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Abstract 

The strategic lazy incremental copy graph unification 

method is a combination of two methods for unifying 

hmture structures. One, called the lazy incremental copy 

graph unification method, achieves structure sharing 

with constant order data access time which reduces the 

cequired memory.  The other,  cal led ti~e s t r a t eg ic  

incremental copy graph unification method, uses an early 

fai lure f inding s t ra tegy which f i rs t  t r ies  to unify  

:;ubstructures tending to fail in unification; this method 

is; based on stochastic data on tim likelihood of failure and 

,'educes unnecessary computation. The combined method 

.makes each feature structure unification efficient and 

also reduces garbage collection and page swapping 

occurrences, thus increas ing the total efficiency of 

natural language processing systems mainly based on 

I.yped feature s t ructure  unif icat ion such as na tu ra l  

language analysis and generation sysl~ems. 

1. Introdu(tion 

Various kinds of grammatical  formalisms without 

t ,ranstormation were proposed from the late 1970s 

I;hrough the 1980s l(]azder eL al 85, l(aplan and Bresnan 82, Kay 
1~5, Pollm'd and Sag 871. These furnmlisms were developed 

re la t ively  independentIy but ac tual ly  had common 

properties; th'~t is, they used data s t ructures  called 

ftmctional structures or feature structures and they were 

based on unilieathm operation on these data structures. 

These formalisms were applied in the field of natural  

language processing and, based on these formalisms, 

~:~ystems such as machine t rans la t ion systems were 

developed [l<ol;u, e et a l 8gJ. 
In such un i f i ca t ion-based  fo rma l i sms ,  f e a t u r e  

~trueture (FS) unification is the most fundamental and 

..~ignifieant operation. The efficiency of systems based on 

..~uch formalisms, such as natural language analysis and 

generation systems very much depends on their  FS 

~lnifieatlon efficiencies. Tiffs dependency is especially 

c ruc i a l  for l e x i c o n - d r i v e n  a p p r o a c h e s  such as 

tlPSO[Pollard and Sag 861 and JPSG[Gunji 871 because rich 

lexieal information and phrase structure information is 

described in terms of FSs. For example,  a spoken 
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Japanese analysis system based on llPSG[Kogure 891 uses 

90% - 98% of the elapsed time in FS unification. 

Several FS unificatioa methods were proposed in 

IKarttunen 86, l'ereira 85, Wroblewski 871. These methods uses 

rooted directed graphs (DGs) to represent FSs. These  

methods take two DGs as their  inputs  and give a 

unification result DG. Previous research identified DG 

copying as a significant overhead. Wroblewski claims 

that copying is wrong when an algorithm copies too much 

(over copying) or copies too soon (early copying). Ile 

proposed an incremental copy graph unification method 

to avoid over copying and early copying. 
i towever,  the problem with his method is tha t  a 

unitication result graph consists only of newly created 

structures. This is unnecessary because there are often 

input snbgraphs that can be used as part of the result 

graph without any modification, or as sharable parts 

between one of the input graphs and the result graph. 

Copying sharable parts is called redundant copying. A 
better method would nfinimize the copying of sharable 

varts. The redundantly copied parts are relatively large 

when input graphs have few common feature paths. In 

natural language processing, such cases are ubiquitous. 

I"or example, in unifying an FS representing constraints 

on phrase structures and an FS representing a daughter 

phrase structure, such eases occur very h'equent, ly. In 

Kasper's dis junct ive feature  descript ion unif icat ion 

[Kasper 861, such cases occur very h'equently in unifying 

definite and disjunct's definite parts. Memory is wasted 

by such redundant  copying and this causes f requent  

garbage collection and page swapping which decrease the 

total system efficiency. I)eveloping a method which 

avoids memory wastage is very important. 

Pereira's structure sharing FS unification method can 

avoid this problem. The method achieves s tructure  

sharing by importing the Bayer and Moore approach for 

term structurestl~oyer and Moore 721. The method uses a 

data structure consisting of a skeleton part to represent 

or iginal  i n fo rma t ion  and an e n v i r o n m e n t  par t  to 

represent updated information. 3'he skeleton part is 

shared by one of the input  FSs and the resul t  FS. 

