Normal Form Theorem Proving for the Lambek Calculus!

Mark Hepple
Centre for Cognitive Science, University of Edinburgh,
2 Buccleuch Place, Edinburgh, Scotland.

e-mail: mark@uk.ac.ed.epistemi

Abstract

The possibility of multiple equivalent proofs presents a problem
for efficient parsing of a number of flexible categorial grammar
(CG) frameworks. In this paper I outline a normal form sys-
tem for a sequent formulation of the product-free associative
Lambek Calculus. This leads to a simple parsing approach that
yields only normal form proofs. This approach is both safe in
that all distinct readings for a sentence will be returned, and
optimal in that there is only one normal form proof yielding
each distinet meaning.

1 The Lambek Calculus

The (product-free) Lambek Calculus (Lambek, 1958)
is a highly flexible CG framework that can be given a
Gentzen-style sequent formulation with the following

ruleg:?3
(1) Axiom: xif = x:f
Right rules: T, y:ii => x:f yia, I = x:f
|y R
T = x/y:di.f I' = x\y:Ai.f
Left rules: A=>yyg I xfg A= z:h[/ |
- - = L
L,x/y:f, A, A = uh
A=>yyg ,xifg, A= uh
T, A, x\y:f, A = vh ’
Cut rule: A =xf Tyxif, A= yyg
- [cut]
' AJA = yy

In this formulation, which we will call I, each type is
associated with a lambda expression, corresponding
to its meaning, and the rules specify how these are
contructed. The left rules correspond semantically to
functional application, the right rules to functional
abstraction. The lambda expression for the succedent
of the root sequent corresponds to its meaning as a
combination of the meanings of the antecedent types.
This will be loosely refered to as the ‘meaning (or

 am grateful to Guy Barry and Clyn Morrill for discussion
of the ideas in this paper. Thanks also to Inge Bethke and
Neil Leslie for comments on a draft., All errors are my own.
This work was carried out under ESRC Postgraduate Award
C00428722003.

2In the notation used here, types x/y and x\y both denote
functions from y (the argument type) into x (the value type).

3A sequent is an object of the form I' = x, where = , the
derivability relation, indicates that x can be derived from T.
Specific to the Lambek Calculus, we require that each sequent
has a non-empty antecedent sequence and precisely one succe-
dent type. We call the bottom-most sequent of any proof the
root, and the inference that has the root as its conclusion the
root inference. We call to the right hand premise of a left rule
its magor premise, its other the minor premise. In addition, we
call the main branch of any proof that (unique) path s}, 8g,..,8n
through the proof such that gy is the root sequent, sy corre-
sponds to an axiom instance, and non of 85,..,8y is the minor
premise of a left inference.

reading) assigned by the proof’. We assume that each
antecedent type of the initial sequent is assigned a
distinct variable for its semantics.* The semantics of
types will sometimes be omitted to save space.
Lambek (1958) demonstrates that the cut rule is
eliminable in the sense that all theorems of the cal-
culus can be proven using just the remaining rules.
These remaining rules provide a decision procedure
for theoremhood (since each inference removes a con-
nective, so that search for proofs is finite), and we
consider only these in the rest of the paper.®

2 The Problem of Multiple Equivalent Proofs

The calculus L typically allows more than one proof
assigning each possible reading for a sequent. We
shall consider some illustrative examples. The fol-
lowing two proofs assign the same reading:

wh = 2:h yigh = ygh

y/eg, wh => yigh x:fgh = x:fgh

/L)
x/y:f, y/ayg, s:h = x:fgh
yigh => y:gh x:fgh => x:fgh

/L]

w:h = ¢h x/y:f, yigh = x:fgh

x/y:f, y/ug, u:h = x:fgh

Here we see that the operations involved in ‘building’
some argument type (here y) may be performed ei-
ther before or after the left inference on the functor
requiring that argument (here x/y). Another exam-
ple of distinct proofs assigning the same meaning is
the following (in both of which the subproof for the
premise x/y, y = w/{w\x) is omitted):

g = 24 x/yfg, .y:i :>w/(w\x)A](](fg{)5

x/y[z:f, 2, yi = w/(w\x)ﬁz\j~(j(f§i)) (/R]
x/y/ef, zg = w/{w\x)/y:M.25.05(Fg5))

xfyifg, v = w/ ()2 (fai))
2. = v x/y:fg,yi = w/(w\x):z\i.Aj.(j(fgi))
x/yjef, vg = w/(w\x)/y:Ai. 5. (5(fg1))

