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A b s t r a c t  

The possibility of multiple equivalent proofs presents a problem 
for efficient parsing of a number of flexible categorial grammar 
(CG) frameworks. In this paper I outline a normal form sys- 
tem for a sequent formulation of the product-free associative 
Lambek Calculus. This le,'~ls to a simple parsing approach that 
yields only normal form proofs. This approach is both ~afe in 
that all distinct readings for a sentence will be returned, and 
optimal in ~;hat there is only one normal form proof yielding 
each distinct meaning. 

1 T h e  L a m b e k  C a l c u l u s  

T h e  ( p r o d u c t - f r e e )  L a m b e k  C a l c u l u s  ( L a m b e k ,  1958) 

is a h i g h l y  f lexible  C G  f r a m e w o r k  t h a t  can  be  g iven  a 

Gen tzen . . s ty le  s e q u e n t  f o r m u l a t i o n  w i t h  t he  fo l lowing  
rules  :23 

(1) Axiom: x : f  =~- x : /  

Righ~ rules: F, y:i ~ x : f  y:i, F ~ x:f  

F ----> x/y:Ai . f  [/R] F -~ x\y:Ai . f  
[\rt] 

Left :rules: &, =.~ y:g F, x:fg, A ~ z:h 
I/L] 

F, x /y : f ,  A, A => z:h 

~-~ y:g F, x:fg, A => ~:h 
. . . . . . . . . . . . . .  [\L] 

F, A, x \y : f ,  A =¢- z:h 

Cut rule: A ==> x: ]  F, x:f ,  A --> y:g 
[cut] 

F, A, A --'~- y:g 

In th is  f o r m u l a t i o n ,  wh ich  we wil l  cal l  L, each  type  is 

a s s o c i a t e d  w i t h  a l a m b d a  express ion ,  c o r r e s p o n d i n g  

to  i ts  m e a n i n g ,  and  the  ru les  spec i fy  tlow these  are  

c o n t r u c t e d .  T h e  left  ru les  c o n ' e s p o n d  s e m a n t i c a l l y  to 

f u n c t i o n a l  a p p l i c a t i o n ,  t he  r i gh t  ru les  to f u n c t i o n a l  

a b s t r a c t i o n .  T h e  l a m b d a  exp re s s ion  for t he  s u e c e d e n t  

of t h e  r o o t  s e q u e n t  c o r r e s p o n d s  to  its m e a n i n g  as a 

combinaf f ion  of  t he  m e a n i n g s  of  the  a n t e c e d e n t  types .  

T h i s  wi l l  be loose ly  re fe red  to as the  ' m e a n i n g  (or 

1I am grateful to Guy Barry and Olyn Morrill for discussion 
of the ideas in this paper. Thanks also to Inge Bethke and 
Neil Leslie for comments on a draft. All errors are my own. 
This work was carried out under ESRC Postgraduate Award 
C00428722003. 

21n the notation used here, types x /y  and x \y  both denote 
functions from y (the argument type) into x (the value type). 

3A sequent is an object of the form F => x, where =0 , the 
derivability relation, indicates that x can be derived from F. 
Specific to '~he Lambek Calculus, we require that each sequent 
has a non-empty antecedent sequence and precisely one sucre- 
dent type. We call the bottom-most sequent of any proof the 
root, and the inference that has the root as its conclusion the 
root inference. We call to the right hand premise of a left rule 
its major premise, its other the minor premise. In addition, we 
call the nudn branch of any proof that (unique) path Sl, s 2..,sn 
through the proof such that s I is the root sequent, sn corre- 
sponds to an axiom instance, and non of s2,..,sn is the minor 
premise of a left inference. 

r e ad ing )  ass igned  by  t h e  p r o o f ' .  We a s s u m e  t h a t  each  

a n t e c e d e n t  t y p e  of t he  in i t i a l  s e q u e n t  is ass igned  a 

d i s t i nc t  v a r i a b l e  for its s e m a n t i c s .  4 T h e  s e m a n t i c s  of 

t ypes  wi l l  s o m e t i m e s  be  o m i t t e d  to  save  space .  

L a m b e k  (1958) d e m o n s t r a t e s  t h a t  t he  cu t  rule  is 

e l i m i n a b l e  in t he  sense t h a t  al l  t h e o r e m s  of t he  cal- 

cu lus  Call be  p r o v e n  us ing  j u s t  t he  r e m a i n i n g  rules.  