Therefore, Pereira 's method needs relat ively few new 

structures when two input FSs are difference in size and 

which input is larger are known before unification. 

However,  Pere i ra ' s  method can create ske le ton-  

enviromnent structures that are deeply embedded, for 

example,  in reeurs ively  cons t ruc t ing  large  phrase  

structure fl'om their parts. This causes O(log d) graph 

node access time overhead in assembling the whole DG 
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from the skeleton and environments  where d is the 
number of nodes in the DG. Avoiding this problem in his 

method requires a special operat ion of me r g i ng  a 
skeleton-environment structure into a skeleton structure, 

but this prevents structure sharing. 
This paper proposes an FS unification method that 

allows structure sharing with constant m'der node access 
time. This method achieves s t ruc ture  s h a r i n g  by 

introducing lazy copying to Wroblewski's incremental  
copy graph unification method. The method is called the 

lazy i2!cremental copy IFaph unification reel, hod (the 
LING unifieation method for short). 

In a natural  language proeessing system that uses 
dee la ra t ive  cons t r a in t  ru les  in terms of FSs, FS 
unification provides constraint-checking and structure- 

building mechanisms. The advantages of such a system 

include: 
(1)rule writers are not required to describe control 

infimnation such as eonstraiut application order in a 
rule, and 

(12) rule descriptions can be used iu different processing 
directions, i.e., analysis and general,ion. 

However, these advantages in describing rules are 
disadvantages in applying them because of tt~e lack of 
control information. For example, when constructing a 

phrase structure from its parts (e.g., a sentence fi'om a 
subject NP and VP), unueeessary computation can be 

reduced if the semantic representation is assembled after 
checking constraints such as grammatical agreements, 

which can fail. This is impossible in straightforward 

unification-based formalisms. 
In contrast, in a procedure-based system which uses 

IF-TItEN style rules (i.e., consisting of explicit test and 

structure-building operations), it is possible to construct 
the semantic representation (TIIEN par'g) after checking 

the agreement  (IF part).  Such a system has the 
advantage of processing efficiency but the disadvantage 
of lacking multi-directionality. 

In this paper, some of the efficiency of the procedure- 
based system is introduced into an FS unification-based 

system. That is, an FS unification method is proposed 
that introduces a strategy called the e_arly failure £inding 
strategy (the EFF strategy) to make FS unif ica t ion 
efficient, in this method, FS unification orders are not 
specified explicitly by rule wril.ers, but are controlled by 
learned information on tendencies of FS cons t ra in t  
application failures. This method is called the strategic 
ij!~crementaI copy graph unification method (the SING 
unification method). 

These two methods can be combined into a single 
method called the strategic lazy ijAcremeatal copy g~raph 
unification method (the SLING unification method). 

Section 2 explains typed feature structures (TFSs) and 

unification on them. Section 3 explains a TFS unification 

method based on Wroblewski's method and then explains 
the problem with his method. The section also introduces 
the key idea of the EFF strategy wlfich comes from 
observations of his method. Section 3 and 4 introduce the 

LING method and the SING method, respectively. 

2. Typed Feature Structures 

Ordinary FSs used in unification-based grammar 
formalisms such as PAT].{[Shieher 851 arc classified into 
two classes, namely, atomic leSs and complex FSs. An 
atomic FS is represented by an atomic symbol and a 

complex FS is represented by a set of feature-value pairs. 
Complex FSs are used to partially describe objects by 

specifying values for certain features or at tr ibutes of 
described objects. Complex FSs can have complex FSs as 

their feature values and can share certain values among 
features. For ordinary FSs, unification is defined by 
u s i n g  p a r t i a l  o r d e r i n g  based  on s u b s u m p t i o n  

