

9 Here, as in the sequel, we have made use of a "dot notation” for functional
access 1o the different features of a linguistic structure A; for instance, A.cat
represents the content of the cat feature in A.
10 The "external argument” of the modifier, identified with the semantic-
dependent by the semantic combination rule.
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term(T) :- T.sem = mary,
T.string = [mary],
T.cat = n, T.subcat = |].

term(T) :- T.sem = notre_dame,
T.string = [notre,dame],
T.cat = n, T.subcat = [].

term(T) :- T.sem = paris,
T.string = [paris],
T.cat = n, T.subcat = {].

term(T) :~ T.sem = die(S.sem),
T.string = [died],
T.cat = v, T.subcat = [S],
S.string_order = left,
S.cat = n, S.syn_order = syn_dep.

term(T) :- T.sem = visit(S.sem,0.sem),
T.string = [visited],
T.cat = v, T.subcat = [Q,S],
S.string_order = left, S.cat = n,
S.syn_order = syn_dep,
O.string_order = right, O.cat = n,
O.syn_order = syn_dep.

term(T) :- T.sem = in(S.sem,O.sem),
T.string = [in],
T.cat = p, T.subcat = [{0,S],
S.string_order = left, S.cat = v,
S.syn_order = syn_head,
O.string_order = right, O.cat = n,
O.syn_order = syn_dep.

term(T) :- T.sem = often(S.sem),
T.string = [often],
T.cat = adv, T.subcat = [S],
S.string_order = _, % may be left or right
S.cat = v,.S.syn_order = syn_head.

Fig. 4. Lexical entries in LG!!

is contained in the lexicon. Fig. 4 lists a few possible
lexical entries.

Consider a typical entry, for wnstance the entry for
in. This entry specifies a possible leaf T of a derivation
tree. T has the following properties:

i. T has string {in]. and is of category p
(preposition).

it. T semantically subcategorizes two phrases: O
(the object of the preposition), of category n,
and S (the "mplicit subject” of the
preposition), of category v. By the general
constraints associated with combine_sems,
this means that S and O will both have
semantic-dependent status.

iii. In the surface order, S is to the left of its
semantic-head, while O is to the right of its
semantic-head.

iv. The semantics in(S.sem,O.sem) of T is obtained
by unification from the semantics of its
subcategorized constituents S and O.

v. S is constrained to having syntactic-head status,
and O to having syntactic-dependent status.
Because of the constraints imposed by
combine_syns, this means that O will be a
syntactic complement of the preposition, and
that the prepositional phrase will be a
modifier of its "subject” §.

Idioms. The lexical apparatus allows for a direct
account of certain types of idiomatic constructions. For
instance, if the lexical entries of Fig. 5 are added to the

T kor reasons of exposition, the contribution of the tensc to the semantics of
verbs is ignored here.



lexicon, then the expression "X kicked the bucket” will
be assigned the scmantics die(X). Entry (a) cxpresses
the fact that (in its idiomatic use), the verb form kicked
subcategorizes for a subject S and an object O whose
semantics is the bucket, and is itsell assigned the
semantics die(S.sem).

term(T) :- T.sem = die(S.sem), (a)
T.string = [kicked],
T.cat = v, T.subcat = [O,S],
S.string_order = left, S.cat = n,
S.syn_order = syn_dep,
O.string_ovder = right, O.cat = n,
O.syn_order = syn_dep,
O.sem = the_bucket.

term(T) :- T.sem = the_bucket, (b)
T.string = [the,bucket],
T.cat = n, T.subcat = {|.

Fig. 5. Idioms in LG

3. Guides and left-recursion elimination

Guides. Consider a finite string /;, and let /> be a
proper suffix of /; [; be a proper suffix of /5, and so
on. This operation can only be itcrated a finite number
of times. The notion of guide-structure generalizes this
sitnation.

DEeFINITION 3.1. A guide-structure is a partially
ordered set G which respects the descending chain
condition, i.e the condition that in G all strictly
decreasing ordered chains 1) > 1y > .. >4 > . are
Jinite.

