
A t3ottom-up Generation for Principle-based Grammars Using
Constraint Propagation

Masato Ishizaki
NTT Communications and Information Processing Laboratories

1-2356 Take Yokosuka-shi Kanagawa-ken, 238-03 Japan

E-mail: islfizaki%nttnly.nt t.jp@relay.cs.net

A b s t r a c t

A bottom-up generation algorithm for
principle-based grammars is proposed.
Bottom-up generation has (1) an ineffi-
ciency because of a high degree ofnonde-
terminism, (2) a limitation caused by in-
ability to process logical forms produced
by grammar rules, and (3) an identity
semantic problem. This paper describes
a solution to these problems and imple-
mentation issues for the algorithm using
a constraint logic programming language.

1 I n t r o d u c t i o n

The generation of strings from logical forms was stud-
ied intensively by [Shi88,89][Ca189]. The study of
this problem shed light not only on the efficiency and
soundness of generation algorithms, but also on the
descriptive appropriateness of grammar itself.

A generation algorithm based ou the Early's
method has proposed, which is capable of analyzing
and generating sentences in a uniform architecture
[Shi88]. In this architecture the criterion of"seman-
tic monotonicity" is assumed to reduce fruitless gen-
eration. As Shieber has mentioned, this method is
still inefficient and limited, and ,instead, has shown
an efficient and general top-down generation algo-
rithm using the semantic-head concept 1 [Shi89].

An algorithm for Categorial Unification Gram-
mar(C.UG) is mentioned in [Ca189]. As to the impor-
tant ~:ole of lexicon, this grammar shares the same
property as principle-based grammars, but difthrs in
that CUG has grammar rules in the lexicon(This
enables top-down generation with prediction as dis-
cussed in [Shi89]). The identity semantic problem
and the lexical indexing problem are some of the
same problem noted in principle-based grammars.

Generation based on Lexical Functional Gram-
mar(LFG) is formalized in [Wed88]. He defined
the derivability and the generability of f-structure-
to-string and semantic-structure-to-string mapping.
These concepts seem to be suitable for top-down

lPrec ise ly his a lgo r i t hm tMces a m i x t u r e of top-down and
top -down way.

strategies. His idea is intrigning in that discourse
information, such as topic, can be reflected on an
output string. Bottom-up generation also has the
possibility of incorporating this information. This
issue will be discussed later.

I propose a bottom-up generation algorithm for
principle-based grammars, which makes use of the
same grammar as a parser. Bottom-up generation is
inefficient due to a high degree of nondeterminism.
It is limited by its inability to process se,nantic ex-
pressions created by grammar rules. It also has an
identity semantic problem. This paper describes the
solution to these problems and the issues concerning
implementation of the algorithm using a constraint
logic programming language, cu-PROLOG.

First, the problems of bottom-up generation are
shown. Next the generation algorithm using con-
straint propagation and solutions to these problems
are considered. Third, some issues concerning imple-
mentation and an example of this algorithm are men-
tioned. Finally, the problem of logical form equiva-
lence, lexical indexing, and controlled search using
the discourse information are discussed.

2 P r o b l e m s of Pr inc ip le -based
G r a m m a r G e n e r a t i o n

Principle-based grammars like tlead-driven Phrase
Structure Grammar(HPSG) or Japanese Phrase
Structure Grammar(JPSG) seem to be inadequate
for top-down operations. The reasons for this are;
(1) as principle-based grammars have few skeleton
rules, top-down operations that a r e a s s u m e d to use
rules are not adequate for them,
(2) much information is in lexical items instead of
grammar rules in principle-based gramm~Lrs, and
(3) the construction of semantic expressions is intu-
itively adequate for bot tom-up operations ~.
Therefore, an efficient bottom-up generator for
principle-based grammars must be developed.