T h e s e  r e m a i n i n g  ru les  p r o v i d e  a dec i s ion  p r o c e d u r e  

for t h e o r e m h o o d  (s ince each  in fe rence  r e m o v e s  a con-  

nec t ive ,  so t h a t  s ea rch  for  p r o o f s  is f ini te) ,  and  we 

c o n s i d e r  only  these  in t h e  res t  of  t he  p a p e r f i  

2 T h e  P r o b l e m  o f  M u l t i p l e  E q u i v a l e n t  P r o o f s  

T h e  ca lcu lus  L t y p i c a l l y  a l lows  m o r e  t h a n  one  p roo f  

ass ign ing  each  poss ib le  r e a d i n g  for a s equen t .  We 

sha l l  c o n s i d e r  s o m e  i l l u s t r a t i v e  e x a m p l e s .  T h e  fol- 

lowing  two  proofs  ass ign t h e  s a m e  r ead ing :  

z:h =:> z:h y:gh ~ y:gh 
i/L] 

y/'~:g, z:h y:gh x:fgh • :> ~ x.:gh I/L] 
x /y : f ,  y/'~:g, z:h o x:fgh 

y:gh ~ y:gh x:fgh ~ x:fgh 
[/L] 

~:h ~ ~:h x /y : f ,  y:gh ::~ x:f#h 
[/L] 

x /y : / ,  y/~:g, z:h :¢ x:fgh 

Here  we see t h a t  t he  o p e r a t i o n s  i n v o l v e d  in ' b u i l d i n g '  

s o m e  a r g u m e n t  t y p e  (here  y) m a y  be p e r f o r m e d  ei- 
t h e r  be fore  o r  a f t e r  t h e  left  in fe rence  on the  f u n c t o r  

r e q u i r i n g  t h a t  a r g u m e n t  (here  x / y ) .  A n o t h e r  e x a m -  

ple of  d i s t i n c t  p roofs  a s s ign ing  the  s a m e  m e a n i n g  is 

the  fo l lowing  (in b o t h  of  w h i c h  the  s u b p r o o f  for the  

p r emi se  x / y ,  y => w / ( w \ x )  is o m i t t e d ) :  

z:g :~ z.:o x/y::g,  y:i :> w/(w\x):~j.(j(ygi)) 
I/L) 

x / y / , : y ,  ~:0, y:~ :~ w/(w\x):~j.(j(:gi)) 
[/R] 

x ly / z : f ,  z:g ::~ w/(w\x)/y:Ai .Aj . ( j ( fgi))  

x/y:/g, y:i : .  w/(w\x):~j.(j(ygi)) 
[/n] 

z:g -~ ~:g x/y: fg ,  y:i ~ w/(w\x):Ai.Aj.( j( fgi))  
[/LJ 

x /y / z : f ,  ~,:g ::z, w/(w\x) /y:M.Aj . ( j ( fg i ) )  

T h e s e  show a case  w h e r e  a r igh t  in fe rence  can  equa l ly  

wel l  be  m a d e  e i t he r  before  or  a f t e r  s o m e  u n r e l a t e d  left  

4This is because we are interested in the equivalence or not 
of proofs aside from contingent equivalences that may stein 
from particular semantic assignments to antecedents. 

6Moor~gat (1990) demonstrates that cut elimination pre- 
serves the strong recogrdsing capacity of the calculus in the sense 
that the systems with and without cut will yield precisely the 
same readings for any theorem modulo logical equivalence. 
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inference. A final example: 

x /y : f  :=~ x/y:f  y:g ::~ y:g x:,fg :=~ x:fg 
[/L] 

x/y:f,  y:g =-~ x:fg 
x/y:]  :=> x/y:Ag.fg I/R] 

Here we see tha t  where the type instant ia t ing an ax- 
iom is functional,  it is also possible to ' unpack '  the 
type and ' equa te '  subformulas  of this in fur ther  ax- 
iom instances. The l ambda  expressions assigned by 
these two proofs are equivalent under  r/-reduction. 

