
Language Without A Central Pushdown Stack
Carson T. Schtitze and Peter A. Reich

Depar tment of Linguist ics
Universi ty of Toronto

Toronto, Canada M5S 1A1
E-mail: carsontr@ dgp. toronto.edu

Abstract

We will attempt to show how human performance
limitations on various types of syntactic embedding
constructions in Germanic languages can be modelled
in a relational network linguistic framework. After
arguing against centralized data stores such as
pushdown stacks and queues, we will demonstrate how
interconnections among levels of linguistic structure
can account for many of the psycholinguistic facts.

1. Introduction

The long-range goal of our research project is to
develop and implement in computer simulation a uni-
fied, psycholinguistically realistic model of language
behaviour--specifically, language production, language
comprehension, and language development. Our model
is constructed in the framework of relational network
linguistics (also known as cognitive-stratificational
grammar (Copeland & Davis 1980)), while also
incorporating features of spreading activation (Collins
& Loftus 1975), competition (Bates & MacWhinney
1987), and other models. In this paradigm, linguistic
information is represented in the form of an
asynchronous, massively parallel network (in the sense
of Schnelle et al. 1988) whose nature can be seen as
intermediate between that of mainstream connectionist
networks and traditional generative grammars,
incorporating aspects of both formalisms. The basics of
relational network grammars will be set forth in §3.

Our specific goal here is to describe our attempts to
simulate the psychological facts about the production of
syntactic embedding in a non-ad hoc way within the
above framework. We will show that adequately ac-
counting for human performance requires an ex-
amination of at least two other representational levels
(or strata) in addition to the syntax, namely the event
level and a level we call the lexotacticso In the process
we also hope to demonstrate the unified nature of our
theory across linguistic levels.

Particular consideration will be given to the
cognitive data structures and processing mechanisms
required. Our claim in this regard is that temporary
memory in the form of a centralized data store, whether
it be a pushdown stack, a queue, a collection of stacks,
or whatever, is an inappropriate component for
modelling human linguistic processing. We will argue
instead for a large collection of very simple, localized
processing units which possess small amounts of
storage by virtue of the possible states which they may
be in; in short, a network of finite-state devices. These
processors will be general, in the sense that they are
useful for cognitive processes outside the domain of
language.

6 4

2. The Phenomena

The types of sentences we want to account for
include centrally embedded and crossed serial structures
(see below), in contrast to right- and left-branching
structures. This is one area where computational
linguists find it useful to look at human limitations,
because if there were strict limits on the former forms of
embedding, they could allow us to build simpler lan-
guage processors. Many linguists continue to claim that
because of potentially indefinite embedding, something
more powerful than a finite-state device is needed. But
in some sense all computational linguistics is done on
machines which have a limited number of states, and
some of us believe that the human brain also has this
property.

The matter first arose when Chomsky (1957)
argued that natural language cannot be produced by a
finite-state device, because of sentences with central
embedding to an arbitrary depth. Chomsky's argument
was that such sentences are all grammatical because
they are "formed by processes of sentence constn~ction
so simple that even the most rudimentary English
grammar would contain them" (1957: 23). What
Chomsky meant by rudimentary processes was
recursion, and within the generative framework there
was no way to account for people's performance
limitations in terms of recursive phrase structure rules.

The issue of whether embedding to arbitrary depth
is part of natural language has been debated in the
psychological and linguistic literature ever since (e.g.,
Miller 1962; Labov 1973; de Roeck et al. 1982). While
it is still a point of contention, recent carefully
controlled experiments suggest that the human syntactic
mechanism, without semantic or pragmatic cues, and
without the aid of pencil and paper to construct
sentences, does have a sharp limit of one or two levels
of embedding (Bruner & Cromer 1967; Reich & Dell
1977). In this paper we make no claim as to how many
levels people are able to process, only that there is some
small, finite bound. See Reich & Schiitze 1990 for
further discussion.

The following are some examples of the types of
sentences we are particularly concerned with. Although
some of these are judged to be marginal or unacceptable
by some informants, none of the subsequent discussion
depends on precisely where the limits of acceptability
are drawn.