Bottom-up generation has two advantages; it can
use lexical information at an early phase, and can

b o t t o m - u p s t ra tegy. Bu t gene ra t i on is f u n d a m e n t M l y driven in a

2U:aification can be used for bl -dlrect ional opera t ions . However, if you need des t ruc t ive s e m a n t i c ope ra t ions (' des t ruc t ive ' means
t ha t a r e su l t an t s eman t i c express ions canno t be cons t ruc t ed from base seman t i c express ions w i thou t these special funct ions) , uni-
f icat lon c a n n o t be used for these opera t ions .

1

1 8 8

avoid the left recursion because of the property sim-
ilar to bo t tom-up parsing, tIowever, bo t tom-up gen-
eration has three problems[Shi88,89][Ca189];
(1) inefficiency because of a high degree of nondeter-
minism,
(2) l imitation which is caused by inability to process
semantic expressions created by grammar rules, and
(3) vestigial[Shi88], or identity semantic prob-
lem[Ca189] (hereafter called identity semantic prob-
lem).
(2) and (3) relate to completeness and coherence
problems[Wed88].

Inefficiency because of a high degree of nondeter-
minism means that a naive bot tom-up generation al-
gori thm cannot use semantic information properly,
and many semantic-irrelevant subexpressioas that
are syntactically correct will result.

One of the reasons that Shieber adopted a top-
down strategy is that he insisted on the existence of
logical tbrms produced by gramnmr rules. This as-
sumpti0n means that sub-semantic expressions can-
not be derived from resultant semantic ones that are
different from normal ones. It is shown later that if
we permit this kind of destructive semantic opera-
tion, we cannot obtain an efficient algorithm.

An identity semantic problem is common among
generation algorithms using lexical-based grammars.
The semantic expressions a re classified into substan-
tial eh'ments that contribute to the whole semantic
expres.~ions, and functional elements(these are iden-
tity semantic expressions) without influencing the
whole ones. Examples of tile functional elements are
complementisers in English, or case-marking postpo-
sition ~n 3apanese. Simply speaking, the solution is
to introduce these items at some time, but this also
produces high inefficiency.

3 Pr inc ip l e -based Grammar Gen-
erat ion

pendent of data, it does not incur such a problem.
Hasida has shown that sentence analysis and syn-

thesis can be described following a simple program
with a constraint, constitttent 3

struct(Category,X,Y); constituent(Category,X,Y).

If active constraint solving techniques are applied
to the problem, can this program be executed effi-
ciently? Active constraint solving is equivalent to
fold/unfold transformation [Tud89]. If the constraint
clause is simply unfolded, then the number of clauses
created will be the same as the number of lexical
items. Presently this is not an efficient way 4.

If passive constraint solving techniques are used,
then how is da ta obtained? The answer is to predict
the base lexical item, which is the core of a sentence,
using a top-down prediction analogous to a bottom-
up parsing technique.

gen(cat(P,F,Aa,Au,Sc,Sem)) :-
pred(cat(P,F,Aa,Au,Sc,Sem),Sem,BaseLex),
gen1(Sem,BaseLex,NewBaseLex,

cat(P,F,Aa,Au,Sc,Sem)).

genl(Sem,BaseLex,NewBaseLex,Cat)
verify(NewBaseLex,Cat).

genl(Sem,BaseLex,NewBaseLex,Cat)
getLex(Sem,BaseLex,BaseLexl),
gen1(Sem,BaseLexl,NewBaseLex).

getLex(Sem,BaseLex,NewBaseLex) ' -
g e t L e x l (S e m , L e x) ;

p s r (Lex ,BaseLex ,NewBaseLex) .
getLex(Sem,BaseLex,NewBaseLex) "-

g e t L e x l (S e m , L e x) , i n t roduceFLex(FLex) ;
p s r (L e x , F L e x , L e x l) ,
p s r (L e x l , B a s e L e x , N e w B a s e L e x) .

Figure 1: The generation algorithm.