[/R]
/o)

These show a case where a right inference can equally
well be made either before or after some unrelated left

4This is because we are interested in the equivalence or not
of proofs aside from contingent equivalences that may stemn
from particular semantic assignments to antecedents.
SMoortgat (1990) demonstrates that cut elimination pre-
serves the strong recognising capacity of the calculus in the sense
that the systems with and without cut will yield precisely the
same readings for any theorem modulo logical equivalence.

173

inference. A final example:

x/y:f = x/y:f yig=>yig xifg=>xfg

[/L]
[/R]

x/y:f, yig = x:fg
x/y:f = x/y:rg.fg

Here we see that where the type instantiating an ax-
iom is functional, it is also possible to ‘unpack’ the
type and ‘equate’ subformulas of this in further ax-
iom instances. The lambda expressions assigned by
these two proofs are equivalent under »n-reduction.

The existence of multiple equivalent proofs presents
a problem for efficient theorem proving based on the
calculus L. Search for proofs must be exhaustive to
ensure that all different ‘readings’ for a given sequent
are found, and a naive theorem prover will expend
considerable effort constructing proofs that assign the
same meaning. This radically reduces the efficiency
of Lambek Calculus theorem proving. Hepple and
Morrill (1989), working with a somewhat different
CG framework that also admits multiple equivalent
proofs, suggest that this problem be dealt with by de-
riving a notion of normal form (NF) for proofs, and
then adapting the parsing method such that this only
returns NF proofs. Konig (1989) takes this kind ap-
proach to handling the problem of multiple equivalent
proofs for Lambek sequent theorem proving, generat-
ing a notion of NF for such proofs, and deriving from
this a parsing strategy intended to compute only NF
proofs. However, Konig’s parsing algorithm fails to
exclude all non-NF proofs when used with a standard
propositional Lambek Calculus.

In this paper I define a NF system for the sequent
formulation of the (product-free) Lambek Calculus,
which gives rise to a parsing approach that yields only
normal proofs.

3 A New Approach
3.1 Headed Proofs

We begin by introducing the notion of head type, as
this is crucial to the approach. We use symbols P, Q,
R, etc to designate proofs, and the notation ¥ () to
represent a proof P of the sequent S. Intuitively, the
head type of a sequent S under some proof P (S) is the
antecedent type of S that has widest scope semanti-
cally. The meaning assigned by a proof is always a
lambda expression of the form:®

(2) A, (RU.Uy) (ny,m > 0)

where h is some semantic variable. The head type of
the sequent under the given proof is that antecedent
whose meaning is the variable h. Consider (3):

SNote that the meaning assigned by any (cut-free) proof is
always be a lambda expression in f-normal form (i.e. contain-
ing no subterms of the form (Av.P)Q) — provided that the
meanings assigned to the root sequent antecedents are in -
normal (which is the case here, since we assign these distinct
variables) as may be shown by an inductive proof.

174

(3) y:f => y:f xgtf => xgif
y:f, x\y:gt = x:gif
y:f, x\y/eg, v => xigif

[/R]

y:f, x\y/z:g = x/uri.(gif)

f\L)

28 => %

(u

The head type here is the antecedent x\y/z since it is
the semantic variable g of this that has widest scope in
the meaning assigned by the proof. Note the charac-
teristic of this proof that a value subpart of the head
type is ‘equated’ with a value subpart of the succe-
dent type in the sense that these together instanti-
ate opposite sides of an axiom instance, in particular
that axiom instance at the top of the main branch (cf.
footnote 3). This fact is the syntactic counterpart of
the head type having the widest scope semantically.”
More generally, for the head H of a sequent under
some proof and the sole antecedent A of the proof’s
main branch axiom, it is always the case that A is a
value subformula of H {or is H itself). Not all proofs
have a head, as in (4), where the variable that has
widest scope in the meaning assigned by the proof
does not originate with an antecedent of the initial
sequent, but rather with a type that is ‘introduced’
in a right inference:

