Strategic Lazy Incremental Copy Graph Unification

Kiyoshi KOGURE?

ATR Interpreting Telephony Research Laboratories
Sanpeidani lnuidani, Seika-cho, Soraku-gun, Kyoto 619-02, japan
kogure%atom.ntt.jp@relay.cs.net

Abstract

The strategic lazy incremental copy graph unification
method is a combination of two methods for unifying
{eature structures. One, called the lazy incremental copy
graph unification method, achieves structure sharing
with constant order data access time which reduces the
required memory. The other, called the strategic
incremental copy graph unification method, uses an early
failure finding strategy which first tries to unify
substructures tending to fail in unificalion; this method
is based on stochastic data on the likelihood of failure and
reduces unnecessary computation. The combined method
makes each leature structure unification efficient and
also reduces garbage collection and page swapping
securrences, thus increasing the total efficiency of
natural language processing systems mainly based on
lyped feature siructure unification such as natural

language analysis and generation systems.
¥

1. Introduction

Various kinds of grammatical formalisms without
lransformation were proposed from the late 1970s
Lhrough the 1980s {Gazder el al 86, Kaplan and Bresnan 82, Kay
85, Pollard and Sag 87]. These formalisms were developed
relatively independently but actually had common
properties; that is, they used data structures called
lunctional structures or feature structures and they were
based on unification operation on these data structures.
I'hese formalisms were applied in the field of natural
language processing and, based on these formalisms,
systems such as machine translation systems were
developed [Kopgure el al 88,

In such unification-based formalisms, feature
structure (FS) unification is the most fundamental and
significant operation. The efficiency of systems based on
such formalisms, such as natural language analysis and
pgeneration systems very much depends on their IS
unification efficiencies. This dependency is especially
crucial for lexicon-driven approaches such as
{IPSGlPollard und Sag 86) and JPSGiGunji 87) because rich
lexical information and phrase structure information is
described in terms of FSs. Ior example, a spoken

t Present affiliation: Information Seience Rescarch Laboratory,
NTT Basic Rescarch Laborateries.
Present address: 9-11, Midori-cho 3-chome, Musashino-shi,
Tokyo 180, Japan.

Japancse analysis system based on 11PSG|Kogure 89} uses
90% - 98% of the elapsed time in I'S unification.

Several I'S unification methods were proposed in
[Karttunen 86, Pereira 85, Wroblewski 87). 'I'hese methods uses
rooted directed graphs (DGs) to represent I'Ss. These
methods take two DGs as their inputs and give a
unification result DG. Previous research identified DG
copying as a significant overhead. Wroblewski claims
that copying is wrong when an algorithm copies too much
(over copying) or copies loo soon (early copying). Ile
proposed an incremental copy graph unification method
to avoid over copying and early copying.

However, the problem with his method is that a
unification result graph consists only of newly created
structures. This is unnecessary because there are often
input subgraphs that can be used as part of the result
graph without any modification, or as sharable parts
between one of the input graphs and the result graph.
Copying sharable parts is called redundant copying. A
better method would minimize the copying of sharable
parts. The redundantly copied parts are relatively large
when input graphs have few common feature paths. In
natural language processing, such cases are ubiquitous.
For example, in unilying an FS representing constraints
on phrase structures and an I'S representing a daughter
phrase structure, such cases occur very {requently. In
Kasper’s disjunctive feature description unification
[Kasper 86}, such cases occur very frequently in unifying
definite and disjunct’s definite parls. Memory is wasted
by such redundant copying and this causes frequent
garbage collection and page swapping which decrease the
total system efficiency. Developing a method which
avoids memory wastage is very important,

Pereira’s structure sharing FS unification method can
avoid this problem. The method achieves structure
sharing by importing the Boyer and Moore approach for
term structuresiBoyer and Moore 72]. 'The method uses a
data structure consisting of a skeleton part lo represent
original information and an environment part to
represent updated information. The skeleton part is
shared by one of the input FSs and the result FS.
Therefore, Percira’s method needs relatively few new
structures when two input I'Ss are difference in size and
which input is larger are known before unification.