3 . 1 G e n e r a t i o n A l g o r i t h m U s i n g C o n -

s t r a i n t P r o p a g a t i o n

Natural language processing, such as sentence com-
prehension and production, is thought of as con-
straint satisfaction problems[Has86]. Constraint
propagation techniques are very effective in these
problems[Din86]. Constraint propagation techniques
are classified into two methodologies: active con-
straiut, which transforms constraints into more ef-
ficient ones, and passive constraint, which is realized
by the function such as freeze in Metalog. Passive
constraint is similar to data-driven control, so if data
does not arrive, the constraints are unsolved. As ac-
tive constraint solving transforms constraints inde-

This generation algorithm is sketched by the cu-
PROLOG, or proiogIII notation ill figure 1. Tile
predicate gen produces a sentence string from the
term cat(P,F, Aa,Au, Sc, Sem,) 5, Tile term cat repre-
sents a set of features: P is tile feature for part-of-
speech, F is form such as verb inflection, Aa is ad-
jacent node specification, Au is adjunct node specifi-
cation, Sc is subcategorization information, and Sere
is semantic information. The predicate prod antici-
pates BaseLez that is the core of a sentence(normally
head verb), using part-of-speech and semantic infor-
mation. BaseLez has lexical and feature information.
The predicate genl gets a lexical item, and applies
principles to the i tem and the base item until produc-
ing a sentence, getLez extracts a lexical item that is

3This is ra ther misleading. An efficiency problem of generation and theoretical consideration about the problem are also
mentioned in [Has86 I.

4If other techniques are developed, this consideration is not always correct.
SAlthough this top predicate is a recognizer, constructing a tree or a string is easily realized with little effort.

2

189

constrained by principles 6 using semantic informa-
tion. introduceFLez extracts an identity semantic
item that is constrained by principles.

3.2 Counterarguments to Bot tom-up
Generation Deficiency

3.2.1 I ne f R c i ency D u e to High D e g r e e o f
N o n d e t e r m i n i s m

C.onstraint propagation techniques in the previous
section remedies nondeterminism of a bottom-up
generation problem. An example of nondetermin-
ism is the noun phrase generation in [Shi89]. If a
NP occurs before a verb, different case NPs will be
generated nondeterministically in figure 2.

e

Sp i verb
e

~Pn

Figure 2: Nondeterminism in NP generation.

~PZ

e

NPi

e

.~P.
• J

o
e

NP n

psr (Daughter,ttead,Mother);
member(Daughter,Head.subcategorization).

psv represents a Mother --, Daughter Head rule.
The predicate member is used as a constraint, which
says the Daughter node is a member of a subcatego-
rization of tire Head node. The constraint propaga-
tion process is shown in figure 3.

v e r b cor, st rair~s ,VPj

due to i t s ~ u b c a t e ~ o r i z a t i o n l ~ t .

~ verb

Figure 3: Reduction of nondeterminism in NP
generation.

Constraints can also eliminate the irrelevant
phonolotgical expressions shown in [Ca189], and com-
pactly express tire order-variant subcategorization
list in JPSG.

3.2.2 :L imi ta t ion Owing to Spec ia l S e m a n t i c
:Express ions

Suppose a Mother --~ Daughter Head rule, where

Mother.sent = f(Daughter.sem, Head.sem)

and semantic function f destructively creates
Mother.sem from Daughter.sere and Head.sere. That
is, Daughter.sem and Head.sere cannot be predicted
from Mother.sere. To get the value of Daughter.sere
or Head.sere from Mother.sere, the inverse func-
tion f -1 is needed. The implicit assumption of in-
versability of the function[Shi89] is very severe, and a
rather tricky feature structure must be constructed
to escape the completeness problem. Therefore, it
seems better to use another function in a semantic-
monotonous framework instead of this one.

However, we can easily modify the predicate pre-
dict to get another head using the semantic informa-
tion to which the function is applied, if this inverse
function is obtained.

3.2.3 A n I d e n t i t y S e m a n t i c P r o b l e m

When using constraints to access fuuctlonal lexical
items, an exhaustive search is not required. The in-
sertion of Non-null constituents, such as case markers
and fnnctional nouns, can be restricted using various
constraints (syntactic, semantic information). For
example, case markers that indicate the relationships
between verbs and nouns are demanded by subcat-
egori~ation information of the verbs. By using the
constraint solving techniques, efficiency can be im-
proved equal to or more than that of the top-down
algorithm. Of Course since such occurrences(e.g, mdl
constituents, or gap) cannot be restrained, this con-
venient mechanism cannot be used. However, this
situation is the same as top-down algorithms.