The existence of multiple equivalent proofs presents 
a problem for efficient theorem proving based on the 
calculus L. Search for proofs must  be exhaustive to 
ensure tha t  all different ' readings '  for a given sequent 
are found, and a naive theorem prover will expend 
considerable effort const ruct ing proofs tha t  assign the 
same meaning.  This radically reduces the efficiency 
of Lambek Calculus theorem proving. Hepple and 
Morrill (1989), working with a somewhat  different 
CG framework tha t  also admits  multiple equivalent 
proofs, suggest tha t  this problem be dealt  with by de- 
riving a not ion of normal  form (NF) for proofs, and 
then adapt ing  the parsing method  such tha t  this only 
re turns  NF proofs. Khnig (1989) takes this kind ap- 
proach to handl ing the problem of multiple equivalent 
proofs for Lambek  sequent theorem proving, generat- 
ing a notion of NF for such proofs, and deriving from 
this a parsing s t ra tegy intended to compute  only NF 
proofs. :However, Khnig 's  parsing algori thm fails to 
exclude all non-NF proofs when used with a s tandard  
proposi t ional  Lambek Calculus. 

In this paper  I define a NF system for the sequent 
formulat ion of the (product-free) Lambek Calculus, 
which gives rise to a parsing approach that  yields only 
normal  proofs. 

3 A N e w  A p p r o a c h  

3.1 H e a d e d  P r o o f s  

We begin by introducing the notion of head type, as 
this is crucial to the approach.  We use symbols P ,  Q,  
R ,  etc to designate proofs, and the notat ion P(S)  to 
represent  a proof  P of the sequent S. Intuitively, the 
head type of a sequent S under  some proof P (S) is the 
antecedent  type  of S tha t  has widest scope semanti-  
cally. The meaning assigned by a proof  is always a 
l ambda  expression of the form: 6 

(3) y:j" ~ y:)" x:gi f ::~ x:gi f 

z:i =~ z:i y:f, x\y:gi :=:, x.gtf [/L] 

y:f, x\y/z:g, z:i ~ x:gi$ 

y:y, x\y/z:g ~ x/~:Ai.(gif) I/R] 

[\L] 

The head type here is the antecedent  x \ y / z  since it is 
the semantic  variable g of this tha t  has widest ,~cope in 
the meaning assigned by the proof. Note the charac- 
teristic of this proof  tha t  a value subpar t  of the head 
type is ' equa ted '  with a value subpar t  of the succe- 
dent  type in the sense tha t  these together  iustanti-  
ate opposite sides of an axiom instance, in part icular  
tha t  axiom instance at the top of the main br,~nch (cf. 
footnote  3). This fact is the syntact ic  counterpar t  of 
the head type having the widest scope semantically. 7 
More generally, for the head H of a sequent under 
some proof and the sole antecedent  A of the proof 's  
main branch axiom, it is always the case tha t  A is a 
value subformula  of H (or is H itself). Not all proofs 
have a head, as in (4), where the variable tha t  has 
widest scope in the meaning assigned by the proof 
does not originate with an antecedent  of the initial 
sequent,  but  r a the r  with a type  tha t  is ' in t roduced '  
in a r ight inference: 

(4) y:g =~ y:g x:fg :..v. x:fg 
I/L] 

x/y:f, y:g =~ x:fg z:i(fg) ~ z:i(fg).[\L] 

x/y:f,  y:g, ~\x:i ::V. z:i(fg) 
[/n] 

x/y:I ,  y:g ~ ~/(~\x):~.C~Cfg)) 

We use numerical ly subscripted proof  symbols (e.g. 
P3~ P n ,  Qm~ etc) to refer to the headedness of 
proofs, in par t icular  a proof  Pn ,  n > 1, is a headed 
proof, with the head being the n th  member  of the 
antecedent  sequence of the roo t  sequent.  If n = 0, 
then the proof  is unheaded.  Given the relation men- 
tioned above between the head of a proof  and the 
main branch axiom of this, we can give a recursive 
character izat ion of the form of subscripted proofs as 
in (5) (where superscr ipted Greek letters are used 
to indicate sequences of given numbers  of types, i.e. 
71" n corresponds to a sequence of n types):  

(5) Each proof Pn is of one of the forms: 

a. axiom where n = 1 

x = = ~ x  

(2) Avl..v,~.(hU1..Um) (n, m >_ O) 

where h is some semantic  variable. The head type  of 
the sequent under  the given proof is tha t  antecedent  
whose meaning is the variable h. Consider (3): 

b. qraCy, iv ::~ x) where ((m > 0) & (n =: m -  1)) 
[\RI or (Cm = 03 & (~ --: 0)) 

