
HOW TO INVERT A NATURAL LANGUAGE PARSER INTO AN EFFICIENT GENERATOR:
AN ALGORITHM FOR LOGIC GRAMMARS

Tomek Strzalkowski
Courant Institute of Mathematical Sciences

New York University
251 Mercer Sueet

New York, NY 10012

ABSTRACT

The use of a single grammar in natural language pars-
ing and generation is most desirable for variety of rea-
sons including efficiency, perspicuity, integrity, robust-
hess, and a certain ,amount of elegance. In this paper
we present an algorithm for automated inversion of a
PROLOG-coded unification parser into an efficient
unification generator, using the collections of minimal
sets of essential arguments (MSEA) for predicates.
The algorithm is also applicable to more abstract sys-
tems for writing logic grammars, such as DCG.

INTRODUCTION

In this paper we describe the results obtained
from the experiment with reversing a PROLOG parser
for a substantial subset of English into an efficient gen-
erator. The starting point of the experiment was a
string parser for English (Grishman, 1986), which is
used in an English-Japanese MT project. The PROLOG
version of this parser was inverted, using the method
described here, into an efficient PROLOG generator
working from regularized parse forms to English sen-
tences. To obtain a PROLOG parser (or any PROLOG

program) working in the reverse, requires ~ some mani-
pulation of the clauses, especially the ordering of the
literals on their right-hand side, as noted by Dymetman
and Isabelle (1988). We do not discuss here certain
other translbrmations used to "normalize" the parser
code in order to attain maximum efficiency of the
derived generator progrmn (Strzalkowski, 1989).

1N AND OUT ARGUMENTS

Arguments in a PROLOG literal can be marked as
either "in" or "out" depending on whether they are
bound at the time the literal is submitted for execulion
or after the computation is completed. For exmnple, in

tovo ([t o , eat, fish], T4,
[np, [n, john]] , P3)

the first and the third arguments are "in", while the

Barring the presence of non-reversible operators.

remaining two are "out". When tovo is used for genu
eration, i.e.,

tOvo (TI, T4, Pl,
[eat, [np, [n, john]] ,

[np, [n, fish]]])

then the last argument is "in", while the first and the
third are "out"; T4 is neither "in" nor "out". The
infixmation about "in" and "out" status of arguments is
important in determining the "direx'tion" in which

predicates containing them ca~ be run 2. As a further
example consider the literal

stibject (AI, A2, WHQ, h~JM, P)

where A1 and A2 arc input and output strings of
words, WttQ indicates whether the subject phrase is a
part of a clause within a wh-question, ~ is the
number of the subject phrase, and P is the final trans-
lation. During parsing, the "in" arguments are: A1
and WgQ, the "out" arguments are A2, ~ and P;
during generation, the "in" arguments are p and WrlQ,
the "out" arguments are A1 a~d NUN. In generating,
A2 is neither "in" nor "out". 'lqms, upon reversing the
diroction of computation, ar~ "out" argument does not
automatically become an '%" argument, nor does an
"in" argument automatically become an "out" argu-
ment. Below is a method for computing "in" and "out"
status of arguments in any given literal in a PROLOG
program, as required by the inversion procedure. This
algorithm is already general enough to handle any PRO-
LO(~ program.

An argument X of literal pred(• •. X • •.) on the rhs of
a clause is "in" if

(A) it is a constant; or

(B) it is a function and all its arguments are "in"; or

(C) it is "in" or immediately "out" in some previous
literal predo on the rhs of the same clause, i.e.,
l (Y) :-- pred o (X, Y),pred (X); or

(D) it is "out" in an rhs literal predo delayed until after
some predicate pred~ such that predo precedes

2 For more discussion on directed predicates in PROLOO s e e

Shoham and McDermott (1984), and Debray (1989).

1 347

p r e d l , a n d p r e d t precedes p r e d on the rhs; 3 or

(E) it is "in" in the head literal L on lhs of the same
clause.