Consider now the following clementary definite
clause program (POY:

arA) - ailB), BAJ. (PO}
a(A; - A

We assume here that @ is an abbreviation which
stands for a disjunction (y,.... () of conjunctions ¢ of
goals of the form a(A), t(A), or {T=8} (unification
woals) where the T. S are variables or partially
instantiated terms. Among the variables appearing
inside @, only the "interface” variables A, B are
explicitly mentioned. We further assume that the
defining clauses (not shown) for the 1 predicate have
right-hand sides which are conjunctions of term
unitfication goals {T=5). Wc call 1 the lexicon
predicate, and a the generic nonterminal predicate.

Consider now the following program (P1), called a
guided extension of (PO):

a ’(A:Lin’[mul) - '(B’Lfn’l‘inlc’r)fv P1)
7)'(3,/'\ 'Llllft‘l"l‘(ml)‘
a'(ALipLi) = PA Ly Loy).

(P1) is obtained from (PO) in the following way: (i)
guide variables (L;,, Liper, Lou) have been threaded
throughout (PP0), and (ii) the 1-predicate ¢ has been
replaced by a 3-predicate t which is assumed to be a
refinement of 1, ie, for all A, L, Ly, t"(A Ly Loy)
implies t{A).

Program (P1) is a more constrained version of
program (P0): ¢’ can be scen as a version of 1 which is
able to "consult" L;,, thus constraining lexical access at
each step. We will be interested in programs (P1) which
respect two conditions: (i) the guide-consumption

£ - .
r Only programs of the (PO) form are discussed here, but the subsequent
discussion of guides generalizes casily to arbitrary definite clause programs.

condition, and (i1) the conservative extension
condition.

DEFINITION 3.2, Program (P1) is said to satisfy the
guide-consumption condition iff: (i) the guide variables
take their values in some guide-structure G, and (ii) any
call 10 V(A L, Loy) with Ly, fully instantiated returns
with Loy fully instantiated and strictly smaller in G.

DEFINITION 3.3. Program (Pl) Is said to be a
conservative extension of (P0O) iff: a(A) is provable in
(PO) ¢ there exist Ly, Ly such that a' (AL Lo, is
provabie in (P1).

The < part of the previous definition is
automatically satisfied by any program (P1) defined as
above. The = part, on the other hand, is not, but
depends on further conditions on the refinement ¢ of 1.
Saying that (P1) is a conservative extension of (P0) is
tantamount to saying that (P1) adds some redundancy to
(P0), which can be computationally exploited to
constrain processing.

Left-recursion elimination'?. Program (P1)
is left-recursive: in a top-down interpretation, a call to
a’ will result in another immediate call to a’, and
therefore will loop. On the other hand the following
program -(P2) is not left-recursive, and Thcorem 3.4
shows that it is equivalent to (P1):

3

a'lA, Ly L - (AL L), aux(Ap.A,LgL,). (P2)
aux(A,A,L,L,).
aux(ApA,LiLy) - D{ALA L LiLiy )

anx(A; 1 ALy Ly).

Here, © and 1" are the same as in (P1), and a new
predicate aux, called the auxiliary nonterminal predicate
has been introduced.'*

THEOREM 3.4, Programs (P1) and (P2) are equivalent
in predicate a'\?

The fact that (P2) is not left-recursive does not
alone guarantee termination of top-down interpretation,
However, if (P1) respects the guide-consumption
condition and a further condition, the no-chain
condition, then (P2) does indeed terminate.!®

DEFINITION 3.5, Program (P1) is said to respect the
no-chain condition if each goal conjunction |
dppearing in D' contains at least one call to a’ or to t'.

THEOREM 3.6. Suppose (Pl) satisfies both the
guide-consumption condition and the no-chain
condition. Then relaiive to top-down. depth-first,
interpretation of (P2), the query a(A.Lg.L,), with Ly
completely instantiated, has a finite SLD search treel’
associated with it (in other words, all its solutions will
be enumerated through backiracking, and the program
will terminate).

4. Parsing and generation in Lexical
Grammar

The rules of Fig. 3 are completely symmetrical in
their specification of syntactic compositionality,

3 1he general problem of left-recursion elimination in DCGs (including
chain rules and nuil rules {H78]) is studied in [DY0a]; the existence of a
Generalized Greibach Normal Form is proven, and certain decidability results
are given,

14 The (P1) &> (P2 transformation is closely related to left-corner parsing
[MTIIMY83], which can in fact be recovered from this transformation
through a certain encoding procedure (sce [DY0Ob]).