However, Pereira’s method can create skeleton-
environment structures that are deeply embedded, for
example, in recursively constructing large phrase
structure from their parts. 'This causes O(log d) graph
node access time overhead in assembling the whole DG

223

from the skeleton and environments where d is the

number of nodes in the DG. Avoiding this problem in his

method requires a special operation of merging a

skeleton-environment structure into a skeleton structure,

but this prevents structure sharing.

This paper proposes an FS unification method that
allows structure sharing with constant order node access
time, This method achieves structure sharing by
introducing lazy copying to Wroblewski’s incremental
copy graph unification method. The method is called the
lazy incremental copy graph unification method (the
LING unification method for short).

In a natural language processing system that uses
declarative constraint rules in terms of FSs, FS
unification provides constraint-checking and structure-
building mechanisms. The advantages of such a system
include:

(1) rule writers are not required to describe control
information such as constraint application order in a
rule, and

(2) rule descriptions can be used in different processing
directions, i.e., analysis and generation.

However, these advantages in describing rules are
disadvantages in applying them because of the lack of
control information. For example, when constructing a
phrase structure from its parts (e.g., a sentence from a
subject NP and VP), unnecessary computation can be
reduced if the semantic representation is agsembled after
checking constraints such as grammatical agreements,
which can fail. This is impossible in straightforward
unification-based formalisms,

In contrast, in a procedure-based system which uses
IF-THEN style rules (i.e., consisting of explicit test and
structure-building operations), it is possible to construct
the semantic representation (TTHEN part) after checking
the agreement (II' part). Such a system has the
advantage of processing efficiency but the disadvantage
of lacking multi-directionality.

In this paper, some of the efficiency of the procedure-
based system is introduced into an FS unification-based
system. That is, an FS unification method is proposed
that introduces a strategy called the early failure finding
strategy (the EIFF strategy) to make FS unification
efficient. In this method, F'S unification orders are not
specified explicitly by rule writers, but are controlled by
learned information on tendencies of FS constraint
application failures. This method is called the strategic
incremental copy graph unification method (the SING
unification method).

These two methods can be combined into a single
method called the strategic lazy ineremental copy graph
unification method (the SLING unification method).

Section 2 explains typed feature structures (TFSs) and
unification on them. Section 3 explains a TFS unification
method based on Wroblewski’s method and then explains
the problem with his method. The section also introduces
the key idea of the EFF strategy which comes from
observations of his method. Section 3 and 4 introduce the
LING method and the SING method, respectively.

224

2. Typed Feature Structures

Ordinary I'Ss used in unification-based grammar
formalisms such as PATR{Shieber 85} are classilied into
two classes, namely, atomic ISs and complex FSs. An
atomic I'S is represented by an atomic symbol and a
complex F'S is represented by a set of feature-value pairs.
Complex FSs are used to partially describe objects by
specifying values for certain features or atiributes of
described objects. Complex FSs can have complex FSs as
their feature values and can share certain values among
features. For ordinary ¥Ss, unification is defined by
using partial ordering based on subsumption
relationships. These propertics enable flexible
descriptions.
An extension allows complex I'Ss to have type symbols
which define a lattice structure on them, for example, as
in [Poltard and Sag 87]. The type symbol lattice contains the
greatest type symbol Top, which subsumes every type
symbol, and the least type symbol Bottom, which is
subsumed by every type symbol. An example of a type
symbol lattice is shown in Fig. 1.
An extended complex I'S is represented by a type
symbol and a set of [eature-value pairs. Once complex
I'Ss are exlended as above, an atomic FS can be seen as an
extended complex FS whose type symbol has only Top as
its greater type symbol and only Bottom as its lesser type
symbol and which has an empty set of feature value pairs.
Extended complex I'Ss are called typed [eature structures
(TFSs). TFSs are denoted by leature-value pair matrices
or rooted directed graphs as shown in Fig, 2.
Among such structures, unification can be defined [Ait-
Kaci 86] by using the following order;
ATFES t1 isless than or equal to a TFS 12 if and only if:
e the type symbol of ¢ is less than or equal Lo the type
symbol of t2; and
@ each of the features of {2 exists in tI and has as its
value a TFS which is not less than its counterpart in
tl; and

® each of the coreference relationships in t2 is also held
intl.