(4) yg=>y9 xfg=>xfg

x/yif, yig = x:fg z:i(fg) => wi(fg)
xfy:f, yig, s\xit = zi(fg)
x/y:f, yig = z/(e\x):25.(1(fg))

(\L]

[/R]

We use numerically subscripted proof symbols (e.g.
P3, P,y Qum, etc) to refer to the headedness of
proofs. In particular a proof Py, n > 1, is a headed
proof, with the head being the nth member of the
antecedent sequence of the root sequent. If n = 0,
then the proof is unheaded. Given the relation men-
tioned above between the head of a proof and the
main branch axiom of this, we can give a recursive
characterization of the form of subscripted proofs as
in (5) (where superscripted Greek letters are used
to indicate sequences of given numbers of types, i.e.
7™ corresponds to a sequence of n types):

{(5) Each proof Py, is of one of the forms:

a. axiom wheren = 1

X = X

b, Qum(y, ™= x) R where ((m > 0) & (n = m — 1))
= x\y (\R] or {(m = 0) & (n = 0))

. Qum(m*, y=>x) where{(m=k+1)& (n=0))
W[/R or ({m < k) & (n = m))

TNote the semantic significance of the main branch axiom in
this. The semantics assigned by a proof P always corresponds
to that of the succedent of the main branch axiom of P having
undergone zero or more lambda abstractions. This follows from
the semantics of the rules of L.

d. R(ﬁk = y) Q]'(¢rn) X, 1/) = %)
¢rn' 7r’°, x\y, 1/) =y

where ((j < m) & {n = 7))
or (7 >m) & (n=7+k))

(L]

e. R(m¥ =>y) Q4™ x4 =)

L

™, xfy, mF, = w v

where ({7 < m+ 1) & (n = j))
or ((j >m+1) & (n=7+k))

The base case for the definition is where a subproof
consists only of an axiom inference, in which case the
head of the proof is the single antecedent member
{and hence, n = 1). From there, the position of the
head can be kept track of by counting the number
of antecedents added in beside the head as subproofs
are combined. Note that every cut-free proof in L is
a proof P,, for some value of n.

8.2 A Constructive Notion of Normal Form

In (6), arecursive definition is given for a construc-
tive notion of NF (CNF). For this definition, it is
useful to distinguish two subtypes of proof: 71 and
T». The set of 71 proofs is precisely the set of CNF
proofs. The 79 proofs are a subset of the 77 proofs—-
those whose main branch includes no right inferences.

(6) The set of CNF (71) proofs is the smallest set such that:
a. if x is an atomic type, then axiom

X = X

€Ty

b if Py (7", %, %) = 2) € Tp and Q¢ = q) € Ty

then Q{¢ = q) P,,+1(7r",rx,) = 2)]E T
7w xfq, P >)
and Q¢ = q) Pup1(7™, x, b = 1) 0L €Ty
a" @, x\q, ¥ = v
c. ifPETethen P €T
d. if P(w, x = y) € Tq then
.}—’—(z,xw«y) € Ty, and Px, 7 = y)[/R]Q Ty

T = y/x T = y\x

Given (6a), CNF proofs only contain axiom leaves
that are instantiated with atomic types. (6b) allows
for the occurrence of left inferences in CNF proofs,
and requires that these must be with respect to the
head of the major premise’s subproof {‘major sub-
proof’). Given (6c), every 73 proof is a 77 proof also.
Given (6d), only 77 proofs may have a right rule as
the root inference—no 79 proof will be of this form.
Since the major subproof of a left inference must be
a 7y proof, a right inference may never occur above

a left inference on the main branch of a CNF proof.
Thus, the main branch of a CNF proof is always of
the following form (starting at the root): zero or more
right inferences, followed by zero or more left infer-
ences, terminating with an axiom inference. The mi-
nor subproofs of left inferences are 7y, and so are also

of this general form.

We will see later how we can ensure that the the-
orem prover generates all and only the CNF proofs
of a sequent. However, for such a move to be useful,
the notion of CNF must satisfy certain requirements.
Most importantly, generating only CNT proofs should
be safe in the sense that the theorem prover returns
every distinct reading of a sequent that can be as-
signed. This will be the case if for every proof of a
sequent, there exists a semantically equivalent CNF
proof. To demonstrate this, a second notion of nor-
mal form will be defined, using the method of proof
reduction, which is equivalent to the constructive no-
tion of NF, and provably complete.