An argument X is "in" in the head literal
L = p r e d (" • X . . .) of a clause if (A), or (B), or

(F) L is the top-level literal and X is "in" in it (known
a priori); or

(G) X occurs more than once in L and at least one of
these occurrences is "in"; or

(H) for every literal L 1 : p r e d (. • • Y . • .) unifiable
with L on the rhs of any clause with the head
predicate p r e d l different than p r e d , and such that
Y unifies with X, Y is "in" in L 1.

We distinguish two categories of "out" arguments in
literals appearing on the right-hand side of a clause:
i m m e d i a t e and d e l a y e d . An argument X occurring in
literal p r e d (. . . X . . .) is i m m e d i a t e l y "out" if it is

fully bound 4 immediately after p r e d (. . . X . . .) is
executed. An argument X in p r e d (• • • X • • •) is "out"
d e l a y e d un t i l a f t e r p r e d o , if it is fully bound only after
p r e d o , following p r e d on rhs, is executed. For exam-
ple, consider the following fragment:

vp(SN) :- agree(SN, VN),v(VN) .
agree (N, N) .

If VN is immediately "out" in v, then SN in agree
is "out" delayed until after v. For arguments with
their "out" status delayed until after p r e d o , the "out"
status is assigned only after p r e d o is executed.

An argument X of literal p r e d (. . • X • • •) on the rhs of
a clause is i m m e d i a t e l y "out" if

(A) it is "in" i n p r e d (. . . X . . .); or

(B) it is a functional expression and all its arguments
are either "in" or immediately "out"; or

(C) tbr every clause with the head literal
p r e d (. . . Y . . .) unifiable with p r e d (. . . X • . .)

and such that Y unifies with X, Y is either "in",
"out" or "unknwn", and Y is marked "in" or "out"
in at least one case.

An argument X of literal p r e d (• • • X • • .) on the rhs of
a clause is "out" d e l a y e d un t i l a f t e r p r e d o (" • • Y " "")
following p r e d if

(D) Y is immediately "out" in p r e d o and X = f (Y); or

(E) X is a functional expression and all of its argu-
ments are either "in" or immediately "out" or "out"
delayed until after p r e d o ; or

3 The precedence is with respect to the order of evaluation,
which in PROLO6 is left-to-right.

" An argument is considered fully bound if it is a constant or it
is bound by a constant; an argument is partially bound if it is, or is
bound by, a t e . n in which at least one variable is unbound.

(F) there is a predicate p r e d l (' " X " ' Z ' ' ")
preceding p r e d o on the rhs, where Z* is a subset
of arguments o f p r e d l such that every argument in
Z* is "out" delayed until after p r e d o and whenever
Z* is "in" then X is immediately "out" in p r e d , .

An argument X of literal p r e d (. • • X • • •) on the lhs of
a clause is "out" if

(G) it is "in" i n p r e d (. . . X . • •); or

(H) it is "out" (immediately or delayed) in literal
p r e d i (" "" X • • •) on the rhs of this clause, provid-
ing that p r e d l ~ p r e d (again, we must take provi-
sions to avoid infinite descend, cf. (H) in "in"
algorithm); if p r e d l = p r e d then X is marked
"unknwn".

ESSENTIAL ARGUMENTS

Some arguments of every literal are essential in
the sense that the literal cannot be executed success-
fully unless all of them are bound, at least partially, at
the time of execution. A literal may have several alter-
native, possibly overlapping, sets of essential argu-
ments. If all arguments in any one of such sets of
essential arguments are bound, then the literal can be
executed. Any set of essential arguments which have
tile above property is called e s s e n t i a l . We shall call
the set M S E A of essential arguments a m i n i m a l se t o f

e s s e n t i a l a r g u m e n t s if it is essential, and no proper
subset of M S E A is essential. If we alter the ordering of
the rhs literals in the definition of a predicate, we may
also change its set of M S E A ' s . We call the set of
M S E A ' s existing for a current definition of a predicate
the set of a c t i v e M S E A ' s for this predicate. To run a
predicate in a certain direction requires that a specific
M S E A is among the currently active M S E A ' s for this
predicate, and if this is not already the case, then we
have to alter the definition of this predicate so as to
make this M S E A become active. As an example con-
sider the following clause from our PROLOG parser:

objectbe (01,02, PI, P2, PSA, P) --
venpass (01,02, P1, P3) ,
concat([P2,P3],PSA, P) .

