
N o r m a l F o r m T h e o r e m P r o v i n g f o r t h e L a m b e k C a l c u l u s ~

M a r k Hepp le

C e n t r e for C o g n i t i v e Sc ience , U n i v e r s i t y of E d i n b u r g h ,

2 B u c c l e u c h P lace , E d i n b u r g h , S c o t l a n d .

e-maih markQuk.ac .ed .epis temi

A b s t r a c t

The possibility of multiple equivalent proofs presents a problem
for efficient parsing of a number of flexible categorial grammar
(CG) frameworks. In this paper I outline a normal form sys-
tem for a sequent formulation of the product-free associative
Lambek Calculus. This le,'~ls to a simple parsing approach that
yields only normal form proofs. This approach is both ~afe in
that all distinct readings for a sentence will be returned, and
optimal in ~;hat there is only one normal form proof yielding
each distinct meaning.

1 T h e L a m b e k C a l c u l u s

T h e (p r o d u c t - f r e e) L a m b e k C a l c u l u s (L a m b e k , 1958)

is a h i g h l y f lexible C G f r a m e w o r k t h a t can be g iven a

Gen tzen . . s ty le s e q u e n t f o r m u l a t i o n w i t h t he fo l lowing
rules :23

(1) Axiom: x : f =~- x : /

Righ~ rules: F, y:i ~ x : f y:i, F ~ x:f

F ----> x/y:Ai . f [/R] F -~ x\y:Ai . f
[\rt]

Left :rules: &, =.~ y:g F, x:fg, A ~ z:h
I/L]

F, x /y : f , A, A => z:h

~-~ y:g F, x:fg, A => ~:h
. [\L]

F, A, x \y : f , A =¢- z:h

Cut rule: A ==> x:] F, x:f , A --> y:g
[cut]

F, A, A --'~- y:g

In th is f o r m u l a t i o n , wh ich we wil l cal l L, each type is

a s s o c i a t e d w i t h a l a m b d a express ion , c o r r e s p o n d i n g

to i ts m e a n i n g , and the ru les spec i fy tlow these are

c o n t r u c t e d . T h e left ru les c o n ' e s p o n d s e m a n t i c a l l y to

f u n c t i o n a l a p p l i c a t i o n , t he r i gh t ru les to f u n c t i o n a l

a b s t r a c t i o n . T h e l a m b d a exp re s s ion for t he s u e c e d e n t

of t h e r o o t s e q u e n t c o r r e s p o n d s to its m e a n i n g as a

combinaf f ion of t he m e a n i n g s of the a n t e c e d e n t types .

T h i s wi l l be loose ly re fe red to as the ' m e a n i n g (or

1I am grateful to Guy Barry and Olyn Morrill for discussion
of the ideas in this paper. Thanks also to Inge Bethke and
Neil Leslie for comments on a draft. All errors are my own.
This work was carried out under ESRC Postgraduate Award
C00428722003.

21n the notation used here, types x /y and x \y both denote
functions from y (the argument type) into x (the value type).

3A sequent is an object of the form F => x, where =0 , the
derivability relation, indicates that x can be derived from F.
Specific to '~he Lambek Calculus, we require that each sequent
has a non-empty antecedent sequence and precisely one sucre-
dent type. We call the bottom-most sequent of any proof the
root, and the inference that has the root as its conclusion the
root inference. We call to the right hand premise of a left rule
its major premise, its other the minor premise. In addition, we
call the nudn branch of any proof that (unique) path Sl, s 2..,sn
through the proof such that s I is the root sequent, sn corre-
sponds to an axiom instance, and non of s2,..,sn is the minor
premise of a left inference.

r e ad ing) ass igned by t h e p r o o f ' . We a s s u m e t h a t each

a n t e c e d e n t t y p e of t he in i t i a l s e q u e n t is ass igned a

d i s t i nc t v a r i a b l e for its s e m a n t i c s . 4 T h e s e m a n t i c s of

t ypes wi l l s o m e t i m e s be o m i t t e d to save space .

L a m b e k (1958) d e m o n s t r a t e s t h a t t he cu t rule is

e l i m i n a b l e in t he sense t h a t al l t h e o r e m s of t he cal-

cu lus Call be p r o v e n us ing j u s t t he r e m a i n i n g rules.