Top

ey \\\\

S:gn Syn Head POS

/N/f\

Sign NonEmpty Empty V N P ADV

i

Iigure 1. Example of a type symbol laltice

Lexical Phrase

Sign Lsst List lnst
NonEmpty l nu)ly
Sign Sign
Llst Lnst

Bottom

TypeSymbolQ
featurel TypeSymbol1
feature2 TypeSymbol2
feature3 ?Tag TypeSymbol3
feature4 TypeSymbold
feature5 TypeSymbol5

J

feature3 7Tag

(a) feature-value matrix notation
“?* iy the prefix for a tag and T1"Ss with the same tag are
token-identical.

TypeSymbol0

featurel

TypeSymbol1

feature2 featurel

feature3

TypeSymbol2 TypeSymbol3

featured features

TypeSymbol4 TypeSymbols
(b) directed graph notation

Figure 2: TFS notations

Phrase
[syn Syn N
head X1 Head
subcat X2 Signlist
dtrs CHconst
fcdtr X3 Sign
hdtr Sign L]
syn Syn
head X1
subcat NonEmptySignlist
first X3 ’
L rest 7X2
Phrase -
[dtrs CHconst
(hdtr LexicalSign }
[syn Syn 1
Thead Head
pos P
form Ga
subcat NonEmptySignlist]
first Sign]
syn Syn
head Head
[pos N]
rest EmplySignlist
L L L L AN
Phrase .
[syn Syn .
head 7X1 Head
pos P
form Ga
subcat 7X2 EmptySignlist
dtrs CHconst -
[cdtr 7X3 sign
= [syn Syn]
head Head
_ [pos N 1))
hdtr LexicalSign _
syn Syn
head X1
subcat NonEmptySignList
first 7X3
L L rest X2

Figure 3: Example of TFS unification

Then, the unification of tI and t2 is defined as their
greatest lower bound or the meet. A unificalion example
is shown in Fig. 3. In the directed graph notation, TFS
unification corresponds to graph merging. TFSs are very
convenient for describing linguistic information in
unification-based formalisms.

3. Wroblewski's Incremental Copy Graph Unification
Method and its Problems

In TFS unification based on Wroblewski’s method, a
DG is represented by the NODE and ARC structures
corresponding to a TFS and a feature-value pair
respectively, as shown in Fig. 4. The NODE structure has
the slots TYPESYMBOL to represenl a type symbol, ARCS
to represent a set of feature-value pairs, GENERATION to
specify the unification process in which the structure has
been created, FORWARD, and COPY. When a NODE’s
GENERATION value is equal to the global value specifying
the current unification process, the structure has been
created in the current process or that the structure is
currend.,

The characteristics which allow nondestructive
incremental copy are the NODE’s Lwo different slots,
FORWARD and COPY, for representing forwarding
A FORWARD slot value represents an
eternal relationship while a COPY slot value represents a

relationships.

temporary relationship. When a NODE nodel hasa NODE
node2 as its FORWARD value, the other contents of the
nodel are ignored and the conlents of node2 are used.
However, when a NODE has another NODE as its COPY
value, the contents of the COPY value are used only when
the COPY value is current. After the process finishes, all
COPY slot values are ignored and thus original structures
are not destroyed.

The unification procedure based on this method takes
as its input two nodes which are roots of the DGs to be
unified. The procedure incrementally copies nodes and
arcs on the subgraphs of cach input DG until a node with
an empty ARCS value is found.