13 Phay is: (ALl is a consequence of (P1) iff a'{A Ly, L) is a

consequence of (P2),

16 In the context of CFGs, the no chain condition would correspond to a
grammar without chain rules, and the guide consumption condition to a
grammar without sufl rules .

17 See [L87] for a definition of SLI search tree,
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(A,Lo,Lp)
-
(B,Lo,L1)
mary =
(D,L1,La) (E,La,Ls)

often /\
(F,LyL3) (G,LsLa)
visited notre dame

Ly = [mary,often,visited,notre,dame]
L, = [often,visited,notre,dame]

L, = [visited,notre,dame]}
L; = [notre,dame]
Lg=1]

Fig. 6. A guide for parsing

"string" compositionality and semantic
compositionality’®. The symmetry between string
compositionality and semantic compositionality will
allow us to treat parsing and generation as dual aspects
of the same algorithm,

Orienting the rules. The phrase predicate can
be rewritten in either one of the two forms: phrase p,
where emphasis is put on the relative linear order of
constituents (left vs. right), and phrase_g, where
emphasis is put on the relative semantic status
(semantic head vs. semantic dependent) of constituents.

phrase_p(A) :- phrase_p(B), % B.A). (POp)
phrase p(A) :- term(A)

where ?B,A) stands for:
M B,A) = phrase_p(C),
B.string _order = left,
combine(B.,C Al
and
phrase _g(A) :- phrase_g(B), G(B,A). (POg)
phrase _g(A) :- term(A)

where G(B,A) stands for:
G(B.A) = phrase _g(C),
B.sem_order = head,
combine(B,C ,A).

LEMMA 4.1, phrase_p and phrase_g are both
equivalent to phrase.

The phrase_p (resp. phrase_g) programs are now
each in the format of the (PO) program of section 3,
where a has been renamed: phrase p (resp. phrase_g),
and 2: P(resp. G).

These programs can be extended into guided
programs (Pip) and (Plg), as was done in section 3:

phrase p'(A,Ly Loy - (Pip)
phrase_p'(B,Lm,Linrer), ?(B:AvLirller"antl)'
phrase_p(A,Ly, Loy o= term_p(ALiyLou).
where:

18 This symmetry should not be obscured by the fact that, in order to avoid
duplicating clauses with the same logical content, the presentation of the rules
appears otherwise (see above the discussion of "broken symmetry").
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P(BA Loy Legu) = phrase_p(C.Lyer L), (Dp)
B.string order = left,
combine(B,C,A).
and
phrase_g'(A.L;,Lyy) o (Plg)
phrase_g(B.Liy Ligier), GOBALipnrorLow)-
phrase _g'(AL;.L,y,) - term g (ALyLyy).
where:

G(B 'A’Lillll’l"L()llf) = [)h)'dse_g ’(C’Lilllfl"L()lll)'_ (Dg)
B.sem_order = head,
combine(B,C,A).

In these programs, term_p’ and term_g' are the
refinements of rerm (corresponding to ¢’ in program
(P1) of section 3) used for parsing and generation
respectively. Their definitions, which contain the
substance of the guiding technique, are given below.

N.B. Programs (Plp) and (Plg) respect the no-
chain condition: phrase_p’ is called inside 2, and
phrase g’ is called inside G

A conservative guide for parsing. Let us
define rerm_p' in the following way:

term_p'(A.LigLoy) - term(A), (Gp)
append(A.string Lou Lin).

It is obvious that term _p’ is a refinement of term.
Using the definition of combine _strings in section 2,
one can ecasily show that program (Plp) is a
conservative extension of program (POp).

The guide-structure Gp is the set of character
strings, ordered in the following way: st < sr2 iff s¢f
ts a suffix of sr2. If the lexicon is such that for any
entry term(A), A.string is instantiated and is different
from the empty list, then it can easily be shown that
(Plp) respects the guide-consumption condition,

The guide just introduced for parsing is simply a
restatement in terms of guides of the usual differential
lists used in the Prolog translation of DCG rules.