T h e s e r e m a i n i n g ru les p r o v i d e a dec i s ion p r o c e d u r e

for t h e o r e m h o o d (s ince each in fe rence r e m o v e s a con-

nec t ive , so t h a t s ea rch for p r o o f s is f ini te) , and we

c o n s i d e r only these in t h e res t of t he p a p e r f i

2 T h e P r o b l e m o f M u l t i p l e E q u i v a l e n t P r o o f s

T h e ca lcu lus L t y p i c a l l y a l lows m o r e t h a n one p roo f

ass ign ing each poss ib le r e a d i n g for a s equen t . We

sha l l c o n s i d e r s o m e i l l u s t r a t i v e e x a m p l e s . T h e fol-

lowing two proofs ass ign t h e s a m e r ead ing :

z:h =:> z:h y:gh ~ y:gh
i/L]

y/'~:g, z:h y:gh x:fgh • :> ~ x.:gh I/L]
x /y : f , y/'~:g, z:h o x:fgh

y:gh ~ y:gh x:fgh ~ x:fgh
[/L]

~:h ~ ~:h x /y : f , y:gh ::~ x:f#h
[/L]

x /y : / , y/~:g, z:h :¢ x:fgh

Here we see t h a t t he o p e r a t i o n s i n v o l v e d in ' b u i l d i n g '

s o m e a r g u m e n t t y p e (here y) m a y be p e r f o r m e d ei-
t h e r be fore o r a f t e r t h e left in fe rence on the f u n c t o r

r e q u i r i n g t h a t a r g u m e n t (here x / y) . A n o t h e r e x a m -

ple of d i s t i n c t p roofs a s s ign ing the s a m e m e a n i n g is

the fo l lowing (in b o t h of w h i c h the s u b p r o o f for the

p r emi se x / y , y => w / (w \ x) is o m i t t e d) :

z:g :~ z.:o x/y::g, y:i :> w/(w\x):~j.(j(ygi))
I/L)

x / y / , : y , ~:0, y:~ :~ w/(w\x):~j.(j(:gi))
[/R]

x ly / z : f , z:g ::~ w/(w\x)/y:Ai .Aj . (j (fgi))

x/y:/g, y:i : . w/(w\x):~j.(j(ygi))
[/n]

z:g -~ ~:g x/y: fg , y:i ~ w/(w\x):Ai.Aj.(j(fgi))
[/LJ

x /y / z : f , ~,:g ::z, w/(w\x) /y:M.Aj . (j (fg i))

T h e s e show a case w h e r e a r igh t in fe rence can equa l ly

wel l be m a d e e i t he r before or a f t e r s o m e u n r e l a t e d left

4This is because we are interested in the equivalence or not
of proofs aside from contingent equivalences that may stein
from particular semantic assignments to antecedents.

6Moor~gat (1990) demonstrates that cut elimination pre-
serves the strong recogrdsing capacity of the calculus in the sense
that the systems with and without cut will yield precisely the
same readings for any theorem modulo logical equivalence.

173

inference. A final example:

x /y : f :=~ x/y:f y:g ::~ y:g x:,fg :=~ x:fg
[/L]

x/y:f, y:g =-~ x:fg
x/y:] :=> x/y:Ag.fg I/R]

Here we see tha t where the type instant ia t ing an ax-
iom is functional, it is also possible to ' unpack ' the
type and ' equa te ' subformulas of this in fur ther ax-
iom instances. The l ambda expressions assigned by
these two proofs are equivalent under r/-reduction.

The existence of multiple equivalent proofs presents
a problem for efficient theorem proving based on the
calculus L. Search for proofs must be exhaustive to
ensure tha t all different ' readings ' for a given sequent
are found, and a naive theorem prover will expend
considerable effort const ruct ing proofs tha t assign the
same meaning. This radically reduces the efficiency
of Lambek Calculus theorem proving. Hepple and
Morrill (1989), working with a somewhat different
CG framework tha t also admits multiple equivalent
proofs, suggest tha t this problem be dealt with by de-
riving a not ion of normal form (NF) for proofs, and
then adapt ing the parsing method such tha t this only
re turns NF proofs. Khnig (1989) takes this kind ap-
proach to handl ing the problem of multiple equivalent
proofs for Lambek sequent theorem proving, generat-
ing a notion of NF for such proofs, and deriving from
this a parsing s t ra tegy intended to compute only NF
proofs. :However, Khnig 's parsing algori thm fails to
exclude all non-NF proofs when used with a s tandard
proposi t ional Lambek Calculus.