r e l a t i onsh ips .  These p rope r t i e s  e n a b l e  f lex ib le  

descriptions. 
An extension allows complex FSs to have type symbols 

which define a lattice structure on them, for example, as 
in [Pollard and Sag 8"11. The type symbol lattice contains the 
greatest type symbol Top, which subsumes every type 

symbol, and the least type symbol Bottom, which is 
subsumed by every I.ype symbol. An example of a type 

symbol lattice is shown in Fig. 1. 
An extended complex FS is represented by a type 

symbol and a set of feature-value pairs. Once complex 
IeSs are extended as above, an atomic FS can be seen as an 

extended complex FS whose type symbol has only Top as 

its greater type symbol and only Bottom as its lesser type 
symbol and which has an empty set of feature value pairs. 
Extended complex FSs are called typed feature structures 
(TFSs). TFSs are denoted by feature-value pair matrices 

or rooted directed graphs as shown in Fig. 2. 
Among such structures, unification c'm be defined IAP,- 

Kaci 861 by using the following order; 

ATFS tl is less than or equal to a TFS t2 if and only if: 

• the type symbol of tl is less than or equal to the type 
syn'bol of/2; and 

• each of the features of t2 exists in t1 and. has as its 

value a TFS which is not less than its counterpart in 

tl ; and 
each of the coreference relationships in t2 is also held 
in  t l .  

Top 

Sign Syn Head List POS 

Lexical Phrase 
Slgn 

/77  
Sign NonEmpty Empty V N P ADV 
Li .  Lis~ ust I I I I 

NonEmpty Emply I I i I 
Sign Sign I I /  / 
List List 5 /  / 5  

.... U_ 
Bottom 

Figure 1: Exainple of a type symbol lattice 
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T I  

peSymb°10 
eaturel  TypeSymboll ] ]] 

I feature2 TypeSymbol2 
I feature3 ?Tag T ypeSymbol3 
] ]feature4 TypeSymbol4 
L [.feature5 TypeSymbol5 

eature3 7Tag 

(a) feature-value matrix notation 
"?" i~ the prefix for a tag and TFSs with the same tag are 

token-identical. 

TypeSym bol/~ 

feo~.,o/ I 
TypeSymboll ~ [.  . 

TypeSymbol2 4¢" '~°~'~/.~ypeSymbol3 
f e a t u r y  "X~ature5 

TypeSymbol4 4r "~TypeSymbol5 

(b) directed graph notation 

Figure 2: TFS notations 
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dtrs CHconst 

ccltr ?X3 Sign 

syn iyn head Head 
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hdtr 

] 

LexicalSign 
l-syn Syn l I F head :x~ 7/ Lsubcat NonEinptySignList l l [ 

P"" ~×~ l l l l  
Lrest ?X2 J J j J  

Figure 3: Example of TFS unification 

Then, the unification of tl  anti t2 is defined as their 

greatest lower bound or the meet. A unification example 

is shown in Fig. 3. In tile directed graph notation, TFS 

unification corresponds to graph mergi ng. TFSs are very 

convenient  for descr ibing l inguis t ic  informat ion in 

unlfication-based formalisms. 

3. Wroblewski's Incremental Copy Graph Unifi tat ion 

Method and Its Problems 

In TFS unification based on Wrobtewski's method, a 

DG is represented by tile NODE and ARC st ructures  

corresponding to a TFS and a f e a t u r e - v a l u e  pair  

respectively, as shown in Fig. 4. The NODE structure has 

the slots TYPESYMBOL to represent a type symbol, ARCS 

to represent a set of feature-value pairs, GENERATION to 

specify the unification process in which the structure has 

been created, FORWARD, and COPY. When a NODE's 

GENERATION value is equal to the global value specifying 

the current unit]cation process, the structure has been 

created in the current process or that the structure is 

c u r r e l ~ l .  