The procedure first dereferences both root nodes of the
input DGs (i.e., it follows up FORWARD and COPY slot
values). If the dereference result nodes are identical, the
procedure finishes and returns one of the dereference
result nodes.

Next, the procedure caleulates the meet of their type
symbol. If the meet is Bottom, which means
inconsistency, the procedure finishes and returns Bottom.
Otherwise, the procedure oblains the vutput node with
the meet as its TYPESYMBOL. The output node has been
created only when neither input node is current; or
otherwise the output node is an existing current node,

Next, the procedure treats arcs.
assumes the existence of two procedures, namely,
SharedArcs and ComplementArcs, The SharedArcs
procedure takes two lists of arcs as its arguments and

The procedure

gives two lists of arcs each of which contains arcs whose
labels exists in both lists with the same arc label order.
The ComplementArcs procedure takes two lists of arcs as

225

NODE
TYPESYMBOL: <symbol>
ARCS: <alist of ARC structures >
FORWARD: <a NODE structure or NIL >
COPY: <a NODE structure or NIL >
GENERATION: <aninteger>

ARC
LABEL: <symbol>
VALUE: <a NODE structure>

Figure 4: Data Structures for Wroblewski’s method

Input graph G1

Input graph G2

Output graph G3

Figure 5: Incremental copy graph unification
In this figure, type symbols are omitled.

its arguments and gives one list of arcs whose labels are
unique to one input list.

The unification procedure first treats arc pairs
obtained by SharedArcs. The procedure applies itself
recursively to each such arc pair values and adds to the
output node every arc with the same label as its label and
the unification result of their values unless the
unification result is Bottom.

Next, the procedure treats arcs obtained by
ComplementArcs. Each arc value is copied and an arc
with the same label and the copied value is added to the
output node. For example, consider the case when feature
a is first treated at the root nodes of G7 and G2 in Fig. 5.
The unification procedure is applied recursively to
feature a values of the input nodes. The node specified by
the feature path <a> from input graph G7 (Gl/<a>)
has an arc with the label ¢ and the corresponding node of
input graph G2 does not. The whole subgraph rooted by
Gl/<ac> is then copied. This is because such subgraphs
can be modified later. For example, the node Y(G3/<a ¢
g>) will be modified to be the unification result of G1/<a
cg> (or Gl/<b d>) and G2/<b d> when the [eature
path <b d> will be treated.

226

Incremental Copy Graph Unification

PROCEDURE Unify(nodet, node2)
nodel = Dereference(nodel).
node2 = Derelerence(node2).
IF Eq?(nodel, node2) THEN
Return(nodel).
ELSE
meet = Meet{nodei.typesymbol, node2.typesymbol)
IF EqualXmeet, Bottom) THEN
Return{Bottom).
ELSE
outnode = GetOutNode(nodel, node2, meet).
(shareds1, shareds2)
= SharedArcs{nodel.arcs, node2.arcs).
complementsi
= ComplementArcs{nodet.arcs, node2.arcs).
complements2
= ComplementArcs{node2.arcs, nodel.arcs).
FOR ALL (shared1, shared2) IN {shareds1, shareds2)
Do
arcnode = Unify(shared1.value, shared2.value).
IF Equal?(arcnode, Bottom) THEN
Return{Bottom).
ELSE
AddArc(outnode, sharedi.label, arcnode).
ENDIF
IF Egq?(outnode, nodel) THEN
complements = complement2.
ELSE [F Eq?(outnode, node2) THEN
complements = complement!.
ELSE
complements
= Append(complementsi, compiements2).
ENDIF
FORALL complement IN complements
[3]9)
newnode = CopyNode{comptement.value).
AddArc(outnode, complement.label, newnode).
Return{outnode).
ENDIF
END!F
ENDPROCEDURE

Figure 6; Incremental copy graph unification procedure

The problem with Wroblewski's method is that the
whole result DG is created by using only newly created
structures. In the example in Fig. 5, the subgraphs of the
result DG surrounded by the dashed rectangle can be
shared with subgraphs of input structures G1 and G2,
Section 4 proposes a method that avoids this problem.