• Centrally embedded relative clause constructions in
English. A clause B is centrally embedded within a
clause A if and only if part of A occurs before B and the
remainder of A occurs after B.

1. The man that the dog chased ate the malt.

2. The man that the dog that bit the cat chased ate
d~e malt.

. Verb-final complement constructions in German,
which involve nested dependencies . Nested
dependencies occur when the verbs at the end of the
sentence are produced in reverse order from their
associated arguments at the beginning. Thus, they must
be paired up by working from the edges in toward the
middle.

3. Die Manner haben Hans die Pferde fiittern
lehren.

[the men have Hans the horses to feed taught]
"The men taught Hans to feed the horses."

4. Johanna hat die Manner tlans die Pferdefiittern
lehren helfen.

[Joanna has the men Hans the horses to feed to
teach helped]

"Joanna helped the men to teach tlans to feed
the horses."

• Verb-final complement constructions in Dutch,
which involve crossed serial dependencies. Crossed
serial dependencies occur when the verbs at the end of
the sentence are produced in the same sequence as their
associated arguments at the beginning. Sentences 5 and
6 are synonymous with 3 and 4 respectively.

5. De mannen hebben Hans de paarden leren
voeren.

[the men have Hans the horses taught to feed]

6. Jeanine heeft de mannen Hans de paarden
helpen leren voeren.

[Joanna has the men Hans the horses helped to
teach feed] (Bach et al. 1986)

- Additional variations which are claimed to occur in
Swiss-German (Shieber 1985): scntence 7 is in crossed
serial order, 8 is in nested order, and 9 shows a variation
of crossed serial order with the upper subject and dative
object transposed; all three are synonymous. Analogous
variations on 10 are also claimed lo be possible.

7. Jan s',iit, das mer em ttans es huus hgilfed aastri-
iehe.

[Jan says that we Hans the house helped to paint]

8. Jan sait, das mer em tlans es huus aastriiehe
hi~lfed.

[Jan says that we Hans the house to paint helped]

9. Jan ~sait, das em llans meres huus hfilfed aastri-
iche.

[Jan says that Hans we the house helped to paint]
"Jan says that we helped llans to paint the

house."

10. Jan ~ t , das met d'ehind em ltans es huus 16rid
hdlfe aastriiche.

[Jan says that we the children Hans the house let
help paint]

"Jan says that we let the children help Hans
paint the house."

3. The Basics of Relationai Networks

A relational network consists of a collection of
nodes of various types, and connections between them~
known as wires. Language processing consists of ac-
tivity flowing through the network or, in the case of ac-
quisition, growing new wires and nodes in the network.
Signals move in both directions along the wires from
one node to the next. Each node is an independently
operating processing unit. All nodes of the same type
have the ~ m e finite-state definition. Their behaviour
consists of sending signals out along the wires to which
they are connected, and possibly changing state. Signals
are one of a small number of possible types, e.g.
production (also called positive),feedback,failure (or
negative) and anticipation.

There are currently approximately 25 types of
nodes required in our system, expressing various ex-
plicit and implicit features found in context-free phrase
structure grammars and other formalisms. Each type of
node is represented graphicaUy by a distinct shape. One
basic building block is the concatenation node,
equivalent to the phrase structure rule a ~' b c (see
Figure 1). When a positive signal comes into the node
via its top wire, which we label the a-wire, a positive
signal will be sent down the b-wire to produce the first
element, and the node will change state to 'remember'
this fact. If the production of that element succeeds (as
indicated by a positive feedback signal returning on the
b-wire), a positive signal will be sent down the c-wire to
produce the second element in the concatenated
sequence, and the node will change skate again. Upon
the c-wire's successful completion, positive feedback is
sent up the a-wire and the node returns to the initial
state, known as stale zero.

FIGURE 1: Concatenation Node

Other major types of nodes include: disjunction,
which allows a choice of one alternative among many
paths of production (e.g., a verb may be realized as
"sing", "think", "walk", etc.); precedence disjunction,
which also allows a choice of alternatives, but tries
them one at a time, slopping as soon as one succeeds;
conjunction (used in the Boolean sense), which simply
fires all its downward w~res at once when a production
signal comes in the top; and inverse conjunction, which
requires that two or more separate conditions must be
signalling for a path to be followed (e.g., the pronoun
"we" can only be produced if plural, first person, and
nominative case are all being signalled).