The character is t ics  which al low n o n d e s t r u c t i v e  

incremental  copy are the NODE's two different slots, 

FORWARD and COPY, for r ep resen t ing  fo rward ing  

relationships. A FORWARD slot value represents an 

eternal relationship while a COPY slot value represents a 

temporary relationship. When a NODE node1 has a NODE 

node2 as its FORWARD value, the other contents of tile 

node1 are ignored and tim contents of node2 are used. 

t{owever, when a NODE has another NODE as its COPY 

value, the contents of the COPY value are used only when 

the COPY value is cub:rent. After the process finishes, all 

COPY slot values are ignored and thus original structures 

are not destroyed. 

The unification procedure based on this method takes 

as its input two nodes which are roots of the DGs to be 

unified. The procedure incrementally copies nodes and 

ares on the subgraphs of each input 1)G until a node with 

an empty ARCS value is found. 

The procedure first dereferences both root nodes of the 

input DGs (i.e., it follows up FORWARD and COPY slot 

values). If the dereferenee result nodes arc identical, the 

procedure finishes and returns one of the dereference 

result nodes. 

Next, the procedure calculates the meet of their type 

symbol .  I f  the m e e t  is B o t t o m ,  wh ich  m e a n s  

inconsistency, the procedure finishes and returns Bottom. 

Otherwise, the procedure obtains the output node with 

the meet as its TYPESYMBOL. The output node has been 

created only when nei ther  input  node is current;  or 

otherwise the output node is an existing current node. 

Next, the procedure t reats  arcs. The procedure 

assumes the existence of two procedures ,  namely ,  

SharedArcs and ComplementArcs. The SharedArcs 
procedure takes two lists of arcs as its arguments and 

gives two lists of arcs each of which contains arcs whose 

labels exists in both lists with the same arc label order. 

The ComplementArcs procedure takes two lists of arcs as 
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NODE 

TYPESYMBOL: < s y m b o l >  
[ ARCS: < a  list of ARC structures > 
FORWARD: "<a NODE structure o r N I L >  

/ COPY: < a NODE structure or N i l ,  > 
GENERATION: < a n  integer> 

ARC 

LABEL: <symbol> 
VALUE: <:a NODE st ruc ture> 

Figure 4: Data Structures for Wroblewski's method 

Input graph GI Input graph 62 

....... ' 7 7  ........ ¢ i 

: Sobg,'aphs not required to be copied 
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Output graph G3 

Figure 5: Incremental copy graph unification 
In this figure, type symbols are omitted. 

its arguments and gives one list of  arcs whose labels are 

unique to one input list. 

The unif icat ion procedure first  t r ea t s  arc pai rs  

obtained by SharedArcs. The procedure applies itself 

,'ecursively to each such arc pair values and adds to the 

output node every arc with the same label as its label and 

the un i f i ca t ion  r e su l t  of the i r  va lues  un less  the 

tmification result is Bot tom.  

Next ,  the p rocedure  t r e a t s  arcs  o b t a i n e d  by 

ComplementArcs. Each arc value is copied and an arc 

with the same label and the copied value is added to the 

output node. For example, consider the case when feature 

a is first treated at the root nodes of G1 and G2 in Fig. 5. 

The unif icat ion procedure is applied recurs ive ly  to 

feature a values of the input nodes. The node specified by 

the feature path < a >  fi'om input graph G1 ( G l / < a > )  

has an arc with the label c and the corresponding node of 

input graph G2 does not. The whole subgraph rooted by 

6 l / < a  c>  is then copied. This is because such subgraphs 

can be modified later. For example, the node Y(G3/<o c 

g > )  will be modified to be the unification result of G 1 /<a  

c g >  (or G 1 / < b  d>)  and G 2 / < b  d >  when the feature 

path < b  d >  will be treated. 