In this paper I define a NF system for the sequent
formulat ion of the (product-free) Lambek Calculus,
which gives rise to a parsing approach that yields only
normal proofs.

3 A N e w A p p r o a c h

3.1 H e a d e d P r o o f s

We begin by introducing the notion of head type, as
this is crucial to the approach. We use symbols P , Q,
R , etc to designate proofs, and the notat ion P(S) to
represent a proof P of the sequent S. Intuitively, the
head type of a sequent S under some proof P (S) is the
antecedent type of S tha t has widest scope semanti-
cally. The meaning assigned by a proof is always a
l ambda expression of the form: 6

(3) y:j" ~ y:)" x:gi f ::~ x:gi f

z:i =~ z:i y:f, x\y:gi :=:, x.gtf [/L]

y:f, x\y/z:g, z:i ~ x:gi$

y:y, x\y/z:g ~ x/~:Ai.(gif) I/R]

[\L]

The head type here is the antecedent x \ y / z since it is
the semantic variable g of this tha t has widest ,~cope in
the meaning assigned by the proof. Note the charac-
teristic of this proof tha t a value subpar t of the head
type is ' equa ted ' with a value subpar t of the succe-
dent type in the sense tha t these together iustanti-
ate opposite sides of an axiom instance, in part icular
tha t axiom instance at the top of the main br,~nch (cf.
footnote 3). This fact is the syntact ic counterpar t of
the head type having the widest scope semantically. 7
More generally, for the head H of a sequent under
some proof and the sole antecedent A of the proof 's
main branch axiom, it is always the case tha t A is a
value subformula of H (or is H itself). Not all proofs
have a head, as in (4), where the variable tha t has
widest scope in the meaning assigned by the proof
does not originate with an antecedent of the initial
sequent, but r a the r with a type tha t is ' in t roduced '
in a r ight inference:

(4) y:g =~ y:g x:fg :..v. x:fg
I/L]

x/y:f, y:g =~ x:fg z:i(fg) ~ z:i(fg).[\L]

x/y:f, y:g, ~\x:i ::V. z:i(fg)
[/n]

x/y:I , y:g ~ ~/(~\x):~.C~Cfg))

We use numerical ly subscripted proof symbols (e.g.
P3~ P n , Qm~ etc) to refer to the headedness of
proofs, in par t icular a proof Pn , n > 1, is a headed
proof, with the head being the n th member of the
antecedent sequence of the roo t sequent. If n = 0,
then the proof is unheaded. Given the relation men-
tioned above between the head of a proof and the
main branch axiom of this, we can give a recursive
character izat ion of the form of subscripted proofs as
in (5) (where superscr ipted Greek letters are used
to indicate sequences of given numbers of types, i.e.
71" n corresponds to a sequence of n types):

(5) Each proof Pn is of one of the forms:

a. axiom where n = 1

x = = ~ x

(2) Avl..v,~.(hU1..Um) (n, m >_ O)

where h is some semantic variable. The head type of
the sequent under the given proof is tha t antecedent
whose meaning is the variable h. Consider (3):

b. qraCy, iv ::~ x) where ((m > 0) & (n =: m - 1))
[\RI or (Cm = 03 & (~ --: 0))

71- =:~ x\y

e. Qm(r k, y =v. x) where ((m : k + 1) & (n --- 0))
~k ~ x /y [/rt] or CC'~ < k) ~ C" ::: "q)

eNote that the meaning assigned by any (cut-free) proof is
always be a lambda expression in/~-normal form (i.e. contain-
ing no subterms of the form (Av.P)Q) - - provided that the
meanings assigned to the root sequent antecedents are in f~-
normal (which is the case here, since we assign these distinct
variables) as may be shown by an inductive proof.

7Note the semantic significance of the main branch axiom in
this. The semantics assigned by a proof P always corresponds
to that of the succedent of the main branch axiom of P having
undergone zero or more lambda abstractions. This follows from
the semantics of the rules of L.