4 Implementat ion

4.1 Grammar FormaUsm and Imple-
menta t ion Language

Our algorithm exploits JPSG as phrase structure
grammar formalism. The concept of JPSG inherits
the fundamental property of HPSG. That is, JPSG
makes use of a set of feature-value pairs, feature con-
straints and unification to stipulate Japanese gram-
mar instead of rewriting rules for terminal and non-
terminal symbols. Subcategorization inforlnation is
stored in lexical entries, instead of being stored in
grammar rules.

Logical forms are expressed by the semantic rep-
resentation language proposed by [Hob85]. The dis-
tinctive feature of this language is its simplicity of
the form for discourse processing. The reason for
this simple form is; (1)a conjunction of atomic predi-
cates, (2)all variables are existentially quantified with
the widest possible scope, and (3)there is no func-
tions, functionals, nested quantifiers, disjunctions,
negations, or modal or intensional operators.

The algorithm is implemented using the cu-
PROLOG developed in ICOT[Tud89]. The main fen-

~A few phrase s tructure rules tha t observe principles, such as the head feature principle, are used in the program.
3

190

~ure of this language is to adopt constraint unification
instead of normal unification. This gives it more de-
:;criptive power and more deelarativeness than nor-
real prologs. The clause of cu-PROLOG is repre-
sented as;

h ,--- bl,b2,.. . ,bn;el,c2,. . . ,cn

where h is a head, bl ,b2,. . . ,bn bodies, and cl,c2,_.,en
constraints.

p ,~ r (ca t (P , F, [] , [] , Sc, Sere),
c a t (P o s , Form, [c a t (P , F, [] , [] , Sc, Sere)], Au, SubCat, SEM),
c a t (P o s , Form, [] , Au, SubCat, SEM) , [ad j acen t p]) .

] ? s r (c a t (P , F, [] , Au, Sc, Sem),
c a t (P o s , Form, [] , Adj, [c a t (P , F, [] , /lu, So, Sem) l K e s t] , SEM),
c a t (P e s , Form, [] , Adj, B.est, SEM), [subca t p]) ; s c c o n d (P , P o s) .

~,c cond(p.~v) .
sc cond (ad l l , n) .
sc_cond(n~p) .

d i e t (sho r t en , ca t (n , n , [] , [] , [] , [boy,X])) .
d i e t (t a m a , c a t (n , n , [] , [] , [] , [b a l l , X])) .
dict (ker,

cat(v,vcr,[],[],S,[[kick,E,Sbj,Obj],[R1,Sbj],[R2,0bj]]));
pp_wo ga(S,Obj,Sbj,R2,R1).

d:i.et(ga,cat(p,ga,cat(n,F,lta,Au,Sc,Sem), [] , [] , S e m)) .

d : t c t (w o , c a t (p , w o , c a t (n , F , A a , A u , S c , S e m) , [] , [] ,Sere)) .

This grammar is shared with the parser mentioned in [Tud89]

Figure 4: Part of grammar rules and a lexicon.
s h o n e n - g a t a m a - ~ 0 k e l ' - u

c a t (v , [] . [[k i c k , 1~:, X. Y], [b o y , X]. [b a i t , ¥]])

c a t (n [b o y , X]) c a t (p , ga , . , ~ ~ ~ ~ ~ ~ ~ ~ ' ~ " ~

c a t (v [c a t (p , wo) , c a t (p , ga)])

Figure 5: The generation process example.

This language has the ability to solve constraints
in an active or passive way, but we use it for passive
constraint solving.

4 . 2 A n E x a m p l e

Part of the g rammar rules and a lexicon, and the
process of generation from the logical form,

[[kick,E,X,Y] , [boy,X] , [ball,Y]]

are shown in figure 4 and figure 5.