A conservative guide for generation. Let
us define term_g’ in the following way (using the
auxiliary predicate extract_sems):

term_g'(A,Lj, Ly} :- term(A), (Gg)
Li,=[A.semiLy ],
extract_sems(A.subcat SubcatSems),
append(SubcatSems,LiyerLoy)-

extract_sems([],[]).

extract_sems({X/Rest] [X sem/RestSems]):-
extract_sems(Rest RestSems).

The guide structure L used for generation is a list of
semantic structures, initially instantiated to [S.sem],
where § is the linguistic structure to be generated, of
which the semantics S.sem is known. When a call
term_g'(A,Lin,Lour) to the lexicon is made, with Lin
instantiated to a list of semantic structures, the lexical
structure A selected is constrained to be such that its
semantics A.sem is the first item on the Lin list. The
A.sem element is "popped” from the guide, and is
replaced by the list of the semantics of the phrases
subcategorized by A. (Fig. 7 illustrates the evolution of
the guide in generation.)



(A,Lo,La)
\\
\\\
(B,L3,L4)
(C.LoL3) mary
e
D,Lo,L ‘
( 0 » (E.L1.Ly)
often

(F,L1,L2) (G,LpL3)
visited notre dame
Lo = [often(visit(mary,nd)})]
L} = |visit{mary,nd)|

Ly = [nd,mary]
L3 = [mary]
Lg=1]

Fig. 7. A guide for generation

’

It is obvious that ferm_g' is then a refinement of
term, and furthermore, using the definition of
combine_sems in section 2, one can prove:

LEMMA 4.2. Program (Plg) is a conservative
extension of program (P0g).

The guide-consumption condition in generation.
Let us define recursively the size of an LG semantic
representation as the function from terms to natural
numbers such that:

sizefatom] = 1
sizefatom(T ... T)] = 1 + size[T1] + ... + size[T,]

Assume now that, for any entry term{(A), the
lexicon respects the following condition:

If A.sem is fully instantiated, then the A.subcat
list is instantiated sufficiently so that, for any
element X of this list, (i) X.sem is fully
instantiared, and (ii) X.sem has a sirictly smaller
size than A.sem.

Under these conditions, one can define a guide-structure
Gg (see [D90b]), and one can prove:

LEMMA 4.3. Program (Plg) satisfies the guide-
consumption condition.

The resulting programs for parsing and
generation. After the left-recursion elimination
transformation of section 3 is performed, the parsing
and generation programs take the following forms:

phrase_p'(A,,L;,.L,) - term_p'(Ap,Li,,Lg),
aux_p(ApAuLoL,).

aux_p(ALA,LyL,).

aux_p(ApApLiLy) - PLAAL LLLiy ),
(lllX_})(A,'.” ’An’Li+ 1 an)'

phrase_g'(A, Ly Ly) - term_g'(Ap.LipLo),
aux_g(ApA,LoLy).

aux_g(AyALyLy,).

aux_g(ApApLiLy) - GALAL Ll ),
(Illx_g(A[_,_/,/\”,L,',,_/,L”).

That is, after expliciting term_p', term_g'. # and G’
(see (Gp), (Gg), (Dp), (Dg), above), these programs
take the forms (P2p) and (P2g) in Fig. 8; for

parse(S.string,S.semj .-
S.cat =v, S.subcair=[],
phrase_p'(S.S.string,[]).

% S is a sentence

phrase _p'(A,.L;,Ly,) - term(A),
append(A.string Ly,L;,),
aux_p(AgA,lLgL,).

aus_p(A, ALy Lin).

aux_p(ApAyLiLy) o phrase p(C.L;,Li, ),
Apstring order = left,
combine(A;,C A;.;)
a”“’,p(/‘iv&[»AnvLi+1an)-

generate(S.string,S.sem) -
S.cat =v, S.subcar={[],
phrase _g'(S,[S.sem].[]).