174

d. R (s k . ~ y) q ; (¢ % x , ¢ ~ z)
[\L]

¢ ~ ~ k x\y, ¢ . z

who,'e ((~" < .*) a (~ = ~'))
or ((j > m) & C n = j + k))

e. ~ (~k , :~y) Q s C ¢ ' L x , ¢ ~)
[/L]

¢, , , ~/y, ~k, ¢ =~,

where ((j _< m + 1) & (n = j))
or ((j > m + 1) ~ (,, = i + k))

The base case for the definition is where a subproof
consists only of an axiom inference, in which case the
head of the proof is the single antecedent member
(and hence, n = 1). From there, the position of the
hexad can be kept track of by count ing the number
o:l' antecedents added in beside the head as subproofs
are combined. Note tha t every cut-free proof in L is
a proof P~ '.for s o m e value of n.

8 2 A C o n s t r u c t i v e N o t i o n o f N o r m a l F o r m

In (6), a recursive definition is given for a c o n s t r u c -

t ive notion of NF (CNF). For this definition, it is
u,.;eful to distinguish two subtypes of proof: T 1 and
"r:!. The set of ~'1 proofs is precisely the set of CNF
proofs. The 'r2 proofs are a subset of the 71 p roof s - -
those whose main branch includes no right inferences.

(6) The set of CNF (T1) proofs is the smallest set such that:

a. i] x is an atomic type, then axiom E T 2

x =:2> x

b, if P,,+t(Tr n, x, ¢ =~ z) @ T 2 arm Q(¢ ==:, q) 6 7" 1

the. q (¢ ~ q) p,,+~(~r '~, x, ¢ ~ ~) e r2
I/L}

~r", :,/q, ¢, ¢ ~

[\L]
~"~, ¢, ~\q, ¢ ~

c. i f P E T2 then P C T 1

d. if P(Tr, x => y) ~ T 1 then

P (~, x -~ y) e r l , . .d p (x, r : . y)
I/R]

r -~ y/x or ~ y\x

(~ Tl

Given (6a), C N F proofs only contain axiom leaves
tha t are ins tant ia ted with atomic types. (6b) allows
fo:c the occurrence of left inferences in CNF proofs,
aI~d requires tha t these must be with respect to the
head of the major prenfise's subproof (~major sub-
proof ') . Given (6c), every ~r 2 proof is a 71 proof also.
Given (6d), only T1 proofs may have a right rule
the root in fe rence- -no ~r2 proof will be of this form.
Since the major subproof of a left inference m u s t be
a 7 2 proof, a r ight inference may never occur above
sL left inference on the main branch of a C N F proof.
Thus, the main branch of a CNF proof is always of
the following form (start ing at the root): zero or more
rigilt inferences, followed by zero or more left infer-
ences, te rminat ing with an axiom inference. The mi-
nor subproofs of left inferences are T 1, and so are also

of this general form.
We will see later how we can ensure tha t the the-

orem prover generates all and only the CNF proofs
of a sequent. However, for such a move to be useful,
the notion of C N F must satisfy certain requirements.
Most important ly , generat ing only CNF proofs should
be safe in the sense tha t the theorem prover returns
every distinct reading of a sequent tha t can be as-
signed. This will be the case if for every proof of a
sequent, there exists a semantical ly equivalent CNF
proof. To demons t ra te this, a second notion of nor-
mal form will be defined, using the method of proof
reduction, which is equivalent to the construct ive no-
tion of NF, and provably complete.

3.3 A R e d u c t i v e N o t i o n o f N o r m a l F o r m

8 . 3 . 1 R e d u c t i o n a n d N o r m a l F o r m s

A s tandard approach to defining NFs involves defin-
ing a c o n t r a c t i o n relation (1>1) between terms. The
contract ion relation is s ta ted as a number of contrac-
tion rules, each of the form X ~>1 Y (in which the
form on the left is te rmed a redex and the form on the
r ight its c o n t r a c t u m) . Each contrac t ion rule allows
that any term containing an occurrence of a redex
may be t ransformed into a term in which that occur-
rence is replaced by its con t rac tum. A term is said
to be in NF if and only if it contains no occurrences
of any redex. The contract ion relation generates a
r e d u c t i o n relation (I>) which is such that X reduces

to Y (X i> Y) if and only if Y is obtained from X by
a finite series (possibly zero) of contract ions. A term
Y is a NF of X if and only if Y is ~ N F a n d X ~- Y.