71- =:~ x\y 

e. Qm(r k, y =v. x) where ((m : k + 1) & (n --- 0)) 
~k ~ x /y  [/rt] or CC'~ < k) ~ C" ::: "q) 

eNote that the meaning assigned by any (cut-free) proof is 
always be a lambda expression in/~-normal form (i.e. contain- 
ing no subterms of the form (Av.P)Q) - -  provided that the 
meanings assigned to the root sequent antecedents are in f~- 
normal (which is the case here, since we assign these distinct 
variables) as may be shown by an inductive proof. 

7Note the semantic significance of the main branch axiom in 
this. The semantics assigned by a proof P always corresponds 
to that of the succedent of the main branch axiom of P having 
undergone zero or more lambda abstractions. This follows from 
the semantics of the rules of L. 
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d. R ( s  k . ~ y )  q ; ( ¢ % x , ¢ ~ z )  
[\L] 

¢ ~  ~ k  x\y,  ¢ . z 

who,'e ((~" < .*) a (~ = ~')) 
or ((j > m) & C n = j + k ) )  

e. ~ (~k , :~y)  Q s C ¢ ' L x , ¢ ~ )  
[/L] 

¢, , ,  ~/y, ~k, ¢ =~, 

where ((j _< m + 1) & (n = j)) 
or ((j > m + 1) ~ (,, = i + k)) 

The base case for the definition is where a subproof  
consists only of an axiom inference, in which case the 
head of the proof is the single antecedent  member  
(and hence, n = 1). From there, the position of the 
hexad can be kept track of by count ing the number  
o:l' antecedents  added in beside the head as subproofs 
are combined.  Note tha t  every  cut-free proof in L is 
a proof  P~  '.for s o m e  value of n. 

8 2  A C o n s t r u c t i v e  N o t i o n  o f  N o r m a l  F o r m  

In (6), a recursive definition is given for a c o n s t r u c -  

t ive  notion of NF (CNF).  For this definition, it is 
u,.;eful to distinguish two subtypes  of proof: T 1 and 
"r:!. The set of ~'1 proofs is precisely the set of CNF  
proofs. The 'r2 proofs are a subset of the 71 p roof s - -  
those whose main branch includes no right inferences. 

(6) The set of CNF (T1) proofs is the smallest set such that: 

a. i] x is an atomic type, then axiom E T 2 

x =:2> x 

b, if P,,+t(Tr n, x, ¢ =~ z) @ T 2 arm Q(¢ ==:, q) 6 7" 1 

the. q ( ¢  ~ q) p,,+~(~r '~, x, ¢ ~ ~) e r2 
I/L} 

~r", :,/q, ¢, ¢ ~ 

[\L] 
~"~, ¢, ~\q, ¢ ~ 

c. i f  P E T2 then P C T 1 

d. if P(Tr, x => y) ~ T 1 then 

P (~, x -~ y) e r l ,  . .d  p (x, r : .  y) 
I/R] 

r -~ y/x or ~ y\x 

(~ Tl 

Given (6a), C N F  proofs only contain axiom leaves 
tha t  are ins tant ia ted with atomic types. (6b) allows 
fo:c the occurrence of left inferences in CNF  proofs, 
aI~d requires tha t  these must  be with respect to the 
head of the major  prenfise's subproof  (~major sub- 
proof ' ) .  Given (6c), every ~r 2 proof is a 71 proof also. 
Given (6d), only T1 proofs may  have a right rule 
the root  in fe rence- -no  ~r2 proof will be of this form. 
Since the major  subproof  of a left inference m u s t  be 
a 7 2 proof, a r ight  inference may  never occur above 
sL left inference on the main branch of a C N F  proof. 
Thus,  the main branch of a CNF  proof is always of 
the following form (start ing at the root):  zero or more 
rigilt inferences, followed by zero or more left infer- 
ences, te rminat ing  with an axiom inference. The mi- 
nor subproofs of left inferences are T 1, and so are also 

of this general form. 
We will see later how we can ensure tha t  the the- 

orem prover generates all and only the CNF proofs 
of a sequent.  However, for such a move to be useful, 
the notion of C N F  must  satisfy certain requirements. 
Most important ly ,  generat ing only CNF proofs should 
be safe  in the sense tha t  the theorem prover returns 
every distinct reading of a sequent tha t  can be as- 
signed. This will be the case if for every proof  of a 
sequent, there exists a semantical ly equivalent CNF 
proof. To demons t ra te  this, a second notion of nor- 
mal form will be defined, using the method  of proof 
reduction,  which is equivalent to the construct ive no- 
tion of NF, and provably complete.  