Assuming that {O1} and {P3} are M S E A ' s of v e n -
p a s s and that P3 is "out" in v e n p a s s whenever
e l is "in", we obtain that {O1} is the only candidate
for an active M S E A in o b j e c t b e . This is because
P3 is not present on the argument list of objectbe,
and thus cannot receive a binding before the execution
of v e n p a s s commences. Moving to the c o n e a t
literal, we note that its first argument is partially bound
since P3 is "out" in v e n p a s s . This is enough for
e o n e a t to execute, and we conclude that O1 is in
fact the only essential argument in o b j e e t b e . If we
reverse the order of v e n p a s s and c o n c a t , then
{p} becomes the new active M S E A for o b j e c t b e ,
while {O1} is no longer active. Given the binding to
its third argument, e o n e a t returns bindings to the

348 2

first two, and thus it also binds P3, which is an essen-
tial argument in v e n p a a s . 5 Below is the general pro-
cedure MSEAS for computing the active sets of essen-
tial arguments in the head literal of a clause as pro-
posed in (Strzalkowski and Peng, 1990).

Let's consider the following abstract clause
defining a predicate R~:

R i(X 1 , " " ,Xk) :- (R)
Q 1 (' " "),

0 2 (' ' ") ,
• , ,

Q . (. . .) .

Suppose that, as defined by (R), R i has the set MSi =
{m 1, " " ' ,mj} of active MSEA's, and let MRI ~_ MSI be
the set of all MSEA for R~ that can be obtained by per-
muting the order of literals on the right-hand side of
(R). Let us assume further that R i occurs on rhs of
some other clause, as shown below:

P (X~ , . . . ,X,) :- (P)
Rl(Xl ,1 , " " " ,X1,,1),

R 2 (X 2 , 1 , ' ' ' ,X2,k2) ,
• . °

R,.(x~, ~ , - . . ,x~,k~).

We want to compute MS, the set of active MSEA's for
P, as defined by (P), where s >_ 1, assuming that we
know the sets of active MSEA for each R~ on the rhs. 6
In the following procedure, the expression VAR (T),
where 7" is a set of terms, denotes the the set of all vari-
ables occurring in the terms in T.

MSEAS (MS,MSEA, VP,i, OUT)

(1) Start with VP = VAR ({X1, " " ,X.}), MSEA = f~,
i=1, and OUT = O. When the computation is
completed, MS is bound to the set of active
MSEA's for P.

(2) Let MR 1 be the set of active MSEA's of R 1, and
let MRU1 be obtained from MR ~ by replacing all
variables in each member of MR1 by their
corresponding actual arguments of R~ on the rhs
of (C1).

(3) I f R I = P then for every rnl,k e MRU1 if every

argument Yt e m 1,k is always unifiable 7 with its

s We note that since c o n c a t could also be executed with
P2 bound, the set {O1, P2} constitutes another active MSEA for in-
verted o b j e e t b e . Ilowever, this MSEA is of little use since the
binding to O'I is unlikely to be, known in generation.

6 MSEA's of basic predicates, such as concat, are assumed to
be known a priori; MSEA's for recursive predicates are first comput-
ed from non-recursive clauses. We assume that symbols Xi in
definitions (P) and (R) above represent terms, not just variables. For
more details see (Strzalkowsld and Peng, 1990). The case of s=O is
discussed below.

7 A term Y is always unifiable with a term X if they unify re-
gardless of the possible bindings of any variables occurring in Y
(variables standardized apart), while the variables occurring in X are
unbound. Any term is always unifiable with a variable, but the in-
verse is not necessarily true.

corresponding .argument Xt in P then remove m I,k
from MRU 1. For every set ml,kj = ml,k vo {X I,j},
where X 1,j is an argument in R 1 such that it is not
already in m l,k and it is not always unifiable with
its corresponding argument in P, and m 1,kj is not a
superset of any other ml,t remaining in MR Ut ,
add ml&. to MRU 1.