3.3 A Reductive Notion of Normal Form
3.8.1 Reduction and Normal Forms

A standard approach to defining NFs involves defin-
ing a contraction relation ([>;) between terms. The
contraction relation is stated as a number of contrac-
tion rules, each of the form X p; Y (in which the
form on the left is termed a redez and the form on the
right its contractum). Each contraction rule allows
that any term containing an occurrence of a redex
may be transformed into a term in which that occur-
rence is replaced by its contractum. A term is said
to be in NF if and only if it contains no occurrences
of any redex. The contraction relation generates a
reduction relation (1>} which is such that X reduces
to Y (X i Y) if and only if Y is obtained from X by
a finite series {possibly zero) of contractions. A term
YisaNFof Xifandonlyif Yisa NFand X & Y.

3.3.2 Proof Reduction and the Lambek Calcu-
lus

We shall next consider a set of contraction rules
stated on proofs in L.2 These together define a re-
ductive notion of NF. A total of eighteen contraction
rules are required, which fall into four groups.

An instance of the first group of contraction rules
is shown in (7).
(7

x/y = x/y y=>y x

= X

P Ty e

~————[/R]

x/y = x[y
This contraction rule expands an axiom leaf instan-
tiated with a functional type to give a subproof con-
taining two axiom leaves, each of which is instantiated
with a ‘simpler’ type than the original axiom (under
some metric of simplicity). There is a second rule in
this group for which the functional type in the redex
is leftward directional.

An instance of the second group of contraction rules
is shown in (8). In the redex, a right inference is
applied to the major premise of left inference. In the
contractum, the subproof has been restructured so

8Proof reduction originates with Prawitz (1965).

175

that the right inference is applied to the root sequent,
and the left inference to its sole premise,

e [/R]
P(7 = y) &, x, P = zfw
(/1
¢, x/y, 7w, = ufw
P(’]r»y) Q(¢,X,¢,W=>Z)
(/1]
D1 . x/y, T, 0, we

[/R]

¢7 x/y"rrl?p :Ysz/w
There are four contraction rules of this group which
arise with the directionality of the connectives for the
two inferences.

An instance of the third group of contraction rules
is shown in (9). Note that this makes use
of the subscripted proof notation, allowing us to
recognise where a left inference is with respect to
the head of the stated subproof. In the subproof
P,+1(é™, x, ¥, v, o = 3z}, the head is the type x. It
follows that the type x/y is the head of the entire
redex proof, and that v/w is not. Thus we can see
that in the redex, a head left inference (i.e a left infer-
ence with respect to the head of the given subproof)
is applied to the major premise of non-head left in-
ference. In the contractum, the subproof has been
restructured so that the head inference is applied to
the root sequent, and the non-head inference to its
major premise,

(9) Q("T = Y) Pn+l(¢n’ X, 1»’/): v, 0 = z)
[/L]
R(y = w) A, xfy, T, P, v, 0 > 8 .
¢n1 xI/yl 7rl 1/‘)1 v/w' ,7) a :} z [/]
B>y R{7 = w) Pop (@™, x, ¥, v, 0 = 3) L)
(2(71') d)"r X, ‘/): w, 7,0 =>z2
- VAN ILE TP

", Xy, T, P, viw, Y, 0 =
There are eight contraction rules in this group, which
arise with the directionality of the connectives in-
volved, and whether the head functor occurs to the
right or left of the non-head functor.

Ax instance of the fourth group of contraction rules
is shown in {10). In the redex, a head-left inference
is applied to the major premise of a non-head left in-
ference, where the latter can be seen to in-part serve
the purpose of ‘building’ the argument required by
the hiead functor. In the contractum, the inferences
have been reordered so that the head inference ap-
plies to the root sequent, and the non-head inference
applies to the minor premise of this.

(10) Q(m, v, ¥ = y) Pugi(@™, x, 0 = 2)
R() = w) d", x/y, 7, v,'7,0':>z[/L
P oxfy,mov/w, b, v, 0 > g]

(/L]

R(1) = w) Q(m, v,y = Y)[/L]
By mov/w Y=y Propi(P™, %, 0 = 2)
¢n, X/Yr T, V/wr ¢r 7O =

/el

We require four contraction rules of this pattern,

176

which arise with the directionality of two functors
(the left-right order of the two functors being deter-
mined by the head functor).