3.3  A R e d u c t i v e  N o t i o n  o f  N o r m a l  F o r m  

8 . 3 . 1  R e d u c t i o n  a n d  N o r m a l  F o r m s  

A s tandard  approach to defining NFs involves defin- 
ing a c o n t r a c t i o n  relation (1>1) between terms. The 
contract ion relation is s ta ted as a number  of contrac- 
tion rules, each of the form X ~>1 Y (in which the 
form on the left is te rmed a redex  and the form on the 
r ight its c o n t r a c t u m ) .  Each contrac t ion rule allows 
that  any term containing an occurrence of a redex 
may be t ransformed into a term in which that  occur- 
rence is replaced by its con t rac tum.  A term is said 
to be in NF if and only if it contains no occurrences 
of any redex. The contract ion relation generates a 
r e d u c t i o n  relation (I>) which is such that  X reduces 

to Y (X i> Y) if and only if Y is obtained from X by 
a finite series (possibly zero) of contract ions.  A term 
Y is a NF of X if and only if Y is ~ N F a n d X  ~- Y. 

3 .3 .2  P r o o f  R e d u c t i o n  a n d  t h e  L a m b e k  C a l c u -  
l u s  

We shall next consider a set of contract ion rules 
s tated on proofs in L. 8 These together  define a re- 
ductive notion of NF. A total  of eighteen contract ion 
rules are required, which fall into four groups. 

An instance of the first group of contract ion rules 
is shown in (7). 

(7) x/y ::> x/y y ::> y x ::> x 
t , ,  I/L] 

x/y, y ==:, x 
x/y :* x/y l/R] 

This contract ion rule expands an axiom leaf insta:n- 
tinted with a functional  type to give a subproof  con- 
taining two axiom leaves, each of which is instantiated 
with a 's impler '  type than the original axiom (under 
some metric of simplicity). There is a second rule in 
this group for which the functional  type in the redex 
is leftward directional.  

An instance of the second group of contract ion rules 
is shown in (8). In the redex, a r ight inference is 
applied to the major  premise of left inference. In the 
cont rac tum,  the subproof  has been res t ructured so 

SProof reduction originates with Prawitz (1965). 
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tha t  the r ight inference is applied to the root  sequent, 
and the left inference to its sole premise. 

(8) Q(¢,  x, ¢ ,  w ~ z)[/RI 

P ( ~  ~ y) ¢, ~, ¢ ~ ~/W[/Lj 
¢, x/y, ~, ¢ =~ ~/w 

PCr =, y) qC¢, ~, ¢ ,  w :~ ~) [/L] 
> ,  ¢ , x / y ,  ~, ¢ , w  ~ ~ 

l/R] 
¢, x/y, ~, ¢ ~ ~/w 

There are four contract ion rules of this group which 
arise with the directionali ty of the connectives for the 
two inferences. 

An instance of the third group of contract ion rules 
is shown in (9). Note tha t  this makes use 
of the subscripted proof  notat ion,  allowing us to 
reeognise where a left inference is with respect to 
the head of the s ta ted subproof.  In the subproof  
P , ,+1(¢  '~, x, ¢ ,  v, c~ =:> z), the head is the type x. It 
follows tha t  the type x / y  is the head of the entire 
redex proof, and tha t  v / w  is not. Thus  we can see 
that  in the redex, a head left inference (i.e a left infer- 
ence with respect  to the head of the given subproof)  
is applied to the major  premise of non-head left in- 
ference. In the cont rac tum,  the subproof  has been 
res t ructured so that  the head inference is applied to 
the root  sequent, and the non-head inference to its 
major premise. 

a(-~ :~ w) ¢", x/y, ~, ¢,  v, ~ ::> ,~ 
I/L] 

¢" ,  x/y, r, ¢ ,  v/w, ~,, ~ :~ 

>, R("/ :=~ w) P , ,+t (¢  n, x, ~', v, ¢r :-~ z)[/L ] 

Q(.,r ~ y) en, x, ¢, vlw, ~, a ~ 
I/L} 

¢ ' ,  ×ly, ~r> ¢, vlw, ~, a ~ 

There are eight contractio-1 rules in this group, which 
arise with the directionali ty of the connectives in- 
volved, and whether  the head functor  occurs to the 
right or left of the non-head functor.  