Inc rementa l  Copy Graph Un i f i ca t ion  

PROCEDURE Unify(node1, node2) 
node1 = Dereference(nodel). 
node2 = Dereferencelnode2). 
IF Eq?(nodel, node2) THEN 

Return(node1). 
ELSE 

meet = Meet(nodel.typesymbol, node2.typesymbol) 
IF Equal?(meet, Bottom) THEN 

Return(Bottom). 
ELSE 

outnode = GetOutNode(nodel, node2, meet). 
(sharedst, shareds2) 

= SharedArcs(nodel.arcs, node2.arcs). 
complements1 

= ComplementArcs(node|.arcs, node2.arcs). 
complements2 

= ComplementArcs(node2.arcs, nodel.arcs). 
FOR ALL (sharedt, shared2) IN (sharedsl, shareds2) 
DO 

arcnode = Unify(sharedl.value, shared2.value). 
IF Equal?(arcnode, Bottom) ]HEN 

Return(Bottom). 
ELSE 

AddArc(outnode, sharedl.label, arcnode). 
ENDIF 

IF Eq?(outnode, node1) THEN 
coi'nplements = complement2. 

ELSE IF Eq?(outnode, node2) THEN 
complements = complementL 

ELSE 
complements 

= Append(complements1, complements2]. 
ENDIF 
FORALL complement IN complements 
DO 

newnode = CopyNode(complement.value). 
AddArc(outnode, complement.label, newnode). 

Return(outnode). 
ENDIF 

ENDIE 
ENDPROCEDURE 

Figure 6: Incremental copy graph unification procedure 

The problem with Wroblewski's method is that  tile 

whole result DG is created by using only newly created 

structures. In the example in Fig. 5, the subgraphs of the 
result DG surrounded by the dashed rectangle can be 

shared with subgraphs of input  structures G1 and G2, 
Section 4 proposes a method t.hat avoids this problem, 

Wroblewski's method first treats arcs with labels that 

exist in both input nodes and then treats arcs with unique 
labels. This order is related to the unification failure 
tendency. Unification fails in treating arcs with common 
labels more often than in t reat ing arcs with un ique  

labels. Finding a failure can stop further computation as 
previously described, and thus f inding  fai lures  first 
reduces unnecessary computation. This order strategy 

can be generalized to the EFF and applied to the ordering 

of arcs with common labels. In Section 5, a method which 

uses this generalized strategy is proposed. 

4. The Lazy Incremental Copy Graph Unification Method 

In Wroblewski's method, copying unique label arc 

values whole in order to treat cases like ]Pig. 5 disables 

structure sharing, ttowever, this whole copying is not 
necessary if a lazy evaluation method is used. With such 

a method, it is possible to delay copying a node unt i l  
either its own contents need to change (e.g., node G 3 / K a  c 
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!7>) or until it is found to have an arc (sequence) to a node 

t, hat needs to be copied (e.g., node X G3/<a c> in Fig. 5 

due to a change of node Y G3/<a c g>) .  To achieve this, 

I, he LING u n i f i c a t i o n  me thod ,  wh ich  uses  copy 

dependency information, was developed. 

The LING unif icat ion procedure uses a rev i sed  

CopyNode procedure which does not copy s t ructures  

immedia te ly .  The revised procedure uses a newly 

introduced slot COPY-DEPENDENCY. The slot has pairs 

consisting of nodes and arcs as its value. The revised 

CopyNode procedure takes as its inputs the node to be 

copied n o d e  I and the arc arc I with n o d e  I as its value and 

n o d e 2  as its immediate  ancestor node (i.e., the arc's 

initial node), and does the following (set Fig. 7): 

(1) if n o d e l  ', the dereference result of node / ,  is current, 

then C o p y N o d e  returns node l" to indicate that the 

ancestor node n o d e 2  must be coiffed immediately; 

(2)otherwise, CopyArcs is applied to n o d e 1 "  and if it 

returns ,~;everal arc copies, CopyNode creates a new 

copy node. It then adds the arc copies and arcs of 

n o d e / '  that  are not copied to the new node, and 

returns the new node; 

(3) otherwise, CopyNode adds the pair consisting of the 

ancestor node n o d e 2  and the are arcl into the COPY- 

DEPENDENCY slot of node 1" and returns Nil_. 

, ' , :opyArcs applies CopyNode to each arc value  with 

n o d e  l '  as the new ancestor node and returns the set of 

new arcs for non-Nil_ CopyNode results. 