(4) For each ml,j e MRU1 O'=l ' ' ' r l) compute bh,j
:= VAR(ml , j) c~ VP. Let MP1 = {t/1,./ I
~(t-tx,j), j = l . . . r}, where r>0, and ~(I-q,j) = [I-h,j
¢ ~ or (lth,j = O and VAR (m I,j) = ~D)], If MP 1 =
O then QUIT: (C1) is ill-formed and cannot be
executed.

(5) For each I-q,j 6 MP1 we do the following: (a)
assume that bh,j is "in" in R1; (b) compute set
OUT1, j of "out" arguments for R i; (c) call
MSEAS (MS Lj,btl.j,VP, 2,0UTI, j); (d) assign MS
:= ~ M S I , j .

j=l..r

(6) In some i-th step, where l<i<_s, and MSEA =
~/i-l ,k, let's suppose that MR i and MRUi are the
sets of active MSEA's and their instantiations with
actual arguments of R i, for the literal R i on the rhs
of (p).

(7) If Ri = P then for every mi,. e MRUi if every
argument Y, e mi,u is always unifiable with its
corresponding argument Xt in P then remove mi, u
from MRUi. For every set mi,~, 1 = mi.u u [Xi,j}
where X~.i is an argument in R i such that it is not
already in mi, u and it is not always unifiable with
its corresponding argument in P and mi,.j is not a
superset of any other mi, t remaining in MRUi, add
mi..j to MRU 1 .

(8) Again, we compute the set MP i = {t.ti,j I
j = l . . . ri}, where P-i,j = (VAR (mi,j) - OUTi<,k),
where OUT~<.k is the set of all "out" arguments in
litemls R 1 to R i _ 1 .

(9) For each].ti, j remaining in M P i where i<_s do the
following:
(a) if bti,j = ~ then: (i) compute the set OUTj of

"out" .arguments of Ri; (ii) compute the union
OU'I}j := OU~I) vo OU~<,k; (iii) call
MSEAS (MSi,j, I.ti-1,k, VP,i +1, OUTi,j);

(b) otherwise, if bti,j ~ ~ then find all distinct
minimal size sets v, c VP such that whenever
the arguments in vt are "in", then the argu-
ments in ~i,j are "out", If such v / s exist, then
for every vt do: (i) assume v, is "in" in P; (ii)
compute the set OUT~,j, of "out" arguments in
all literals from R 1 to Ri; (iii) call
MSEA S (MSi, j , , ~ i - 1, k WV t, V P , i + 1,0 U T i,j,);

(c) otherwise, if no such vt exist, MSi,j := O.

(10) Compute MS := U M&,j;
j =l..r

3 349

(l l)Fo r i=s+l setMS := {MSEA}.

In order to compute the set of all MSEA's for P, the
procedure presented above need to be modified so that
it would consider all feasible orderings of literals on
the rhs of (P), using information about all MSEA's for
Ri's. This modified procedure would regard the rhs of
(P) as an unordered set of literals, and use various
heuristics to consider only selected orderings. We out-
line the modified procedure briefly below.

Let RR denote this set, that is, RR = {Ri I
i=1 " ' s } . W e add RR as an extra argument to
MSEAS procedure, so that the call to the modified ver-
sion becomes MSEAS (MS,MSEA,VP,RR,i, OUT).
Next we modify step (2) in the procedure as follows:

(2') F:or every element Rt. 1 ~ RR, do (2) to (5):

(2) Let MR,. 1 be the set of all MSEA's of R,. 1, and let
MRU,. 1 be obtained from MR,. 1 by replacing all
variables in each member of MR,, 1 by their
corresponding actual arguments of R,, 1.