In its gross structure, the network we propose
connects a general memory for events to a semotactic
level, a l e x o t a c t i c level, a syn tac t i c level, a
phonological level, an articulatory level, and an
auditory level. The same type of structure is found in all
the levels, and except for the last two, all strata are used
in both production and understanding. The syntax
defines the sequence in which morPhemes arc'. built into
words, phrases, and clauses. The phonotactics defines
the sequence in which the sounds are combined into

2

65

clusters, syllables, and phonological feet. The
semotactics defines which concepts can be associated
with which types of participants. (For example, the
concept "fill" allows an agent and an affected partici-
pant, among others, and the affected must be a type of
container.) The lexotactics constrains the choice of
vocabulary and its syntactic position on the basis of
which elements of an event are to be expressed. The
lexicon of the language, itself in the form of a network,
is connected to all major areas of language structure,
and is in part what binds the levels to one another. Each
word, morpheme, or idiom connects to meaning, syntax,
and phonological representation. In addition, there are
some wires which pass control information between
strata.

Thus, the major differences between relational
networks and connectionist ones h la Rummelhart and
McClelland (1986) are that the former use several types
of nodes with different behaviour, and the actions of
each node depend on an internal state in addition to the
incoming signals. Furthermore, output signals can be a
more complex function of the input signals than simple
weighted sums.

4. Right Branching: Iteration with Clean-Up

We now focus our attention on the production of
embedded clauses in relational networks. Relational
network syntax makes a strong distinction between
right-branching clauses and centrally embedded ones.
(Left-branching is handled similarly to right-branching.)
In a right-branching structure, once an embedded
clause is complete, the superordinate clause will also be
complete (as in "This is the cat [that killed the rat [that
ate the malt [that was stored in the house [that Jack
built]]]]"). In such sentences there is no need to
preserve any information about the superordinate clause
once an embedded one has begun; in fact, from a
psychological point of view, it is undesirable--we do
not wish to posit more demands on working memory
than are actually required to do the job. Hence, in our
model, the superordinate clause is explicitly cleaned up
before a right-branching embedded clause is begun. By
cleaned up, we mean that the nodes involved in its
production are returned to state zero by sending a
positive feedback signal up through the syntactic
network; that signal eventually reaches the top of the
clause structure, at which point the embedded clause
may begin.

For this clean-up to happen when it does, namely
before the start of an embedded clause, the syntax must
'know' whether the current syntactic constituent is the
final element of its superordinate clause. There is no
i n d e p e n d e n t way for the syntax to make this
determination, since a direct object, say, might be
followed by an indirect object, or by any number of
prepositional phrases. Therefore, we must add
something elsewhere in the network to allow this
condition to be recognized. What we add is a control
wire from the lexotactics to the clause-heading node in
the syntax, which will signal when the final participant
(defined broadly) is underway. (The lexotactics already
has access to all participants of a clause right from its
start, and is notified when each participant begins to be
realized, for independent reasons.) We note that in some

66

sense the syntax is no longer completely autonomous.
Whether this is actually a drawback is partly an empir~
ical psycholinguistic question; studies of Wernicke's
aphasics could be relevant.

5. From Iteration to Recursion: Central
Embedding

We have now described how, in cases of right-
branching, each clause starts with an essentially pristine
syntactic network, and therefore little more needs to be
said about how indefinite iteration is possible in a finite-
state device. The more difficult cases are centrally
embedded and crossed serial constructions. In such
structures, it is clear that a portion of some clauses is
delayed, i.e. prevented from being realized, until some
time after its usual (simplex clause) position. In most
computational approaches, a centralized (though
possibly implicit) data structure, be it a stack or a
queue, is used to store these elements until it comes
time to real~e them. We see a number of problems with
this approach.