When a new copy of a node is needed later, the LING 

unification procedure will actually copy structures using 

t h e  C O P Y - D E P E N D E N C Y  slot va lue  of the node (in 

G e t O u t N o d e  procedure in lJ'ig. 6). It substitutes arcs with 

newly copied nodes for existing arcs. That is, antecedent 

nodes in the COPY-DEPENDENCY values are also copied. 

In the above explanation, both COPY-DEPENDENCY 

and COPY slots are used for the sake of simplici ty.  

]lowever, this method can be achieved with only the 

COPY slot because a node does not have non-NIL COPY- 

I)EPENDENCY and COPY values simultaneously. 

The da t a  in the COPY-DEPENDENCY slot  a re  

I;emporary and they are discarded during an extensive 

process such as analyzing a sentence, ttowever, this does 

not result  in any incompleteness  or in any par t ia l  

analysis structure being test. Moreover, data can be 

accessed in a constant order time relative to the number 

of DG nodes and need not be reconstructed because this 

method does not use a data s t ruc ture  consisl, ing of 

,';keleton and environments as does Pereira's method. 

The efficiency of the LING unification method depends 

on the proportion of newly created structures in the 

unification result structures. Two worst eases can be 

considered: 

(t) If there are no arcs whose labels are unique to an input 

node witlh respect to each other, the procedure in LING 

unification method behaves in the same way as the 

procedure in the Wroblewski's method. 

(2) In the worst eases, in which there are unique label arcs 

but all result structures are newly created, the method 

C o p y N o d e  

PROCEDURE CopyNode(node, arc, ancestor) 
node = Dereference(node). 
IF Current?(node) THEN 

Return(node). 
ELSE IF NotEmpty?(newarcs = CopyArcs(node)) 
THEN 

newnode = Create(node.typesymbol). 
node.copy = newnode. 
FOR ALL arc IN node.arcs DO 

IF NotNIL?(newarc = FindArc(arc.label, newarcs)) 
THEN 

AddArc(newnode, newarc.label, newarc.value}. 
ELSE 

AddArc(newnode, arc.label, arc.value). 
ENDIF 

Returo(newnode). 
ELSE 

node.copy-dependency 
= node.copy-dependency U {Cons(ancestor, arc)}. 

Return(Nil_). 
ENDIF 

ENDPROCEDURE 

CopyArcs  

PROCEDURE AlcsCopied(node) 
newarcs = O- 
FOR ALL arc IN node.arcs DO 

newnode = CopyNode(arc.value, arc, node). 
IF NotNIL?(newnode) THEN 

newarc = CreateArc(arc.label, newnode). 
newarcs = {newarc} U newarcs. 

ENDIF 
Return(newarcs). 

ENDPROCEDURE 

Figure 7: The revised CopyNode procedure 

has the disadvantage of t reat ing copy dependency 

information. 

However, these two cases are very rare. Usually, the 

number of features in two input structures is relatively 

small and the sizes of the two input structures are often 

very different. For example, in Kasper 's  disjunctive 

feature description unification, a definite part  ["S is 

larger than a disjunet definite part t"S. 

5. The Strategic Incremental Copy Graph Unification 

Method 

In a system where FS unification is applied, there are 

features whose values fail relatively often in unification 

with other values and there are features whose values do 

not fail so often. For example, in Japanese sentence 

analysis, unification of features for conjugation forms, 

case markers, and semantic selectional restrictions tends 

to fai l  but  u n i f i c a t i o n  of f e a t u r e s  for s e m a n t i c  

representations does not fail. In such cases, application of 

the EFF strategy, that is, treating features tending to fall 

in unification first, reduces unnecessary computation 

when the unification finally fails. For example, when 

unification of features for case markers does fail, treating 

these features first avoids treating features for senmntic 

representations. The SING unification method uses this 

failure tendency infornmtion. 