We call any proof that contains no redexes (which
is consequently a NF under the reduction system)
an irreductble normal form (INF). It is easily veri-
fied that for each contraction rule, the contractum
subproof assigns a lambda expression for the root se-
quent combination equivalent to that assigned by the
redex. Thus, meaning is preserved under contraction,
and also in turn under reduction. Hence, an INF of
any proof P always assigns the same reading as P,

We will next demonstrate that normalisation holds
for the reductive NF system; that is, that every proof
has an INF. This property follows provided that the
following (stronger} property holds:

(11) Strong Normalisation: Every reduction is finite.

Thus, for every proof, a finite series of contractions
always leads to an irreducible proof.

To prove that every reduction is finite, it is suf-
ficient to give a metric that assigns to each proof a
finite non-negative integer score, and under which it
can be shown that every application of a contraction
rule reduces the score of a proof by a positive integer
amount, The scoring system given in {12) satisfies
these requirements.”

(12)The score for any proof P (written sc(P)) is as follows:
a. ¢f P is an axiom leaf instantiated with type x
then sc(P) = factorial(3 ate(x))
b. if P has a right inference at its root, with premise
subproof Q then sc(P) = 8c(Q) + 1

c. if the root inference of P is a head left inference,
with major subproof Q and minor subproof R then
sc(P) = (se(R) + 1)sc(Q) + 1

d. if the root inference of P is a non-head left infer-
ence, with major subproof Q and minor subproof
R then sc(P) = (sc{R) + 1}s¢(Q)

3.4 Equivalence of the Two Systems

We write CNF(P) and INF(P) to indicate that a
proof is in NF under the respective systems. The two
NF systems can be shown to be equivalent in that
they designate precisely the same sets of proofs to be
in NF, lLe:

(13) Lemma 1: for all P, CNF(P) « INF(P)

This follows given Lemmas 2 and 3.
(14) Lemma2: for all P, ~INF(P) — ~CNF(P)

It is easily checked that no redex subproof is in CNF,
Hence, any reducible proof is not a CNF.

(15) Lemma3: forall P, =CNF(P) — -INF(P)

®The atomic type count (atc) of a type is defined as follows:
(i) atc(x) = 1if x is an atomic type; (it) atc(x/y) = atc(x\y)
= ate(x) + ate(y).

This may be proven by induction on P

Given the equivalence of the two NF systems, and
the normalisation result for the reductive NT' system,
it follows that for every proof in L, there exists a CNF
proof that assigns the same reading. Hence, generat-
ing all and only the CNF proofs of a given sequent
is safe in the sense that we can be sure all possible
readings for the combination will be returned.

3.5 The Uniqueness of Normal Forms

The approach will be optimal if there is only a sin-
gle CNF assigning each distinct reading. As we have
already noted {footuote 6), the meaning assigned by
any (cut-free) proof will be a lambda expression that
is in S-normal form. Extensional equivalence for the
Lambda Calculus is given by the Sn-reduction sys-
tem. Since this system exhibits the Church-Rosser
property, any two terms in S-normal form will be
equivalent just in case applying some sequence of #-
contractions (i.e. Av.fv > f) to each yields the same
term {modulo c-conversion).

Let us consider two distinct CNF proofs P and Q
of some sequent S. Assume that these differ in some
regard along their main branches. The bottom part of
each main branch will consist of a sequence of zero or
more right inferences. The length and nature of this
sequence of inferences is fully determined by the type
of the succedent in the root sequent S, and so P and
Q may not differ in this regard. Thus, the meanings
assigned by P and Q will be lambda expressions of
the following forms (in which the lambda abstractions
Avy..v,. correspond to the initial sequence of right
inferences):