First of all, there is a certain intuitive appeal to the
suggestion that in people, currently active information
is distributed in shallow storage across the cognitive
network, rather than localized in a single, deep
data store. (For instance, parking your car multiple
times leads you to forget previous parking spots, but not
how much money is in your wallet.) Secondly, it is not
clear what a central store should look like in order for it
to account for both 'queue' and 'stack' types of
languages, i.e. crossed serial and strictly nested-order
ones, especially since both orders may occur in a single
language. Models which have been proposed to handle
both cases have typically involved powerful
formalisms, such as a sequence of stacks in Joshi's case
(1985, 1990). The resulting processor is more powerful
than a pushdown automaton (it can recognize some
strictly context-sensitive languages), and it is our belief
that structures in the brain are simply not this powerful.
These two arguments are independent of what has often
seemed to be the central quarrel relational network
theorists have with other computational models, namely
that they allow for nesting to unlimited depth. It might
be simple enough, if somewhat arbitrary, to impose a
finite limit on the size of stacks or queues in other
models, and thus limit their generative power to that
which we believe humans are capable of. However, this
would not address our other objections.

Our proposal is as follows. When the cognitive
representation of an event becomes active, all its
composing elements, i.e. the action and all the
participants in it, are fired simultaneously, However, the
realization of those elements is held 'in check:' until the
syntax allows them to come out, one at a time. The
realization of any given participant may involve
producing one or more clauses which describe it (e.g.,
relative clauses, sentential complements), and these
expansions may be produced before all the elements of
their superordinate clause (in particular, the verb) have
come out. However, since all aspects of an event fire
simultaneously, the superordinate verb will have
already been signalled. This is necessary because the
choice of verb may affect the realization of its
associated participants; in particular, it may determine

in which syntactic position they must be realized. For
example, the sentences "George borrowed the book
ti'om Sue" and "Sue loaned the book to George" both
describe the same event, but the choice of verb has
forced George into subject position in the former case,
and indirect object in the latter.

The already-signalled superordinate verb will have
generated an anticipation signal up towards the verb-
completion wire of the syntax. (German and Dutch
syntax allow only one verb immediately after the
subject. Any remaining verbal elements are placed at
the end of a clause, in what we will call the verb-
completion position.) It is the handling of this signal,
and any subsequent verb anticipations which come up,
which determines the eventual order of production. (We
are assuming for simplicity that verbs come out only in
verb or verb-completion positions, although possibly as
part of the 'wrong' clause.) The limit on how many
nested clauses are possible turns out to be totally
unrelated to this structure, deriving instead from the
finite-state definitions of the nodes themselves (see § 7).

How does the network keep track of which order
verbs should come out in? The dashed box of Figure 2
shows the relevant structure. This structure contains n
placeholder nodes, where n = 1 + the number of
possible embeddings in the language. (In this
discussion, we will assume n = 3.) The placeholders are
labelled pl, p2 and p3 in the figure. Each is connected
to every verb of the language, and acts as a 'slot' for
remembering one verb. Whenever a verbocompletion is
required by the syntax, the network attempts to realize
the first verb slot, then the second if the first was empty,
and ,so on. These realizations will succeed if verbs have
already been signalled from the events which they
describe, the E's in the diagram. A verb signalling in
this way tries to 'turn on' one of the positions in the
sequence of possible verb-completions, and succeeds at
doing so if and only if no other verb has already filled
that position. In the case of crossed serial orders such as
Dutch, verbs try to occupy the first slot first, exactly as

to syntax
erb-completion

(D

c
03

c

0 (D

c-

o_
fl)

d2:

tactics to mo rphology
FIGURE 2: Fragment of the network for Dutch

shown in Figure 2. For nested-order languages such as
German and English, the wiring from r's to p's is
exactly reversed, so that a verb first tales to fill the last
available slot, then works its way forward to em'lier
slots until it finds one unoccupied (see Figure 3, which
would replace the dashed box of Figure 2).