3 .3 .2 P r o o f R e d u c t i o n a n d t h e L a m b e k C a l c u -
l u s

We shall next consider a set of contract ion rules
s tated on proofs in L. 8 These together define a re-
ductive notion of NF. A total of eighteen contract ion
rules are required, which fall into four groups.

An instance of the first group of contract ion rules
is shown in (7).

(7) x/y ::> x/y y ::> y x ::> x
t , , I/L]

x/y, y ==:, x
x/y :* x/y l/R]

This contract ion rule expands an axiom leaf insta:n-
tinted with a functional type to give a subproof con-
taining two axiom leaves, each of which is instantiated
with a 's impler ' type than the original axiom (under
some metric of simplicity). There is a second rule in
this group for which the functional type in the redex
is leftward directional.

An instance of the second group of contract ion rules
is shown in (8). In the redex, a r ight inference is
applied to the major premise of left inference. In the
cont rac tum, the subproof has been res t ructured so

SProof reduction originates with Prawitz (1965).

175

tha t the r ight inference is applied to the root sequent,
and the left inference to its sole premise.

(8) Q(¢, x, ¢ , w ~ z)[/RI

P (~ ~ y) ¢, ~, ¢ ~ ~/W[/Lj
¢, x/y, ~, ¢ =~ ~/w

PCr =, y) qC¢, ~, ¢ , w :~ ~) [/L]
> , ¢ , x / y , ~, ¢ , w ~ ~

l/R]
¢, x/y, ~, ¢ ~ ~/w

There are four contract ion rules of this group which
arise with the directionali ty of the connectives for the
two inferences.

An instance of the third group of contract ion rules
is shown in (9). Note tha t this makes use
of the subscripted proof notat ion, allowing us to
reeognise where a left inference is with respect to
the head of the s ta ted subproof. In the subproof
P , ,+1(¢ '~, x, ¢ , v, c~ =:> z), the head is the type x. It
follows tha t the type x / y is the head of the entire
redex proof, and tha t v / w is not. Thus we can see
that in the redex, a head left inference (i.e a left infer-
ence with respect to the head of the given subproof)
is applied to the major premise of non-head left in-
ference. In the cont rac tum, the subproof has been
res t ructured so that the head inference is applied to
the root sequent, and the non-head inference to its
major premise.

a(-~ :~ w) ¢", x/y, ~, ¢, v, ~ ::> ,~
I/L]

¢" , x/y, r, ¢ , v/w, ~,, ~ :~

>, R("/ :=~ w) P , ,+t (¢ n, x, ~', v, ¢r :-~ z)[/L]

Q(.,r ~ y) en, x, ¢, vlw, ~, a ~
I/L}

¢ ' , ×ly, ~r> ¢, vlw, ~, a ~

There are eight contractio-1 rules in this group, which
arise with the directionali ty of the connectives in-
volved, and whether the head functor occurs to the
right or left of the non-head functor.

An instance of the fourth group of contract ion rules
is shown in (10). In the redex, a head-left inference
is applied to the major premise of a non-head left in-
ference, where the lat ter can be seen to in-part serve
the purpose of 'bui lding ' the a rgument required by
the head functor. In the cout rac tum, the inferences
have been reordered so that the head inference ap-
plies to the root sequent, and the non-head inference
applies to the minor premise of this.

(~_01 qC~r, ~, ~ ~, y) p, ,+~(¢~, ×, ~ ~ ~)
I/L}

I/L]
¢" , ×/y, 7r, ~/w, ¢, -y, ~ ~

R (¢ =~ w) q (x , v,-y ~ y) /L
_ _ [le , ,+ , (¢ ,~

I/L]

We :require four contrac t ion rules of this pat tern ,

176

which arise with the direct ionali ty of two functors
(the left-right order of the two functors being deter-
mined by the head functor) .

We call any proof tha t contains no redexes (which
is consequently a NF under the reduct ion system)
an irreducible normal f o r m (INF). It is easily veri-
fied tha t for each cont rac t ion rule, the con t rac tum
subproof assigns a l ambda expression for the root se-
quent combinat ion equivalent to tha t assigned by the
redex. Thus, meaning is preserved under contraction,
and also in turn under reduction. Hence, an INF of
any proof P always assigns the same reading as P .