The flow of the algorithm is described as fol-
lows; First, base lexical i tem (1)(a top down pre-
diction) is predicted.This prediction instanciates tile
packed subcategorization list, and constrains couno
terpart conditions(2). Next, a lexical item is used
to satisfy the constraints(2). Since this goal cannot
be achieved by only the existing lexical item, a func-
tional element is inserted that observes the restric-
tion of the subcategoriz, ation list(3). As for (4) and
(5), a similar process continues until a sentence is

191

produced. Finally we get an output

shonen-ga tama-wo ker-u.
a boy a ball kicks

from the semantic expression.
Figure 6 shows the result tree of real cu-PROLOG

execution.

v [vcr] : [[kick ,E_2516 ,Y_2517 ,Y_2518] , [boy, Y_2517] , [ball ,Y_2518]] --- [subcat_p]

- - p [ga] : [boy, Y_2517] - - - [adj acenl;_p]
I
I --n [n] : [boy, Y_2517] --- [shonen]

I
I __p [ga, AJA{n [n] }] : [boy ,Y 2517] --- [ga]

__v[vcr,SC{p[wo]}] :[[kick,E_2516,Y_2517,Y_2518],[boy,Y_2517],[ball,Y 2518]] [subcat p]

- - p [a] : [b a l] : , Y 2518] - - - [adj acen t p]
l
I --n [n] : [ball, Y_2518] --- [t ama]
I
l__p[wo,AJA{n[n]}] :[ball,Y_2518]---[wo]

_ V [VCr,

SC{p[ga],p[wo]}]:[[kick,E 2516,Y_2517 ,Y 2518],[boy ,Y 2517],[ball,Y_2518]]---[ker]

E = E_2516 X = Y_2517 Y : Y_2518 S = [shonen,ga,tama,wo,keru]

Figure 6: The real execution result of the example using the cu-PROLOG.

5 R e m a i n i n g Problems

5 . 1 T h e P r o b l e m o f L o g i c a l F o r m

E q u i v a l e n c e

The problem of logical form equivalence has been dis-
cussed in [App87]. This problem concerns genera-
tion algorithms which are sensitive to logical forms.
Namely, if an input semantic expression is converted
by meaning postulates, different expressions with
the same meaning are produced by different proce-
dures.This problem occurs in the generation of ex-
pressions that have quantificational ambiguities.

A conversion using meaning postulates does not
need syntactic or semantic information, but needs
discourse information. Since generation strategies
such as [Shi89], [Ca189] as well as ours use syntac-
tic and semantic information, it is reasonable not to
consider those operations. However, algorithms must
have enough extendibility to reflect discourse infor-
n'tation.

5 . 2 L e x i c a l I n d e x i n g S t r a t e g y

Searching lexical items is very important for efficient
algorithms. Metaknowledge about semantic expres-
sions is necessary for this purpose, especially in the
case of complex ones[Cal89].

This problem is not peculiar to generation. For
example, discourse processing in which various infer-

ences are executed by using the semantic expressions
has the same problem. To cope with this problem,
[Hob85] has proposed more simple logical forms. I
also consider this a good idea for generation.

5 . 3 C o n t r o l l i n g S e a r c h U s i n g D i s -

c o u r s e I n f o r m a t i o n

Many sentences corresponding to one meaning can
be generated by our algorithm(or other algorithms).
Idealistically all sentences are distinctively produced
according to other information such ~s discourse in-
formation. Our algorithm has the possibility for eas-
ily realizing this mechanism.

Suppose that an information uni~ agrees with a
predicate in the semantic information. Control of the
element position is realized by solving the constraint
of the older information in turn r. Passivisation in
Japanese is achieved by controlling the insertion of
functional elements.

Transformational Grammar(the antecedent of
Parameter and Principle theory) indicates the inter-
esting piece of data that have many sentences with
the same meaning. This concerns the position of the
elements and the introduction of functional elements.
As mentioned above, our algorithm is capable of re-
fleeting discourse information on surface structures
because of constraints.

~This a s s u m p t i o n is p rob lemat ic because cor respondence is no t g u a r a n t e e d and if r~ s eman t i c e l ement is un ique ly m a p p e d to a
lexical entry, the pos i t ion is direct ly des igna t ed by the order of the s eman t i c e lements .