P Avon (fUL.Up)
Q : Avy.un (gUy. UL
The remainder of each main branch will consist of
some sequence of head left inferences, terminating
in an axiom instance. Consequently, the two CNF
proofs may differ along their main branch only in
two regards: (i) a different antecedent type is the
functor for the first left inference (this determining
the functor for the remaining left inferences on the
main branch), (ii) even if the same type is chosen for
the functor of the first left inference, at some point a
different subsequence of antecedents is chosen to ‘con-
struct’ the argument of the functor. In either case,
the semantics assigned to the two proofs will be non-
equivalent. Thus, for case (i) f and g will be distinct
variables. In both cases, it may be that m # k, and
even if m = k, at least some of the U; and U;’ will
differ in the lambda variables that are put together to
form these (i.e. the lambda expressions corresponding
to antecedent semantics). It is evident that in any of
these eventualities, no sequence of n-contractions can
yield a common term from two such terms and so
the two proofs must assign distinct readings. If the
two NF proofs are similar along their main branches,
they must differ in the minor subproof for some left
inference. The same arguments apply in turn that if

these subproofs differ in form, then they must be non-
equivalent, Hence, distinct CNF proofs always differ
semantically, and so the uniqueness property holds.
Since reduction preserves meaning, and distinct NFs
are non-equivalent, it follows that every proof has a
unique NF,10

8.6 Normal Form Theorem Proving

T'or the purpose of theorem proving, we specify an
amended version of the calculus, which we term the
‘parsing calculus’ (PC), which is such as to only allow
the construction of proofs that correspond to CNF
proofs. To this end, we move from a system which
uses a single notion of sequent, to one which distin-
guishes two different types of sequent Type 1 and
Type 2—this type being marked as a subscript on the
derivability arrow =>. The point of this distinction is
to allow us to limit the form of the proof that may be
given for some sequent merely by its type. The Type
1/Type 2 distinction essentially corresponds to the
71/Tq distinction in the definition of CNF. For Type
2 sequents we distinguish the antecedent element that
must be the head of any proof of the sequent by di-
viding the antecedent sequence intc three subparts,
separated by -+’s, as for example in ¢-+x+7 =5, 4, of
which the first and last parts are {possibly empty)
sequences of types, and the middle part a single type
that is required to be the head of any proof of this
sequent.

The following set of inference rules allow only
proofs of the required form to be constructed:

(16) Axiom: et+x:fte =bx:f where x is an atomic
type {and e denotes the

empty sequence)

Right rules: T, yu = x:f yi, ' = x:f)
—[/R] —[\R]
I = x/y:i.f I = x\y:Mi.f
Left rules: A =y THxifg+A = zh

ne
Tx/y:f+(A, A) = z:h
A, =¥ I‘+x:!g+A =, w:h

(T, A)+x\y:f+A =, u:h

{2—1] rule: A+x:f4T ENE where y is an atomic
et ~]2++1] type, and x = y or x
o, xi, T = yg a function onto y

Observe that the axiom inference specifies a Type 2
sequent, with the single antecedent type being the
designated head of that sequent. This corresponds
to clause (a) of the definition of CNF in (6). The
left inference rules have Type 2 sequents for their
conclusion and major premise and a Type 1 sequent
for the minor premise. Note that the active type for
the inference is the designated head of the conclusion
and its value subformula is the designated head of
the major premise. This corresponds to clause {b} of
the CNF definition. The right rules have a Type 1

10From this it follows that the reductive NF system exhibits
the Church-Rosser property.

177

premise and conclusion, in line with clause (d) of the
CNT definition. In addition, there is a rule {21},
corresponding to the clause (c) of the CNF defini-
tion. Note there is a condition on the rule which
does not correspond to anything in clause {c). It is
easily shown that this condition is always fulfilled by
T9 proofs, so its addition does not alter the set of
proofs admitted by the PC. However, the condition
will considerably limit the application of the [2+—1]
rule in top-down search for proofs and so increase the
efficiency of theorem proving. It is easily shown that
PC and CNF proofs exist in 1-to-1 correspondence.