We will next demons t ra te tha t normal i sa t ion holds
for the reductive NF system; tha t is, tha t every proof
has an INF. This proper ty follows provided that the
following (stronger) p roper ty holds:

(11) Strong Normalisation: Every reduction is finite.

Thus, for every proof, a finite series of contract ions
always leads to an irreducible proof.

To prove tha t every reduct ion is finite, it is suf-
ficient to give a metric tha t assigns to each proof a
finite non-negat ive integer score, and under which it
can be shown tha t every applicat ion of a contract ion
rule reduces the score of a proof by a positive integer
amount . The scoring system given in (12) satisfies
these r equ i remen t s?

(12)The
a .

score for any proof P (written sc(P)) is as follows:

if P is an axiom leaf instantiated with type x
then so(P) = factorial(3 ate(x))

b. ff P has a right inference at its root, wi~h premise
subproof Q then sc(P) = sc(Q) + 1

c. if the root inference of P is a head left inference,
with major subproof Q and minor subproof R then
sc(P) = (sc(R) + 1)sc(q) + 1

d. if the root inference of P is a non-head left infer-
ence, with major subproof Q and minor subproof
R tt~ert so(P) = (sc(R) + 1)so(q)

3.4 E q u i v a l e n c e o f t h e T w o S y s t e m s

We write C N F (P) and I N F (P) to indicate tha t a
proof is in NF under the respective systems. The two
NF systems can be shown to be equivalent in that
they designate precisely the same sets of proofs to be
in NF, i.e:

(13) Lemma h for all P, CNF(P) ~-~ INF(P)

This follows given Lemmas 2 and 3.

(14) Lemma2: for all P, ~INF(P) --~ ~CNF(P)

It is easily checked tha t no redex subproof is in CNF.
Hence, any reducible proof is not a CNF.

(15) Lemma 3: for all P, -~CNF(P) --* -,INF(P)

9The atmnic type count (ate) of a type is defined as follows:
(i) ate(x) = 1 if x is an atomic type; (ii) ~,tc(x/y) = atc(x\y)
= ate(×) + ,~tc(y)

This may be proven by induction on P
Given the equivalence of the two NF systems, and

the normalisation result for the reductive NF system,
it follows that for every proof in L, there exists a CNF
proof that assigns the same reading. Hence, generat-
ing all and only the CNF proofs of a given sequent
is safe in. the sense that we can be sure all possible
readings for the combination will be returned.

3.5 T h e U n i q u e n e s s o f N o r m a l F o r m s

The approach wi!l be optimal if there is only a sin-
gle CNF asslgnhlg each distinct reading. As we have
already noted (footnote 6), the meaning assigned by
any (cut-free) proof will be a lambda expression that
is in /%normal form. Extensional equivalence for the
Lambda Calculus is given by the /~]-reduction sys-
tem. Since this system exhibits the Church-Rosser
property~ any two terms in fl-normal form will be
equivalent just in case applying some sequence of ~/o
contractions (i.e. Av . f v ~>1 f) to each yields the same
term (nmdulo c~-conversion).

Let us consider two distinct CNF proofs P and Q
of some sequent S. Assume that these differ ill some
regard along their main branches. The bot tom part of
each main branch will consist of a sequence of zero or
more right inferences. The length and nature of this
sequence of inferences is fully determined by the type
of the succedent in the root sequent S, and so P and
Q may not differ in this regard. Thus, the meanings
assigned by P and Q will be lambda expressions of
the following forms (in which the lambda abstractions
Av:..v,~. correspond to the initial sequence of right
inferences):

P : .\v:..v~.(fYi..U,,~)
Q : ,~vl..v,.(oUd..uU)

