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A language- independent  method of finite- 
state surface syntactic parsing and word-dis- 
ambiguation is discussed. Input sentences are 
represented as finite-state networks already 
containing all possible roles and interpretations 
of its units. Also syntactic constraint rules are 
represented as finite-state machines where 
each constraint excludes certain types of un- 
grammatical readings. The whole grammar is 
an intersection of its constraint rules and ex- 
cludes all ungrammatical possibilities leaving 
the correct interpretation(s) of the sentence. 
The method is being tested for Finnish, Swedish 
and English. 

INTRODUCTION 

The present approach is surface oriented and 
shallow, and it does not aim to uncover seman- 
tically oriented distinctions. An important source 
of inspiration has been Fred Karlsson's syntactic 
parser for Finnish, FPARSE (1985). The present 
approach tries to formalize the underlying ideas 
of that parser in a finite-state framework (cf. 
Karlsson 1989a,b). The finite-state formalism at- 
tacks the very basic things in syntax such as: 
what  are the correct readings of ambiguous 
words, what  are the clauses in a complex sen- 
tence, how the words form constituents, and 
what  are the syntactic roles of the constituents. 

Let us consider the full framework of automatic 
syntactic parsing. One possible partition of the 
whole process is given in the following figure 1. 

The morphological analysis is done eg. by 
using the two-level model (Koskenniemi 1983). 
Comprehensive systems exist now for Finnish, 
Swedish, English and Russian (about 30-40,000 
root entries in each), and some twenty smaller 
ones. 
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Figure 1. 

The local disambiguation is an essential step 
eg. in Swedish, because many longer word- 
forms have several possible interpretations. In 
part, the local disambiguation supplements the 
two-level description by imposing more sophis- 
t icated restrictions on eg. compounds, and by 
reducing redundant or dupl icate analyses (eg, 
in case a derived word both exists as a given 
lexicalized entry and is productively generated 
from its root), The remaining logic concerns 
weighing various alternatives and excluding 
readings which are significantly less probable 
than the best ones. 
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FINITE-SI'ATE SYNTAX 

The actual finite-state syntax consists of three 
components: 

• Syntactic disambiguation of word-forms 
which have multiple interpretations. 

• Determination of clause boundaries. 

• Determining the head-modifier relations of 
words and the surface syntactic functions 
of the heads. 

These components are well defined but they 
depend on each other in a nontrivial way. It is 
more convenient to write constraint rules for 
disambiguation and head-modifier relations if 
one can assume that the clause boundaries are 
already there. And conversely, the clause 
boundaries are easier to determine if we have 
the correct readings of words available. The 
approach adopted in this paper shows one 
solution where one may describe the con- 
straints freely, ie. one may act as if the other 
modules had already done their work. 

Representation of sentences 

The way we have chosen in order to solve this 
interdependence, relies on the representation 
of sentences and the constraint rules. Each sen- 
tence is represented as a finite-state machine 
(fsm) that accepts all possible readings of the 
sentence. The task of the grammar is to accept 
the correct reading(s) and exclude incorrect 
ones. In a reading we include: 

• One interpretation of each word-form. 

• One possible type of clause boundary or its 
absence for each word boundary. 

• One possible syntactic tag for each word. 

An example of a sentence in this repre- 
sentation is given in figure 2 on the next page. 
In the input sentence each word is represented 
as an analysis given by the morphological ana- 
lyzer. The representation consists of one or mo;e 
interpretations, and each interpretation, in turn, 
of a base form and a set of morphosyntactic 
features, eg. "katto" N ELA SG. 

Word and clause boundaries 

For word boundaries we have four possibilities: 

@@ A sentence boundary, which occurs only 
at the very beginning and end of the 
sentence (and is the only possibility there). 

@ A normal word boundary (where there is 
no clause boundary). 

@/ A clause boundary  separat ing two 
clauses, where one ends and the other 
starts. 

@< Beginning of a center embedding, where 
the preceding clause continues after the 
embedding has been completed. 

@> End of a center embedding. 

Each word is assumed to belong to exactly 
one clause. This is taken strictly as a formal basis 
and implies that words in a subordinate clause 
only belong to the subordinate clause, not to 
their main clause. Furthermore, this implies a 
very flat structure to sentences. Tail recursion is 
treated as iteration. 

There has been a long dispute on the finite- 
state property of natural languages. We have 
observed that one level of proper center em- 
bedding is fairly common in our corpuses and 
that these instances also represent normal and 
unmarked language usage. We do not insist on 
the absence of a second or third level of center 
embedding. We only notice that there are very 
few examples of these in the corpuses, and 
even these are less clear examples of normal 
usage. 

The present version of the finite-state syntax 
accepts exactly one level of center embed- 
ding. The formalism and the implementation 
can be extended to handle a fixed number of 
recursive center-embeddings, but we will not 
pursue it further here. 

Grammatical tags 

One grammatical tag is attached with each 
word. Tags for heads indicate the syntactic role 
of the constituent, eg. MAIN-PRED, SUBJ, OBJ, 
ADV, PRED-COMP, and tags for modifiers reflect 
the part of speech of the head and the direc- 
tion where it is located, eg. No,  <-N. 

This kind of simple tagging induces a kind of a 
constituent structure to the sentence closely 
resembling classical parsing. 