Wroblewski’s method first treats arcs with labels that
exist in both input nodes and then treats arcs with unique
labels. This order is related to the unification failure
tendency. Unification fails in treating arcs with common
labels more often than in treating arcs with unique
labels. Finding a failure can stop further computation as
previously described, and thus finding failures first
reduces unnecessary computation. This order strategy
can be generalized to the EFF and applied to the ordering
of ares with common labels. In Section 5, a method which
uses this generalized strategy is proposed.

4. The Lazy Incremental Copy Graph Unification Method

In Wroblewski's method, copying unique label arc
values whole in order {o treat cases like Fig. § disables
structure sharing. However, this whole copying is not
necessary if a lazy evaluation method is used. With such
a method, it is possible to delay copying a node until
either its own contents need to change (e.g., node G3/<a ¢

g >)oruntili{ is found to have an arc (sequence) to a node

that needs to be copied (e.g., node X G3/<a ¢> in Fig. 5

due to a change of node ¥ G3/<a ¢ g>). o achieve this,

ihe LING unification method, which uses copy
dependency information, was developed.

The LING unification procedure uses a revised
CopyNode procedure which does not copy structures
immediately. The revised procedure uses a newly
introduced slot COPY-DEPENDENCY. The slot has pairs
consisting of nodes and arcs as its value. The revised
CopyNode procedure takes as ils inputs the node to be
copied nodel and the arc arcl with nodeT as its value and
node2 as its immediate ancestor node (i.e., the arc’s
initial node), and does the following (see Fig. 7):

(1)if nodel’, the dereference result of nodel, is current,
then CopyNode returns nodel’ to indicate that the
ancestor node node2 must be copied immediately;

(2) otherwise, CopyArcs is applied to nodel” and if it
returns several arc copies, CopyNode creates a new
copy node. It then adds the arc copies and arcs of
nodel’ that are not copied to the new node, and
returns the new node;

{3) otherwise, CopyNode adds the pair consisting of the
ancestor node node2 and the arc arc/ into the COPY-
DEPENDENCY slot of node?” and returns NiL,

CopyArcs applies CopyNode to each are value with

tiodel” ag the new ancestor node and returns the set of

new arcs for non-Ni/l CopyNode results.

When a new copy of a node is needed later, the LING
unification procedure will actually copy structures using
the COPY-DEPENDENCY slot value of the node (in
GetOutNode procedure in Iig. 6). It substitutes arcs with
unewly copied nodes for existing arcs. That is, antecedent
nodes in the COPY-DEPENDENCY values are also copied.

In the above explanation, both COPY-DEPENDENCY
and COPY slots are used for the sake of simplicity.
However, this method can be achieved with only the
{OPY slot because a node does not have non-NIL COPY-
DEPENDENCY and COPY values simultaneously.

The data in the COPY-DEPENDENCY slot are
lemporary and they are discarded during an extensive
pirocess such as analyzing a senlence. However, this does
not result in any incompleteness or in any partial
analysis structure being lost. Moreover, data can be
accessed in a constant order time relative to the number
of DG nodes and need not be reconstructed because this
method does not use a data structure consisting of
skeleton and environments as does Pereira’s method.

The efficiency of the LING unification method depends
on the proportion of newly created structures in the
unification result structures. T'wo worst cases can be
considered:

(1) If there are no arcs whose labels are unique to an input
node with respect to each other, the procedure in LING
unification method behaves in the same way as the
procedure in the Wroblewski’s method.