The remainder of each main branch will consist of
some sequence of head left inferences, terminating
in an axiom instance. Consequently, the two CNF
proofs may differ along their main branch only in
two regards: (i) a different antecedent type is the
functor for the first left inference (this determining
the functor for the remaining left inferences on the
main branch), (ii) even if the same type is chosen for
the functor of the first left inference, at some point a
different ,;ubsequence of antecedents is chosen to 'con-
s truct ' the argument of the functor. In either case,
the semantics assigned to the two proofs will be non-
equivalent. Thus, for case (i) f and g will be distinct
variables. In both cases~ it may be that m :]c, and
even if ra --=]c, at least some of the Ui and Ui I will
differ in the lambda variables that m'e put together to
form these (i.e. the lambda expressions corresponding
to antecedent semantics). It is evident that in any of
these eventualities, no sequence of ~?-contractions can
yield a common term from two such terms and so
the two proofs must assign distinct readings. If the
two NF proofs are similar along theh" main branches,
they must differ in the minor subproof for some left
inference. The same arguments apply in turn that if

these subproofs differ in form, then they must be non-
equivalent. Hence, distinct CNF proofs always differ
semantically, and so the uniqueness property holds.
Since reduction preserves meaning, and distinct NFs
are non-equivalent, it follows that every proof has a
unique NF. 1°

3.6 N o r m a l F o r m T h e o r e m P r o v i n g

For the purpose of theorem proving, we specify an
amended version of the calculus, which we term the
' p~s ing calculus' (PC), which is such as to only allow
the construction of proofs that con'espond to CNF
proofs. To this end, we move from a system which
uses a single notion of sequent, to one which distin-
guishes two different types of sequent Type 1 and
Type 2-- th is type being marked as a subscript on the
derivability arrow =>. The point of this distinction is
to allow us to limit the form of the proof that may be
given for some sequent merely by its type. The Type
1/Type 2 distinction essentially corresponds to the
~1/72 distinction in the definition of CNF. For Type
2 sequents we distinguish the antecedent element that
must be the head of any proof of the sequent by di-
viding the antecedent sequence into three subparts,
separated by -+-'s, as for example in ¢+x+Tr => z, of
which the first and last par ts are (possibly empty)
sequences of types, and the middle paa't a single type
that is required to be the head of any proof of this
sequent.

The following set of inference rules allow only
proofs of the required form to be constructed:

(16)Axiom: e~-x:f-~e =~,,~x:f where x is an atomic
type (an(l e denotes the
en~pty sequence)

Right rules: F, y:i ~ x : f I/R] y:i, 1" ~ : x : f

r ~,×/y:~i./ r ~,x\y:~;./[\R]

Left rules: A =>lY:g F + x : f g + A =:>~z:h
I/Li

F+x/y:f+(A, A) :>:z:h

A =>ly:g F÷x:fg+A =>2z:h
[\L]

(F, ~ ,)+×\y : f" i -A -->~ z:h

[2~-*1] rule: A + x : f + F =>~y:g where y is an ~tomi(:
[2~-*1] type, and x := y or x

A, x:f, r -~ly:g a funct ion onto y

Observe that the axiom inference specifies a Type 2
sequent, with the single antecedent type being the
designated head of that sequent. This corresponds
to clause (a) of the definition of CNF in (6). The
left inference rules have Type 2 sequents for their
conclusion and major premise and a Type 1 sequent
for the minor premise. Note that the active type for
the inference is the designated head of the conclusion
and its value subformula is the designated head of
the major premise. This corresponds to clause (b) of
the CNF definition. The right rules have a Type 1

l e F r o m this it follows tha t the reduc t ive NF sys t em exhibi ts
the Church -Rosse r property,

1 7 7

premise and conclusion, in line with clause (d) of the
CNF definition. In addition, there is a rule [2~-41],
corresponding to the clause (c) of the CNF defini-
tion. Note there is a condition on the rule which
does not correspond to anything hi clause (c). It is
easily shown that this condition is always fulfilled by
T2 proof~s, so its addition does not alter the set of
proofs admit ted by the PC. However, the condition
will considerably limit the application of the [2~-.1]
rule in top-down search for proofs and so increase the
efficiency of theorem proving. It is easily shown that
PC and CNF proofs exist in 1-to-1 correspondence.

4 D i s c u s s i o n

It can be seen that the form of any CNF proof is
strongly tied to the form of the lambda expression it
assigns a.s its meaning. As we have seen, the lambda
term corresponding to the meaning of any (cut free)
proof in I, is always a fl-NF term of the form:

~vl . .v~.(hUi. .U~) (n, m > 0)

where h is a variable, and the main branch of a CNF
proof is always of the following form (starting at the
root): zero or more right inferences, followed by zero
or more left inferences, terminating with an axiom
inference. The correspondence between the two is as
follows: the initial sequence of right inferences cor-
responds to the lambda abstractions of ~he variables
vi..v~, and the ensuing left inferences are just those
required to apply the variable h (the semantics of the
head) to each of its arguments Ui..Um in turn, with
e~ch of the subterms Ui being 'constructed ' in the
subproof for a minor premise.