Further steps are modified accordingly. The reader
may note that the modified MSEAS procedure will
consider all feasible ways of ordering elements of RR.
In the steps shown above, we select all literals as
potential leading elements on the right hand side, even
though most of them will be rejected by steps (3) and
(4). For those that survive, we will select elements
from the rest of RR that can follow them. In step (5)
the recursive call to MSEAS will be
M SEAS (MS,. 1.y,l-t,, 1,j, VP,RR-{R,. 1},2,OUT,. 1.j). In
step (6), that is, in i-th step of the recursion, we con-
sider all elements of RR-{R,,j I j= l • • • i -1}, for selec-
tion of the i-th literal on the right-hand side. By this
time we will have already generated a number of pos-
sible orderings of {R t I l=l • •. i -1}. We add step (6')
which contains the head of an iteration over the
remaining elements of RR, and covering steps (6) to
(11). Again, some of the elements of RR will be
rejected in steps (7) and (10). We continue until RR is
completely ordered, possibly in several different ways.
For each such possible ordering a set of MSEA's will
be computed. Step (12) is an end condition with
RR=~. To obtain a meaningful result, MSEA's in
MR,,j's must be grouped into sets of these which are
active at the same time, that is, they belong to the set
of active MSEA's for a specific definition of P (i.e.,
ordering of RR). MSEA's belonging to different
groups give rise to alternative sets of MSEA's in the
final set MS. Note that in this modified algorithm, MS
becomes a set of sets of sets.

An important part in the process of computing
essential arguments for literals is the selection of
MSEA's for lexicon access and other primitives whose
definitions are not subject to change. As an example,
consider a fragment of a lexicon:

verb ([looks IV] ,V, sg, look) .
verb([looklV] ~V,pl, look) .

verb ([arrives IV], V, sg, arrive) .
verb ([arrive IV], V, pl, arrive) .

The lexicon access primitive verb (VI, V2, Nm, P)
has two sets of essential arguments: {Vl} and
{Nm, P}. This is because {vl} can be consistently
unified with at most one of { [l o o k a l V] } ,
{ [l o o k I Vl }, { [a r r i v e I V] }, etc., at a time. Simi-
larly, {Nm, P} can be consistently unified at any one
time with at most one of {sg, l o o k } , { p l , l o o k } ,
{sg, a r r i v e } , etc. Note that neither {P} nor {Nm}
alone are sufficient, since they would unify with
corresponding arguments in more than one clause.
This indeterminacy, although not necessarily fatal,
may lead to severe inefficiency if the generator has to
make long backups before a number agreement is esta-
blished between, say, a verb and its subject. On the
other hand, if the representation from which we gen-
erate does not include information about the lexical
number for constituents, we may have to accept {P } as
the generation-mode MSEA for verb, or else we risk
that the grammar will not be reversed at all.

REORDERING LITERALS IN CLAUSES

When attempting to expand a literal on the rhs of
any clause the following basic rule should be observed:
never expand a literal before at least one its active
MSEA's is "in", which means that all arguments in at
least one MSEA are bound. The following algorithm
uses this simple principle to reorder rhs of parser
clauses for reversed use in generation. This algorithm
uses the information about "in" and "out" arguments
for literals and sets of MSEA's for predicates. If the
"in" MSEA of a literal is not active then the rhs's of
every definition of this predicate is recursively reor-
dered so that the selected MSEA becomes active. We
proceed top-down altering definitions of predicates of
the literals to make their MSEA's active as necessary,
starting with the top level predicate parse(S,P), where
P is marked "in" (parse structure) and S is marked
"out" (generated sentence). We continue until we
reach the level of atomic or non-reversible primitives
such as concat, member, or dictionary look-up rou-
tines. If this process succeeds at reversing predicate
definitions at each level, then the reversed-parser gen-
erator is obtained.

INVERSE("head :- old-rhs",ins,outs);
{ins and outs are subsets of VAR(head) which
are "in" and are required to be "out", respectively }
begin

compute M the set of all MSEA's for head;
for every MSEA m e M do
begin

OUT := ~;
if m is an active MSEA such that m e ins then
begin

compute "out" arguments in head;
add them to OUT;