An instance of the fourth group of contract ion rules 
is shown in (10). In the redex, a head-left inference 
is applied to the major  premise of a non-head left in- 
ference, where the lat ter  can be seen to in-part  serve 
the purpose of 'bui lding '  the a rgument  required by 
the head functor.  In the cout rac tum,  the inferences 
have been reordered so that  the head inference ap- 
plies to the root  sequent, and the non-head inference 
applies to the minor premise of this. 

(~_01 qC~r, ~, ~ ~, y) p, ,+~(¢~, ×, ~ ~ ~) 
I/L} 

I/L] 
¢" ,  ×/y, 7r, ~/w, ¢,  -y, ~ ~ 

R ( ¢  =~ w) q ( x ,  v,-y ~ y) /L 
_ _ [ le , ,+ , (¢ ,~  

I/L] 

We :require four contrac t ion rules of this pat tern ,  
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which arise with the direct ionali ty of two functors 
(the left-right order of the two functors being deter- 
mined by the head functor) .  

We call any proof tha t  contains  no redexes (which 
is consequently a NF under  the reduct ion system) 
an irreducible normal  f o r m  (INF). It is easily veri- 
fied tha t  for each cont rac t ion  rule, the con t rac tum 
subproof  assigns a l ambda  expression for the root  se- 
quent combinat ion  equivalent to tha t  assigned by the 
redex. Thus,  meaning is preserved under  contraction,  
and also in turn  under  reduction.  Hence, an INF of 
any proof  P always assigns the same reading as P .  

We will next demons t ra te  tha t  normal i sa t ion  holds 
for the reductive NF system; tha t  is, tha t  every proof 
has an INF. This proper ty  follows provided that  the 
following (stronger) p roper ty  holds: 

(11) Strong Normalisation: Every reduction is finite. 

Thus,  for every proof, a finite series of contract ions 
always leads to an irreducible proof. 

To prove tha t  every reduct ion is finite, it is suf- 
ficient to give a metric tha t  assigns to each proof a 
finite non-negat ive integer score, and under  which it 
can be shown tha t  every applicat ion of a contract ion 
rule reduces the score of a proof  by a positive integer 
amount .  The scoring system given in (12) satisfies 
these r equ i remen t s?  

(12)The 
a .  

score for any proof P (written sc(P )) is as follows: 

if P is an axiom leaf instantiated with type x 
then so(P) = factorial(3 ate(x)) 

b. ff P has a right inference at its root, wi~h premise 
subproof Q then sc(P) = sc(Q) + 1 

c. if the root inference of P is a head left inference, 
with major subproof Q and minor subproof R then 
sc(P) = (sc(R) + 1)sc(q) + 1 

d. if the root inference of P is a non-head left infer- 
ence, with major subproof Q and minor subproof 
R tt~ert so(P) = (sc(R) + 1)so(q) 

3.4 E q u i v a l e n c e  o f  t h e  T w o  S y s t e m s  

We write C N F ( P )  and I N F ( P )  to indicate tha t  a 
proof  is in NF under  the respective systems. The two 
NF systems can be shown to be equivalent in that  
they designate precisely the same sets of proofs to be 
in NF, i.e: 

(13) Lemma h for all P, CNF(P) ~-~ INF(P) 

This follows given Lemmas  2 and 3. 

(14) Lemma2: for all P, ~INF(P) --~ ~CNF(P) 

It is easily checked tha t  no redex subproof  is in CNF. 
Hence, any reducible proof  is not  a CNF. 

(15) Lemma 3: for all P, -~CNF(P) --* -,INF(P) 

9The atmnic type count (ate) of a type is defined as follows: 
(i) ate(x) = 1 if x is an atomic type; (ii) ~,tc(x/y) = atc(x\y) 
= ate(×) + ,~tc(y) 



This may be proven by induction on P 
Given the equivalence of the two NF systems, and 

the normalisation result for the reductive NF system, 
it follows that  for every proof in L, there exists a CNF 
proof that  assigns the same reading. Hence, generat- 
ing all and only the CNF proofs of a given sequent 
is safe in. the sense that  we can be sure all possible 
readings for the combination will be returned. 