4 Discussion

It can be seen that the form of any CNF proof is
strongly tied to the form of the lambda expression it
assigns as its meaning. As we have seen, the lambda
term corresponding to the meaning of any {cut free)
proof in L is always a A-NF term of the form:

)\U‘L..Un.(h[jl..Um) (n,mZ 0)

where A is a variable, and the main branch of a CNF
proof is always of the following form (starting at the
root): zero or more right inferences, followed by zero
or more left inferences, terminating with an axiom
inference. The correspondence between the two is as
follows: the initial sequence of right inferences cor-
responds to the lambda abstractions of the variables
v1..U,, and the ensuing left inferences are just those
required to apply the variable h (the semantics of the
head) to each of its arguments U;..U,, in turn, with
each of the subterms U; being ‘constructed’ in the
subproof for a minor premise,

These observations provide the basis for relating
this approach to that of Kénig {1989), mentioned ear-
lier. Kénig uses a non-standard method for arriving
at a notion of NF proof which involves firstly map-
ping proofs into objects called ‘syntax trees’, where
proofs that yield the same syntax tree form an equiv-
alence class, and then mapping from each syntax tree
to a single NF proof. From the form of such NF
proofs, Konig derives a set of ‘nesting constraints’
which are used to limit the operation of a top-down
theorem prover, and which are such that they will
never prevent the construction of any NF proof. As
Konig points out, however, the ‘nesting constraints’
do not exclude the construction all non-NF proofs
when used with a standard propositional formulation
of the Lambek Calculus (though better results are
obtained with a unification-based version of the Lam-
bek Calculus that Konig describes). Kénig’s syntax
trees can be seen to bear a strong correspondence,
in terms of their structure, to the lambda term for
the meaning assigned by a proof (although the for-
mer include sufficient information, of types etc, to
allow (re)construction of a complete proof for the ini-
tial sequent), and the relation of Kénig’s NFs to the
syntax trees used to define them closely parallels the
relation between CNF proofs in the present approach
and their corresponding lambda terms.

178

A further topic worthy of comment is the rela-
tion between the current approach and natural de-
duction approaches such as that of Prawitz (1965).
As Prawitz observes, sequent calculi can be under-
stood as meta-calculi for corresponding natural de-
duction systems. Introduction rules correspond to
right rules and elimination rules to left rules. In
Prawitz’s NF's, an introduction rule may never ap-
ply to the major premise of an elimination rule (such
a subproof being a redex) so that eliminations always
appear above introductions on the main branch of
a NF proof,’' which seems to parallel the form of
CNF sequent proofs. However, the relation is not
so straightforward. For a natural deduction formu-
lation of the (product-free) Lambek Calculus,!? the
occurrence of a relevant redex in a natural deduction
proof (i.e. where an introduction rule applies to the
major premise of an elimination) corresponds to the
occurrence of a f-redex in the corresponding proof
term. For sequent proofs, however, the occurrence
of a fB-redex corresponds to a use of the cut rule in
the proof—the lambda terms for cut-free proofs are
always in 8-NF. Unfortunately, limitations of space
prevent due discussion of this topic here.

References

Hepple, M. 1990. Grammatical Relations and the
Lambek Calculus. In Proceedings of the Sym-
posium on Discontinuous Constituency. Institute
for Language Technology and Artificial Intelligence,
Tilburg University, The Netherlands.

Hepple, M.R. and Morrill, G.V. (1989). Parsing and
Derivational Equivalence. In: Proceedings of the
4th Conference of the European Chapter of the As-
sociation for Computational Linguistics. Manch-
ester, UK. 1989.

Konig, E. (1989). Parsing as Natural Deduction. In:
Proceedings of the 27th Annual Meeting of the Asso-
ciation for Computational Linguistics. USA. 1989,

Lambek, J. 1958. The mathematics of sentence struc-
ture. American Mathematical Monthly, 65, 154-170.

Morrill, G. 1990. Grammar as Logic. To appear in:
Prodeedings of the Seventh Amsterdam Colloguium.
University of Amsterdam.

Moortgat, M. 1990. Cut Elimination and the Elim-
ination of Spurious Ambiguity. To appear in:
Prodeedings of the Seventh Amsterdam Colloquium.
University of Amsterdam.

Prawitz, D. 1965. Natural Deduction: A Proof-
Theoretical Study. Almqvist and Wiksell, Uppsala.

LThe terms masn branch, major premise, etc have been bor-
rowed from Prawitg, and are defined analogously for his system.

2Note that a natural deduction formulation of the Lam-
bek Calculus differs from standard natural deduction systems
in that the linear order of assumptions within a proof is im-
portant, (roughly) corresponding to the linear order of words
combined. See, for example, the ‘ordered’ natural deduction
formulations outlined in Hepple (1990) and Morrill (1990).