4 350

if outs cOUT then DONE("head:-old-rhs")
end
else if m is a non-active MSEA and mc_ins then
begin

new-.rhs := O; QUIT := false;
old-rhs-1 := old-rhs;
for every literal L do M L := ~;
{done only once during the inversion}
repeat

mark "in" old-rhs-1 arguments which are
either constants, or marked "in" in head,
or marked "in", or "out" in new-rhs;

select a literal L in old-rhs-1 which has
an "in" MSEA m L and if m L is not active in L

then either M L = 0 or m L e ML;
set up a backtracking point containing

all the remaining alternatives
to select L from old-rhs-1;

if L exists then
begin

if m L is non-active in L then
bbegin

if M L = O then M~, := M L ~3 {mL} ;
for every clause "L1 :- rhSL/' such that

L1 has the same predicate as L do
begin

INVERSECL1 :- rhsu",ML,~);
if GIVEUP returned then backup, undoing

all changes, to the latest backtracking
point and select another alternative

end
end;
compute "i~f' and "out" arguments in L;
add "out" arguments to OUT;
ncw-rhs := APPEND-AT-THE-END(ncw-rhs,L);
old-rhs- 1 := REMOVE(old-rhs- 1,L)

end {if}
else begin

backup, undoing all changes, to the latest
backtracking point and select another
alternative;

if no such backtracking point exists then
QUIT := true

end {else}
until old-rhs-1 = O or QUIT;
if outscOUT and not QUIT then

DONE C head:-new -rh s")
end {elseif}

end; {for}
GIVEUPCgrammar can't be inverted as specified")

end;

MOVING LITERALS BETWEEN CLAUSES

The inversion algorithm, as realized by the pro-
cedure INVERSE, requires that for each clause in the
parser code we can find a definite order of literals on
its right-hand side that would satisfy the requirements

of running this clause in the reverse: appropriate
minimal sets of essential arguments (MSEA's) are
bound at the fight time. However, this requirement is
by no means guaranteed and INVERSE may encounter
clauses for which no ordering of the literals on the
right-hand side would be possible. It may happen, of
course, that the clause itself is ill-formed but this is not
the only situation. It may be that two or more literals
on tile right-hand side of a clause cannot be scheduled
because each is waiting for the other to deliver the
missing bindings to some essential arguments. As an
example, consider the grammar fragment below:

sent(P) " - sub(NI,PI),
vp (NI,PI, P).

vp(NI,PI,P) :- v(N2,P2),
agree (NI, N2),
obj(P1,P2,P) .

In the generation mode, that is, with the variable P
instantiated by the parse structure of a sentence, the
following active MSEA's and "out" arguments have
been computed:

predicate MSEA "out"

sent {P}
sub {PI} N1
vp {NI,P} P1
v {P2} N2
agree {NI,N2}
obj {P} PI,P2

In order to use these rules for generation, we
would have to change the order of literals on the right-
hand side of s e n t clause, so that the v p is expanded
first. However, doing so would require that the variable
N1 is bound. This we could get by firing s u b j first,
but we can't do this either, since we wouldn't know
the binding to P1. We note, however, that if we con-
sider the two clauses together, then a consistent order-
ing of literals can be found. To see it, we expand vp
on the right-hand side of the first clause replacing it
with the appropriately unified literals in the right-hand
side of the second clause, and obtain a single new
clause that can be reordered for generation as follows:

sent(P) :- obj(PI,P2,P),
v (N2, P2) ,
sub (NI, PI) ,
agree (NI, N2) .

Now we can reintroduce the non-terminal vp, and
break the above rule back into two. Note that as a
result a g r e e migrated to the first clause, and N2
replaced N1 on the argument list of vp. Note also
that N2 is not an essential argument in the new vp.

sent(P) :- vp(N2,Pl,P),
sub (NI, Pl) ,
agree (NI, N2) .

vp(N2,PI,P) :- obj(PI,P2,P),
v (N2, P2) .

5 351

The only thing that remains to be done is to automati-
cally determine the arguments of the new vp predi-
cate. Doubtless, it will be a subset of the arguments
occurring in the literals that create the right-hand side
of the new clause. In the example given this set is
{N2,1?1, I72,17}. From this set, we remove all those
arguments which do not occur in other literals of the
original clause, that is, before the break up. The only
such argument is 172, and thus the final set of argu-
ments to vp becomes {N2,P:I.,1?}, as shown above.
The complete algorithm for interclausal reordering of
goals can be described by a largely straightforward
extension to INVERSE (Strzalkowski, 1989) 8

CONCLUSIONS

In this paper we presented an algorithm for
automatic inversion of a unification parser for natural
language into an efficient unification generator. The
inverted program of the generator is obtained by an
off-line compilation process which directly manipu-
lates the PROLOG code of the parser program. We dis-
tinguish two logical stages of this transformation: com-
puting the minimal sets of essential arguments
(MSEA's) for predicates, and generating the inverted
program code with INVERSE. We have completed a
first implementation of the system and used it to derive
both a parser and a generator from a single DCG gram-
mar for English (Strzalkowski and Peng, 1990).