(2) In the worst cases, in which there are unique label arcs
but all result structures are newly created, the method

CopyNade

PROCEDURE CopyNode(node, arc, ancestor)
node = Dereference(node),
IF Current¥{node) THEN
Return{node).
ELSEIF NotEmpty?(newarcs = CopyArcs(node))
THEN
newnode = Create(node.typesymbol).
node.copy = newnode.
FOR ALL arc IN node.arcs DO
IF NotNIL?(newarc = FindArc{arc.label, newarcs))
THEN
AddArc(newnode, newarc.label, newarc.value).
ELSE
AddArdnewnode, arc.label, arc.value).
ENDIF
Return{newnode).
ELSE
node.copy-dependency
= node.copy-dependency U {Cons{ancestor, arc)}.
Return{NIL.}.
ENDIF
ENDPROCEDURE

CopyArcs

PROCEDURE ArcsCopied(node)
newares = {}.
FOR ALL arc IN node.arcs DO
newnode = CopyNode(arc.value, arc, node).
IF NotNIL?(newnode) THEN
newarc = CreateArc{arclabel, newnode).
newarcs = {newarc} U newarcs.
ENDIF
Return{newarcs).
ENDPROCEDURE

Figure 7: The revised CopyNode procedure

has the disadvantage of treating copy dependency

information.

However, these two cases are very rare. Usually, the
number of features in two inpul structures is relatively
small and the sizes of the two input structures are often
very different. For example, in Kasper’s disiunctive
feature description unification, a definite part IS is
larger than a disjunct definite part F'S.

5. The Strategic Incremental Copy Graph Unification
Method

In a system where 'S unification is applied, there are
features whose values fail relatively often in unification
with other values and there are fecatures whose values do
not fail so often. For example, in Japanese sentence
analysis, unification of features for cunjugation forms,
case markers, and semantic seleclional restrictions tends
to fail but unification of features for semantic
representations does not fail. In such cases, application of
the EFI" strategy, that is, treating features tending to fail
in unification first, reduces unnecessary computation
when the unification finally fails. For example, when
unification of features for case markers does fail, treating
these features f{irst avoids treating features for semantic
representations, The SING unification method uses this
failure tendency informaltion.

These unification failure tendencies depend on
systems such as analysis systems or generalion systems.

227

Unlike the analysis case, unification of features for

semantic representations tends to fail. In this method,

therefore, the failure tendency information is acquired by

a learning process. That is, the SING unification method

applied in an analysis system uses the failure tendency

information acquired by a learning analysis process.

In the learning process, when FS unification is
applied, feature treatment orders are randomized for the
sake of random extraction. As in TFS unification,
failure tendency information is recorded in terms of a
triplet consisting of the greatest lower bound type symbol
of the input TFSs' type symbols, a feature and
success/failure flag., This is because the type symbol of a
TFS represents salient information on the whole TFS.

By using learned failure tendency information,
feature value uniflication is applied in an order that first
treats features with the greatest tendency to fail. This is
achieved by the sorting procedure of common label arc
pairs attached to the meet type symbol. The arc pairs
obtained by the SharedArcs procedure are sorted before
treating arcs,

The efficiency of the SING unification method depends
on the following factors:

(1) The overall F'S unification {ailure rate of the process:
in extreme cases, if no unification failure occurs, the
method has no advantages except the overhead of
feature unification order sorting. However, such cases
do not occur in practice,

(2) Number of features FSs have: if each ¥S has only a
small number of {eatures, the efficiency gain from the
SING unification method is small,

(3) Unevenness of IS unification failure tendency: in
extreme cases, if every feature has the same
unification failure tendency, this method has no
advantage. However, such cases do not oceur or are
very rare, and for example, in many cases of natural
language analysis, S unification failures occur in
treating only limited kinds of features related to
grammatical agreement such as number and/or person
agreement and semanlic selectional constraints, In
such cases, the SING unification method obtains
efliciency gains.

The above factors can be examined by inspecting
failure tendency information, from which the efficiency
gain from the SING method can be predicted. Moreover,
it is possible for each type symbol to select whether to
apply feature unification order sorting or not.