GRAMMAR 

The proposed grammar constructs no analysis 
for input sentences. Instead, the grammar ex- 
cludes the incorrect readings. The ultimate re- 
suit of the parsing is already present as one 
reading in the initial representation of the sen- 
tence which acts as an input to the parser. The 
result is just hidden among a large number of 
incorrect readings. 

Input sentences 

The following is an example of a sentence 
"kalle voisi uida paljonkin" (English glosses 'Char- 
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les could swim much+also') to be input to the 
finite-state syntax: 

(@@ 
"kalle" PROP N NOM SG (/ SUBJ OBJ 

PRED-COMP ) 

@ @< @> @I) 

("voida" VCHAIN V COND ACT 

SG3 MAIN-PRED) 

("vo:Lda" VCHAIN V COND ACT NEG)) 

@ 0< @> @t) 
(/ ("uida" V INFI NOM) 

("uida" V PRES PSS NEG)) 

(I @ @< @> 01) 
(/ ("paljon" ADV kin) 

("paljon" AD-A kin)) 

@0) 

Figure 2 

This is an expression standing for a finite-state 
network. Alternatives are denoted by lists of the 
form: 

(/ (alterr~,at ive-] ) 

(alternat]ve-2) 

o . .) 

The input expression lists thus s o m e  256 distinct 
readings in spite of its concise appearance. 
(The input is here still simplified because of the 
omission of the syntactic function tags.) 

Constraint rules 

Each constraint is formulated as a readable 
statement expressing some necessity in all 
grammatical sentences, eg.: 

NEG .... > NEGV .. 

This constraint says that if we have an occur- 
rence of a feature NEG (denoting a negative 
form of a verb), then we must also have a 
feature NEGV (denoting a negation) in the 
same clause. ".." denotes arbitrary features and 
stems, excluding clause boundaries except for 
full embeddings. 

Types of constraint rules 

Several types of constraint rules are needed: 

. Tect~nical constraints for feasible clause 
bracketing. 

- Disambiguation rules (eg. imperatives only 
in sentence initial positions, negative forms 
require a negation, AD-A requires an adjec- 
tive or adverb to follow; etc.) 

° Clause boundary constraints (relative pro- 
nouns and cer ta in  con junct ions are 
preceded by a boundary, even other 
boundaries need some explicit clue to jus- 
tify their possibility). 

o Even/clause may have at most one finite 
verb and (roughlyspeaking) also must have 
one finite verb. 

Examples of constraint rules 

The following rule constrains the occurrence 
infinitives by requiring that  they must be 
preceded by a verb taking an infinitive comple- 
ment (signalled by the feature VCHAIN). 

INFI NOM ::> VCHAIN .o 

Imperatives should occur only at the begin- 
ning of a sentence. A coordination of two or 
more imperatives is also permitted (if the first 
imperative is sentence initial): 

IMPV :=> 

[@@ I IMPV . @/ , [ COMMA 

I COORD] ] . 

(Here COMMA is a feature associated with the 
punctuation token, and COORD a feature pres- 
ent in coordinating conjunctions.) 

The following disambiguation rule requires that 
modifiers of adjectives and adverbs must have 
their head present: 

AD-A :=> . @ , [A I ADV] 

For clause boundaries we need a small set of 
constraint rules. Part of them specify that in cer- 
tain contexts (such as before relative pronouns 
or subjunctions) there must be a boundary. The 
remaining rules specify converse constraints, ie. 
what kinds of clues must be present in order for 
a clause boundary to be present. 

All these constraints are u l t imately im- 
plemented as finite-state machines which dis- 
card he corresponding ungrammatical read- 
ings. All constraint-automata together leave 
(hopefully) exactly one grammatical reading, 
the correct one. The grammar as a whole is 
logically an intersection of all constraints where- 
as the process of syntactic analysis corresponds 
to the intersection of the grammar and the input 
sentence. 

Output 

With a very small grammar consisting of about 
a dozen constraint rules, the input sentence 
given in the above example is reduCed into the 
following result: 

(@@ "kalle" PROP N NOM SG SUBJ 

@ "voida I' VCHAIN V COND ACT 

SG3 MAIN-PRED 

@ "uida" V INFI NOM 

@ "paljon" AD kin 
@@) 
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Monotonicity 

The formalism and implementation proposed 
for the finite-state syntax is monotonic in the 
sense that no information is ever changed. Each 
constraint simply adds something to the discrimi- 
nating power of the whole grammar. No con- 
straint rule may ever forbid something that 
would later on be accepted as an exception. 

This, maybe, puts more strain for the grammar 
writer but gives us better hope of understanding 
the grammar we write. 

IMPLEMENTATION 

The constraint rules are implemented by using 
Ran Kaptan's finite-state package. In the pre- 
liminary phase constraints are hand-coded into 
expressions which are then converted into fsm's. 
We have planned to construct a compiler 
which would automatically translate rules in the 
proposed formalism into automata like the one 
used for morphological two-level rules (Kart- 
tunen et al. 1987). 

The actual run-time system needs only a very 
restricted set of finite-state operations, intersec- 
tion of the sentence and the grammar. The 
grammar itself might be represented as one 
large intersection or as several smaller ones 
which are intersected in parallel. The sentence 
as a fsm is of a very restricted class of finite-state 
nelworks which simplifies the run-time process. 
An alternative and obvious framework for im- 

plementing constraint rules is Prolog which 
would be convenient for the testing phase. Pro- 
log would, perhaps, have certain limitations for 
the production use of such parsers. 
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