This method is contrasted with the approaches
that seek to define a generalized but computationally
expensive evaluation strategy for running a grammar
in either direction without a need to manipulate its
rules (Shieber, 1988), (Shieber et al., 1989), and see
also (Colmerauer, 1982) and (Naish, 1986) for some
relevant techniques, employing the trick known as goal
freezing. To reduce the cost of the goal freezing, and
also to circumvent some of its deficiencies, Shieber et
al. (1989) introduce a mixed top-downPoottom-up goal
expansion strategy, in which only selected goals are
expanded during the top-down phase of the interpreter.
This technique, still substantially more expensive than
a fixed-order top-down interpreter, does not by itself
guarantee that the underlying grammar formalism can
be used bidirectionally, and it may need to be aug-
mented by static goal reordering, as described in this
paper.

ACKNOWLEDGMENTS

Ralph Grishman, Ping Peng and other members
of the Natural Language Discussion Group provided
valuable comments to earlier versions of this paper.

s It should be noted that recursive clauses are never used for
literal expansion during interclausal ordering, and that literals are not
moved to or from recursive clauses, although argument lists of recur-
sive literals may be affected by literals being moved elsewhere.

This paper is based upon work supported by the
Defense Advanced Research Project Agency under
Contract N00014-85-K-0163 from the Office of Naval
Research.

REFERENCES

Colmerauer, Alain. 1982. PROLOG II: Manuel de
reference et modele theorique. Groupe
d'Intelligence Artificielle, Faculte de Sciences de
Luminy, Marseille.

Dymetman, Marc and Isabelle, Pierre. 1988. "Rever-
sible Logic Grammars for Machine Translation."
Proc. of the Second Int. Conference on Machine
Translation, Pittsburgh, PA.

Debray, Saumya, K. 1989. "Static Inference Modes
and Data Dependencies in Logic Programs."
ACM Transactions on Programming Languages
and Systems, 11(3), July 1989, pp. 418-450.

Grishman, Ralph. 1986. Proteus Parser Reference
Manual. Proteus Project Memorandum #4,
Courant Institute of Mathematical Sciences, New
York University.

Naish, Lee. 1986. Negation and Control in I'ROLOG.
Lecture Notes in Computer Science, 238,
Springer.

Shieber, Stuart, M. 1988. "A uniform architecture for
parsing and generation." Proceedings of the
12th COLING, Budapest, Hungary, pp. 614-619.

Shieber, Stuart M., van Noord, Gertjan, Moore, Robert
C. and Pereira, Fernando C.N. 1989. A
Semantic-ttead-Driven Generation Algorithm for
Unification-Based Formalisms. Proceedings of
the 27th Meeting of the ACL, Vancouver, B.C.,
pp. 7-17.

Shoham, Yoav and McDermott, Drew V. 1984.
"Directed Relations and Inversion of PROLOG
Programs." Proc. of the Int. Conference of Fifth
Generation Computer Systems,

Strzalkowski, Tomek. 1989. Automated Inversion of a
Unification Parser into a Unification Generator.
Technical Report 465, Courant Institute of
Mathematical Sciences, New York University.

Strzalkowski, Tomek. 1990. "An algorithm for invert-
ing a unification grammar into an efficient
unification generator." Applied Mathematics
Letters, vol. 3, no. 1, pp. 93-96. Pergamon Press.

Strzalkowski, Tomek and Peng, Ping. 1990.
"Automated Inversion of Logic Grammars for
Generation." Proceedings of the 28th Annual
Meeting of the ACL, Pittsburgh, PA.

352 6