,/
r3 i r2 I r l

FIGURE 3: GetTnan network fragment

6. A Detailed Example

As an example, let us consider the production of
the Dutch sentence 6, assuming sentences of such
complexity to be possible under some circumstances.
The sentence involves three events, represented by the
conjunction nodes El, E2 and E3 in Figure 2. The
events are: <doanna helping the men>> ~1) , <<the men
teaching Hans>> (E2), and <4~ans feeding the horses>>
(E3). These events will fire in the order just stated, since
this is how they are hierarchically arranged in the event
structure (E2 and E3 each modify or constitute a par-
ticipant of the next higher event). As production begins,
"Jeanine", "helpen" and E2 fire simultaneously.
"Jeanine" is realized immediately, but "helpen" cannot
be immediately realized, for the tollowing reason. The
first verb position of the clause has been filled by the
auxiliary verb "heeft", which is the realization of a
semantic element which marks this scenario as having
taken place in the past. Since "helpen" could not be
realized in this position, it must come out in the verb-
completion position. Therefore, it causes an anticipation
to fire up from inverse conjunction node il towards that
position. That anticipation will be directed up to the
first verb position, namely placeholder node p 1, by the
routing node r l . (A routing node is an inverted
precedence disjunction which attempts to send a signal
up its leftmost wire to the placeholder at the other end.
If that fails, it tries to send the signal up its remaining
wires in order from left to right.) Since "helpen" is the
first verb to signal in this sentence, pl will accept the
anticipation and remember which of its wires the signal
came in on.

While all this is taking place, the syntax has begun
realizing the subordinate event E2, <<the men teach
ttans>>. "Mannen" can be immediately realized. "Leren"
cannot, but it will again send an anticipation signal, this
time via i2 up into the verb structure. This will be
routed by r2 to the first position (pl) once again, but
this time the anticipation will be rejected, because there
is already a verb pending for this position. A failure
signal is sent down by pl to signal this fact, and r2, see-
ing that cancellation, now tries sending the anticipation
up to the second position, p2. This time the anticipation
will be accepted, since nothing has previously come up

4

67

to this point, and the verb's wire will be remembered.
Similarly the third verb, "voeren", will be routed to the
tlfird slot when E3 fires, and remembered by p3.

Now, as E3 is realized by the syntax, the syntax
will license a verb-completion following the object
"paarden", since there are no more participants in the
lowest clause. As the verb-completion signal comes
down, it passes through the precedence disjunction node
dl , which tries each of its output wires in turn from left
to right until one succeeds. Its first output leads to pl,
which will succeed (since an anticipation has previously
come up to it), and finally permit the first verb, namely
"helpen", to be phonetically realized. (Node pl
remembered the wire which led to the morphological
representation of that verb.) Positive feedback from this
production will trigger pl to return to state zero, and
pass the feedback on up. Since the first alternative wire
of the precedence disjunction dl succeeded, none of the
others will be touched. The end of the verb-completion
is signalled by dl , to which the syntax responds by
'unwinding' the complement clause loop (not shown in
Figure 2) once.

We are now at the point of having finished all the
participants in the middle clattse (the ~the men teaching
Hans>~ clause), so all that remains at this level is the
verb. Again the syntax signals the verb-completion
wire, again the precedence disjunction dl tries the first
path, but this time it will fail, because no verb is waiting
at pl. In state zero, this placeholder node sends a
negative signal up to the precedence disjunction, which
must therefore try its next wire. This one will succeed,
producing the verb which was remembered by p2,
namely "leren". Similarly, as the syntax unwinds once
more and signals for a verb-completion once more, the
precedence disjunction will eventually find the verb
held by p3 at the third position, namely "voeren", and
the sentence will be complete.

Incidentally, a close analogue to this method can be
used to account for the order of appearance of noun
phrases across embedded clauses as well. In the case of
English, we can use a structure like Figure 3 to hold
onto the direct object of a superordinate clause until
after the direct object of an embedded relative clause
has come out. For exanrple, in "The man who liked the
dog hated the cat", "the cat" is the first direct object to
be made available by the event structure, since it is a
participant in the superordinate event, but the first direct
object to come out is "the dog", so object NPs are
realized in last-in, first-out order. Thus the handling of
participants provides additional motivation for the types
of nodes and structure tlmt we have posited to handle
verbs.

7. Some Theoretical Issues

In a syntax in which nodes are finite state devices,
the job of remembering the status of a clause falls on
each and every node in the network, as follows.
Suppose a node requires a set of s states to handle
processing within one clause. Then in the worst case,
for each of those states it will need a copy of the entire
set to use for processing an embedded clause. Each set
corresponds to remembering a different place where the
superordinate clause was left off. The total number of

states in the node will be s n, where n once again is the
number of possible pending clauses. This approach is
analogous to a programming language that does not
allow subroutines. In such a language, a copy of a
recurring block of code must appear at each place where
it could be needed. This tendency to exponential growth
could account for why languages seem to impose such
severe restrictions on the amount of central embedding
or crossed serial dependency.