5

192

The algorithm proposed in [Wed88] can generate
sentences that reflect discourse phenomena such as
topicalization in LFG, but the formalization of topic
greatly helps to simplify the algorithm.

6 Conclus ion

In this paper an efficient bottom-up generation algo-
rithm for principle-based grammars using constraint
propagation is proposed, and a solution to bottom-
up generation problems is mentioned. Issues about
implementation and an example processed by the al-
gorithm are also shown. Both the parser[Tud89] and
the generator use the same grammar, that is, the
grammar is reversible.

Since problems not inherent in bottom-up gener-
ation are connected to the logical form problem, or
the knowledge representation problem, they should
be discussed more deliberately from the viewpoint of
generation.

Acknowledgement

The author wishes to extend his sincere gratitude to
Yoshihiko Hayashi, Tsuneaki Kato, and Gen-ichiro
Kikui for their comments on the initial idea of this
generation algorithm. The author also wishes to ex-
press his indebtness to Tuda ttirosi, and Hasida Koiti
of ICOT for permitting him to use the cu-PROLOG.
Thanks are also due to Dr. Terashima, Mr. Sakama,
Mr. tfigashida, Mr. Shimazaki and all the members
of the Natural Language Processing Division for their
cooperation.

References

lApp87] Douglas E. Appelt. 1987. "Bidirectional
grammars and the design of natural language gen-
eration systems", Theoretical Issues in Natural
Language Processing - 3, New Mexico, 185-191.

[Cal89] Jonathan Calder, Mike Reape, and Henk
Zeevat. 1989. "An Algorithm for Generation in
Unification Categorial Grammar", Proceedings of
the 4tlh Conference of the European Chapter of
the Association for Computational Linguistics,
Manchester, 10-12 April, 233-240.

[Din86] Dincbas, M. 1986. "Constraints, Logic Pro-
gramming and Deductive Databases", Proceed-
ings of France-Japan Artificial Intelligence and
Computer Science Symposium 86, Tokyo, 30
November-3 December, 1-27.

[Has87] Hasida Koichi and Isizaki Shun. 1987. "De-
pendency Propagation: a Unified Theory of Sen-
tence Comprehension and Generation", Proceed-
ings of the 11th International Conference on
Computational Linguistics, Milan, 23-28 August,
664-670.

[Hob85] Itobbs, R. 1985. "Ontological Promiscuity",
23rd Annual Meeting of the Association for Com-
putational Linguistics, New Jersey, 61-69.

[Po187] Carl Pollard and Ivan A.Sag. 1987. "An
Information-based Syntax And Semantics", Vol 1
Fundamentals, CSLI Lecture Notes Number 13.

[Gun87] Takao Gunji. 1987. "Japanese Phrase Struc-
ture Grammar", D.Reidel Publishing Company.

[Shi88] Stuart M. Shieber. 1988. "A Uniform Archi-
tecture for Parsing and Generation", Proceedings
of the 12th International C.onference on C, om-
putational Linguistics, Budapest, 22-27 August,
614-619.

[Shi89] Stuart M. Shieber, Gertjan van Noord,
Robert C. Moore, and Feraando C.N.Pereira.
1989. "A Semantic-Head-Driven Generation Al-
gorithm for Unificati0n-Based Foriualisms", 27th
Annual Meeting of the Association for Computa-
tional Linguistics, British Columbia, 26-29 June,
7-17.

[Tud89] Tuda Hirosi, Hasida Koiti, and Sirai
Hidetosi. 1989. "JPSG Parser on Constraint
Logic Programming", Proceedings of the 4th
Conference of the European chapter of tile As-
sociation for Computational Linguistics, Manch-
ester, 10-12 April, 95-102.

[Wed88] Jurgen Wedekind. 1988. "Generation as
Structure Driven Derivation", Proceedings of the
12th International Conference on C'.omputational
Linguistics, Budapest, 22-27 August, 732-737.

193