These observations provide the basis for relating
this approach to that of Khnig (1989), mentioned ear-
lier. Khnig uses a non-standard method for arriving
at a notion of NF proof which involves firstly map-
ping proofs into objects called ' syntax trees', where
proofs that yield the same syntax tree form an equiv-
alence class, and then mapping from each syntax tree
to a single NF proof. From the form of such NF
proofs, Khnig derives a set of Cnesting constraints '
which are used to limit the operation of a top-down
theorem prover, and which are such that they will
never prevent the construction of any NF proof. As
Khnig points out, however, the ~nesting constraints '
do not exclude the construction all non-NF proofs
when used with a s tandard propositional formulation
of the Lambek Calculus (though bet ter results are
obtained with a unification-based version of the Lam-
bek Calculus that Khnig describes). Khnig's syntax
trees can be seen to bear a strong correspondence,
in terms of their structure, to the lambda term for
the meaning assigned by a proof (although the for-
mer include sufficient information, of types etc, to
allow (re)construction of a complete proof for the ini-
tial sequent), and the relation of Khnig's NFs to the
syntax trees used to define them closely parallels the
relation between CNF proofs in the present approach
and their corresponding lambda terms.

1 7 8

A further topic worthy of comment is the rela-
tion between the current approach and natural de-
duction approaches such as that of Prawitz (1965).
As Prawitz observes, sequent calculi can be under-
stood as meta-calculi for corresponding natural de-
duction systems. Introduction rules correspond to
right rules and elimination rules to left rules. In
Prawitz 's NFs, an introduction rule may never ap-
ply to the major premise of an elimination rule (such
a subproof being a redex) so that eliminations always
appear above introductions on the main branch of
a NF proof, l i which seems to parallel the form of
CNF sequent proofs. However, the relation is not
so straightforward. For a natural deduction formu-
lation of the (product-free) Lambek Calculus, i2 the
occurrence of a relevant redex in a natural deduction
proof (i.e. where an introduction rule applies to the
major premise of an elimination) corresponds to the
occurrence of a fl-redex in the corresponding proof
term. For sequent proofs, however, the occurrence
of a fl-redex corresponds to a use of the cut rule in
the p roof - - the lambda terms for cut-free proofs are
always in fl-NF. Unfortunately, limitations of space
prevent due discussion of this topic here.

R e f e r e n c e s

Hepple, M. 1990. Grammat ica l Relations and tile
Lambek Calculus. In Proceedings of the Sym-
posium on Discontinuous Constituency. Institute
for Language Technology and Artificial Intelligence,
Tilburg University, The Netherlands.

Hepple, M.R. and Morrill, G.V. (1989). Parsing and
Derivational Equivalence. In: Proceedings of the
4th Conference of the European Chapter of the As-
sociation for Computa t ional Linguistics. Manch-
ester, UK. 1989.

Khnig, E. (1989). Parsing as Natural Deduction. In:
Proceedings of the 27th Annual Meeting of the Asso-
ciation for Computa t ional Linguistics. USA. 1989.

Lambek, J. 1958. The mathemat ics of sentence struc-
ture. American Mathematical Monthly, 65,154-170.

Morrill, G. 1990. G r a m m a r as Logic. To appear in:
Prodeedir~gs of the Seventh Amsterdam Colloquium.
University of Amsterdam.

Moortgat , M. 1990. Cut Elimhlation and the Elim-
ination of Spurious Ambiguity. To appear in:
Prodeedings of the Seventh Amsterdam Colloquium.
University of Amsterdam.

Prawitz, D. 1965. Natural Deduction: A Proof-
Theoretical Study. Ahnqvist and Wiksell, Uppsala.

liThe terms main branch, major premise, etc have been bor-
rowed from Prawitz, and are defined analogously for his system.

12Note that a natural deduction formulation of the Lam-
bek Calculus differs from standard natural deduction systems
in that the linear order of assumptions within a proof is im-
portant, (roughly) corresponding to the linear order of words
combined. See, for example, the 'ordered' natural deduction
formulations outlined in Hepple (1990) and Morrill (1990).