% S Is a sentence

phrase _g'(A,,Li,.Ly) - term(A), (P2g
Lip=[A.sem|Lip,].
extract_sems(A.subcat,SubcatSems),
append(SubcatSems L. JLo).
aux_g(Ap,A,dp.Ly).

aux_g(AAp Ly doy).

aux g(AjALLL,) - phrase_g(C.LiLi. ),
Apsem_order = head,
combine(Ai,C,AH 1),
aux_glAp g ApLivy Ly).

extract_sems([].[]).

extract_sems([X/Rest] [X .sem{RestSems]):-
extract_sems{Rest RestSems).

Fig. 8. The final parsing and generation programs parse
and generate

convenience interface predicates parse and generate arc
provided. .

Under the conditions on the lexicon given above
— which are satisfied by the lexicon of Fig. 4 —.
programs (Plp) and (Plg) both respect the guide-
consumption condition; they also respect the no-chain
condition (sec remark following the description of
(P1p) and (Plg)); Theorem 3.6 applies, and we have the
following result:

If parse(A.string,A.sem) (resp.
generate(A.string,A.sem)) is called with A.string
instantiated (resp. A.sem instantiated), then all
solutions will be enumerated on backtracking, and
the query will terminate.

5. Further research

Handling extraposition with guides. The
specific guides defined above for parsing and generation
are not the only possible ones. If for some reason
certain conditions on the lexicon are to be relaxed,
then more sophisticated guides must and can be defined.

Thus, the guide introduced above for parsing
essentially assumes that no lexical entry has an empty
string realization. This condition may be too strict for

certain purposes, such as handling traces.
Interestingly, howcver, the guide consumption

condition can still be imposed in these cases, if one
takes care to suitably enrich the notion of guide.

Iet us assume, for instance, that there be a general
syntactic constraint to the effect that two empty lexical
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(P2p;



items cannot immediately follow each other!?. Let us
then posit as a guide structure, instead of a list L of
words, a couple <L,B>, where B is a variable restricted
to taking values O or 1. Suppose further that these
couples are ordered "lexicographically"”, ie that:

v L, LB B
L<L = <LB> < <L'B'>
L=L"AB<B = <LB> < <LB'>.

It is easy to see that the set of guides is then a
partially ordered set which respects the descending
chain condition.

Let us finally assume that ferm_p’ is redefined in
the following manner:

term_p'(A . <LinBin>,<LoutBout>) :-
term(A),
append(A.string, Lout,Lin),
( Astring =[], Bin =1, Bout
; Astring # [], Bin =_, Bout

0
1)

o

It can be shown that this definition of guide parse is
sufficient to ensure the guide-consumption condition,
and therefore guarantees the termination of the parsing
process.

Variations on this idea are possible: for instance,
one could define the guide as a couple <L,X> where X is
a list of left-extraposed constituents (see {P81]). Any
time a constituent is added to the extraposition list X,
this operation is required to consume some words from
L, and any time a trace is encountered, it is required to
"cancel" an element of X. Because the lexicographical
order defined on such guides in the following way:

VL LXX
L< L' = <LX> < <L'X'>
L=L A X<X = <LX> < <LX>.

respects the descending chain condition, the parsing
process will be guaranteed to terminate,

6. Conclusion

This paper shows that parsing and generation can
be seen as symmetrical, or dual, processes exploiting
one and the same grammar and lexicon, and using a
basic left-recursion elimination transformation.
Emphasis is on the simplicity and symmetry of
linguistic description, which is mostly contained in
the lexicon; compositionality appears under three
aspects: string compositionality, semantic
compositionality, and syntactic compositionality. The
analysis and generation processes cach favor one
aspect: string compositionality in analysis, semantic
compositionality in generation. These give rise to two
guides (analysis guide and generation guide), which are
generalizations of string indexes. The left-recursion
elimination transformation described in the paper is
stated using the general notion of guide, and is
provably guaranteed, under certain explicit conditions,
to lead to termination of the parsing and generation
processes. We claim that the approach provides a
simple, yet powerful solution to the problem of
grammatical bidirectionality, and are currently testing it
as a possible replacement for a more rule-oriented

g S o Lo
19 A counter-example to this simplistic assumption is not hard to come by: the
person who john persuaded e PRO to drink. However, the assumption gives
the flavor of a possible set of strategies for handling empty categories.
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grammatical component in the context of the CRITTER
translation system [IDMBS&S].
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