The interesting and crucial thing about the way the
process described in §6 was carried out is that the
mechanism for remembering verbs was totally
independent of the mechanism which ordered them for
output. That is, while a particular set of nodes each
remembered which one verb was associated with its
slot, the connections between nodes determined the
order of output relative to the order of signalling. This
means that all the various orderings which occur cross-
linguistically can be accounted for by the same
inventory of nodes. No additional data structure is re-
quired; all that we must do to 'convert' from Dutch to
German word order is to rewire the connections
between the upward routing nodes and the placeholder
nodes, so that slots are tried in exactly the opposite
order. To handle the fact that a single language (like
Swiss-German) may use different orders depending on
syntactic context (or even stylistic factors), all we need
to do is have the verb-completion wire branch into all
the options, each of which will have its own precedence
disjunction and set of placeholder nodes. The upward
anticipation from a particular verb will be sent
simultaneously to all the different orderings, and the
syntax will choose the appropriate one and cancel the
others.

The close symmetry between German and Dutch in
our model would seem to be a psycholinguistic
shortcoming, given Bach et al.'s (1986) result that
Dutch is easier to process than German. However, we
believe that, to the extent that their results are
meaningful, they are n o t attributable to a queue versus
stack difference, but rather to something along the lines
of Joshi 's (1990) proposed Principle of Partial
Interpretation, whereby the syntax can't forget about a
clause unless an argument slot to place it in has already
been processed.

One could argue that, viewed somewhat abstractly,
our collection of nodes and wires in fact implements a
finite-sized convertible queue/stack. Our basic response
to this is to point out once again that that is essentially
an artifact, having been built up out of independent,
lower-level components. As for the particular size
('depth') of the data structure being stipulated, this
really is not troubling. Note that such a structure could
be any size--nothing in the node definitions would limit
it to size three or four, since expanding it only requires
adding more nodes. However, more than some small
fixed number of verbs can never be realized nestedly,
because the syntax simply will not be able to call for
them. As described above, the definitions of the nodes
which the syntax makes use of simply break down after
a couple of nestings. It is therefore reasonable to postu-
late that the acquisition process would have no reason to
build the verb structure any larger than the syntax had
ever called for. And with regard to the node definitions

68

themselves being arbitrary in their maximum nesting
limitations, this is certainly true in the sense that we
define them to Ix'. precisely powerful enough to do what
humans can do with syntax. (It is possible to imagine
that humans could have evolved with the capacity for,
say, one fewer or one more nesting; we would not
expect that number to follow from mlything else.) The
point once again is that this limitation is distributed
throughout the network, rather than being a function of
the total amount of storage available.

8. Areas for Further Research

"Fhrough detailed computational modelling we have
made significant progress in analyzing our theory,
finding flaws and oversights, and making it more
rigorous. We believe that, with the complexity of lin-
guistic ruodels as it is today, no theory can lay strong
claims to adequacy, completeness, correcmess, etc.
unless it has been tested in a computer simulation.
Having reworked the theory several times over a period
of only a few months, we cannot stress this point
vigorously enough.

There are Several important questions which our
research has not yet addressed. One m~or issue involv-
ing high-level control between strata is that of precisely
where and how the decision is made that a subordinate
clause is to be I~oduced. in a highly interconnected
semantic network of events, there will almost always be
'extra' information available which could be used to
expand the desc~ption of any participant in the tbrrn of
a relative c laus . We believe that ninny factors go into
the decision as to whether or not to carry out this
expansion. The ~ would include pragmatic issues such
as the purpose of communication, urgency of the
conversation, amount of relevant knowledge believed to
be possessed by the audience, etc. Even assuming we
can wire in the relevant decision criteria, it still remains
to show how the lexotactic and syntactic strata are
notified ttmt an additional clause is being produced. One
possibility is that the tiring of a new action (and/or the
associated verb) is the trigger.