These unif icat ion fa i lure  t endenc ies  depend on 

systems such as analysis systems or generation systems. 
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U n l i k e  the analys is  case, uni f ica t ion  of f ea tu r e s  for 

semantic  representat ions tends to fail. in this method, 

theretbre, the fai lure tendency information is acquired by 

a learning process. Tha t  is, the SING unification method 

applied in an analysis  system uses the fai lure tendency 

information acquired by a learning analysis  process. 

in  the  l e a r n i n g  process,  when  FS u n i f i c a t i o n  is 

applied, feature t r ea tment  orders are randomized for the 

sake of random extract ion.  As in TFS  uni f ica t ion ,  

fai lure tendency information is recorded in terms of a 

t r iplet  consisting of the greates t  lower bound type symbol 

of  t he  i n p u t  T F S s '  t y p e  s y m b o l s ,  a f e a t u r e  a n d  

success/failure flag. This  is because the type symbol of a 

' rFS represents sa l ient  information on the whole TFS. 

By us ing  l e a rned  f a i l u r e  t endency  i n f o r m a t i o n ,  

feature va lue  unification is applied in an order that  first 

t reats  features with the greatest  tendency to fail. This  is 

achieved by the sorting procedure of common label arc 

pairs at tached to the meet  type symbol. The arc pairs 

obtained by the SharedArcs procedure are sorted before 

t rea t ing arcs. 

The efficiency of the SING unification method depends 

on the following factors: 

(1) The overal l  FS unification failure rate of the process: 

in extreme cases, if Go unification fai lure occurs, the 

method has no advan tages  except  the ove rhead  of 

feature unification order sorting. However,  such cases 

do not occur in practice. 

(2) Number  of features FSs have: i f  each FS has only a 

small  number  of features, the efficiency gain from the 

SING unification method is small.  

(3) Unevenness  of FS unification fa i lu re  tendency:  in 

e x t r e m e  cases ,  i f  e v e r y  f e a t u r e  h a s  t he  s a m e  

uni f ica t ion  fa i lu re  t endency ,  th is  m e t h o d  has  no 

advantage.  However,  such cases do not occur or are 

very rare, and for example,  in many  cases of na tu ra l  

language analysis,  FS unif icat ion fai lures occur in 

t r e a t i ng  only l imi ted  k inds  of fea tu res  r e l a t ed  to 

g rammat ica l  agreement  such as number  and/or person 

agreement  and semant ic  selectional constraints.  In 

such cases, the SING un i f i ca t ion  m e t h o d  o b t a i n s  

efl]ciency gains. 

The  above factors can be examined  by in spec t ing  

fai lure tendency information,  from which the efficiency 

gain from the SING method can be predicted. Moreover,  

i t  is possible for each type symbol to select whether  to 

apply feature unification order sort ing or not. 

6. Conclusion 

The strategic lazy incremental copy graph (SLING) 

unification method combines two incrementa l  copy graph 

unif icat ion methods:  the lazy incremental  copy graph 

(LING) unification method and the strategic incremental 

copy graph  (SING) u n i f i c a t i o n  me thod .  The  LING 

unification method achieves s t ructure  sha r i ng  wi thou t  

the O(log d) data access overhead of Perei ra ' s  method.  

Structure  shar ing  avoids memory wastage'. Fur thermore ,  

s t ructure shar ing  increases the portion of token identical  

substructures  of FSs which makes  i t  ef f ic ient  to keep 

uni f ica t ion  resul t s  of subs t ruc tu res  of FSs and reuse  

them. This  reduces repeated calculation of substructures.  

The SING unificat ion method introduces the concept 

of fea ture  u n i f i c a t i o n  s t r a t e g y .  ' t h e  m e t h o d  t r e a t s  

features tending to fail in unification first. Thus,  the  

efficiency gain  fi'om this method is high when the overall  

FS unif icat ion fai lure rate of the application process is 

high. 

The  combined method  Inakes  each FS un i f i c a t i on  

efficient and also reduces garbage col lect ion and page 

swapping occurrences by avoiding memory wastage, thus 

increas ing the total efficiency of li'S un i f ica t ion-based  

na tura l  l anguage  processing sys tems such aa ana lys i s  

and generat ion systems based on I l I 'SG.  
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