6. Conclusion

The strategic lazy incremental copy graph (SLING)
unification method combines two incremental copy graph
unification methods: the lazy incremental copy graph
(LING) unification method and the sirategic incremental
copy graph (SING) unification method., The LING
unification method achieves structure sharing without
the O(log d) data access overhead of Pereira’s method.
Structure sharing avoids memory wastage. Furthermore,
structure sharing increases the portion of token identical
substructures of I'Ss which makes it efficient to keep

228

unification results of substructures of F3s and reuse
them. This reduces repeated calculation of substructures.

The SING unification method introduces the concept
of feature unification strategy. The method treats
features tending to fail in unification first. Thus, the
efficiency gain from this method is high when the overall
IS unification failure rate of the application process is
high.

The combined method makes each ¥S unification
efficient and also reduces garbage collection and page
swapping occurrences by avoiding memory wastage, thus
increasing the total efficiency of I'S unification-based
natural language processing systems such as analysis
and generation systems based on LIPSG.

Acknowledgement

1 would like to thank Akira Kurematsu, IHitoshilida,
and my other colleagues both at ATR Interpreting
Telephony Research Laboratories and NTT Basic
Research Laboratories for their encouragement and
thought-provoking discussions.

Reference

[Ait-Kaci 86] H. Ait-Kaci. An algebraic semantics approach to the
effeclive resslution of type equations. In Journal of Theoretical
Computer Scietice 45, 1986.

{Boyer and Moore 721 R. 8. Boyer and J. 8. Moore. The sharing of
structures in theorem-proving programs, In B. Meltzer and D.
Michie, editors, Machine Intelligence 7, 1972

[Gazder et al 85] G. Gazder, G. K. Pullumm, BE. Klein and 1 A. Sag.
Generalized Phrase Structure Grammar., Basil Blackwell, 1985.
1Gunji 871 'T'. Gunji. Japanese Phrase Structure Grammar. B, Reidel,
19871,

[Kaplan and Bresnan 82} R, Kaplan and J. Bresnan. Lexical
Functional Grammar: a formal system for grammatical
representation. InJ. Bresnan, editor, The Mental Representation of
Grammatical Relations, MI'l' Press, 1982,

[Karttunen 86} L. Karttunen, D-PATR - A Development
Environment for Unification-Based Grammars, CSLI-86-91, CSLI,
1986.

[Kasper 87] R. T. Kasper. A unification method for disjunctive
feature descriptions. In the Proceedings of the 25¢h Annual Meeting
of the Association for Computational Linguistics, 1987.

{Kay 85| M. Kay. Parsing in functional grammar, in D. Dowty, L.
Karttunen and A. Zwicky, editors, Natural fanguage Parsing,
Cambridge University Press, 1985,

(Kogure et al 88] K. Kogure et al. A method of analyzing Japanese
speech act types. In the Procecdings of the 2ud International
Conference on Theoretical and Methodological Issues in Machine
Translation of Natural Languages, 1988,

[Kogure 891 K. Kogure, Parsing Jupanese spoken sentences based
on HPSG. In the Proceedings of the International Workshop on
Parsing Technologies, 1989.

[Pereira 85] I*. C. N. Percira. Structure shaving representation for
unification-based formalisms. (0 the Proceedings of the 23rd Annual
Meeting of the Association for Compulational Linguistics, 1985,
[Pollard and Sag 87} C. Pollard and 1. Sag. An Infarmation-Based
Syntax and Semantics. CSLI Lecture Notes No. 13, CSLI, 19817.
[Shieber 8G] S. Shieber. An Introduction to Unification-Based
Approaches to Grammar. CSLI Lecture Notes No. 4, CSLI, 1986.
{Wroblewski 87] . Wroblewski. Nondestructive graph unification,
In the Proceedings of the 6th National Conference on Artificial
Intelligence, 1987.