Additionally, if we look back at the stated goals of
the theory in our introduction, it is evident that only one
of the three main areas of language behaviour has been
explored, namely production. The whole question of
how this system works for comprehension has barely
been addressed for relational network models in
general. 'I]~e specific issue of embo~ding is sure to add
more wrinkles. Furthermore, accounting for the
acquisition of both iteration and recursion is a serious
hurdle for any connectionist model of language to
overcome. In our case, it will involve the network
growing new structure, in addition to modifying
connection weights. So far we have concentrated on
convincing ourselves that a viable language processor
can be created in network form, whereas connectionists
more often are concerned with exploring how much
information can be acquired when starting from a tabula
rasa. While we have no clear ideas on how acquisition
should proceed in our framework, we believe we have
at least come up with a possible structure as an end-goal
for future acquisition models to strive towards.

Acknowledgements

We would like to thank Elizabeth Cowper, Jan
Wiebe and Graeme Hirst for their comments on a draft
of this paper. This research was supported by a grant to
the second author from the Social Sciences and
Humanities Research Council of Canada.

References

Bach, Emmon, Colin Brown & William Marslen-Wilson
(1986) Crossed and nested dependencies in German and
Dutch: A psycholinguistic study. Language and
Cognitive Processes 1:4, 249-262.

Bates, Elizabeth & Brian MacWhirmey (1987) Competition,
variation, and language learning. In B. MaeWhinney,
Mechanisms of language acquisition, Hillsdale, N.J.:
Lawrence Erlbaum, 157-193.

Bruner, Jerome S. & R. Cromer (1967) An unpunished study
of eye movements reported in Harvard Center for
Cognitive Studies Seventh Annual Report, p. 7.

Chomsky, Noanl (1957) Syntact& Structures. The Hague:
Mouton.

Collins, Allan M. & Elizabeth Lofms (1975) A spreading
activation model of semantic processing. Psychological
Review 82, 407-428.

Copeland, James E. & Philip W. Davis, Eds. (1980) Papers in
Cognitive-Stratificational Linguistics. Rice University
Studies, Vol. 66. Houston, TX: Rice University.

Joshi, Aravind K. (1985) Tree adjoining grammars: How
much context-sensitivity is required to provide
reasonable structural descriptions? In D. Dowry, L.
Karttunen & A. Zwicky, eds., Natural Language
Parsing: Pn2cchologieal, computational and theoretical
perspectives, New York: Cambridge University Press,
206-250.

Joshi, Aravind K. (1990) Processing crossed and nested
dependencies: An automaton perspective on the
psycholinguistic results. Language and Cognitive
Processes, to appear.

Labov, William (1973) The place of linguistics research in
American society. In Eric Hamp, ed., Themes in
linguistics: The 1970s, The Hague: Mouton.

Miller, George A. (1962) Some psychological studies of
grammar. American Psychologist 17, 748-762.

Reich, P.A. & G.S. Dell (1977) Finiteness and embedding. In
R.J. DiPietro & E.L. Blansett, Jr., eds., The thirdLACUS
forum, Columbia, S.C.: Hornbeam Press, 438-447.

Reich, Peter A. & Carson T. Schiltze (1990) Syntactic
Embedding: What Can People Really Do? Working
paper in the Computer Applications Group, Department
of Linguistics, University of Toronto.

de Roeck, Anne, Roderick Johnson, Margaret King, Michael
Rosner, Geoffrey Sampson & Nino Varile (1982) A
Myth About Centre-Embexlding. Lingua 58, 327-340.

Rumelhart, David E. & McClelland, James L. (1986) Parallel
distributed processing: Explorations in the
microstructures of cognition. Cambridge, MA: MIT
Press.

Schnelle, Helmut (moderator), with (alphabetically) G.
Cottrell, P. Dey, J. Diederich, P. A. Reich, L. Shastri &
A. Yonezawa (panelists) (1988) Panel: Parallel
Processing in Computational Linguistics. In Drnes
Vargha, ed., Proceedings of Coling Budapest,
Association for Computational Linguistics, 595-598.

Shieber, Stuart M. (1985) Evidence against the context-
freeness of natural language. Linguistics and Philosophy
8, 333-343.

6

69