3.5 T h e  U n i q u e n e s s  o f  N o r m a l  F o r m s  

The approach wi!l be optimal if there is only a sin- 
gle CNF asslgnhlg each distinct reading. As we have 
already noted (footnote 6), the meaning assigned by 
any (cut-free) proof will be a lambda expression that  
is in /%normal  form. Extensional equivalence for the 
Lambda  Calculus is given by the /~]-reduction sys- 
tem. Since this system exhibits the Church-Rosser 
property~ any two terms in fl-normal form will be 
equivalent just in case applying some sequence of ~/o 
contractions (i.e. Av . f v  ~>1 f )  to each yields the same 
term (nmdulo c~-conversion). 

Let us consider two distinct CNF proofs P and Q 
of some sequent S. Assume that  these differ ill some 
regard along their main branches. The bot tom part  of 
each main branch will consist of a sequence of zero or 
more right inferences. The length and nature of this 
sequence of inferences is fully determined by the type 
of the succedent in the root sequent S, and so P and 
Q may not differ in this regard. Thus, the meanings 
assigned by P and Q will be lambda expressions of 
the following forms (in which the lambda abstractions 
Av:..v,~. correspond to the initial sequence of right 
inferences): 

P : .\v:..v~.(fYi..U,,~) 
Q : ,~vl..v,.(oUd..uU) 

The remainder of each main branch will consist of 
some sequence of head left inferences, terminating 
in an axiom instance. Consequently, the two CNF 
proofs may differ along their main branch only in 
two regards: (i) a different antecedent type is the 
functor for the first left inference (this determining 
the functor for the remaining left inferences on the 
main branch), (ii) even if the same type is chosen for 
the functor of the first left inference, at some point a 
different ,;ubsequence of antecedents is chosen to 'con- 
s truct '  the argument  of the functor. In either case, 
the semantics assigned to the two proofs will be non- 
equivalent. Thus, for case (i) f and g will be distinct 
variables. In both cases~ it may be that  m : ]c, and 
even if ra --= ]c, at least some of the Ui and Ui I will 
differ in the lambda variables that  m'e put together to 
form these (i.e. the lambda expressions corresponding 
to antecedent semantics). It is evident that  in any of 
these eventualities, no sequence of ~?-contractions can 
yield a common term from two such terms and so 
the two proofs must assign distinct readings. If the 
two NF proofs are similar along theh" main branches, 
they must differ in the minor subproof for some left 
inference. The same arguments apply in turn that if 

these subproofs differ in form, then they must be non- 
equivalent. Hence, distinct CNF proofs always differ 
semantically, and so the uniqueness property holds. 
Since reduction preserves meaning, and distinct NFs 
are non-equivalent, it follows that  every proof has a 
unique NF. 1° 

3.6 N o r m a l  F o r m  T h e o r e m  P r o v i n g  

For the purpose of theorem proving, we specify an 
amended version of the calculus, which we term the 
' p~s ing  calculus' (PC), which is such as to only allow 
the construction of proofs that  con'espond to CNF 
proofs. To this end, we move from a system which 
uses a single notion of sequent, to one which distin- 
guishes two different types of sequent Type 1 and 
Type 2-- th is  type being marked as a subscript on the 
derivability arrow =>. The point of this distinction is 
to allow us to limit the form of the proof that  may be 
given for some sequent merely by its type. The Type 
1/Type 2 distinction essentially corresponds to the 
~1/72 distinction in the definition of CNF. For Type 
2 sequents we distinguish the antecedent element that  
must be the head of any proof of the sequent by di- 
viding the antecedent sequence into three subparts,  
separated by -+-'s, as for example in ¢+x+Tr  => z, of 
which the first and last par ts  are (possibly empty) 
sequences of types, and the middle paa't a single type 
that  is required to be the head of any proof of this 
sequent. 

The following set of inference rules allow only 
proofs of the required form to be constructed: 

(16)Axiom: e~-x:f-~e =~,,~x:f where x is an  atomic 
type  (an(l e denotes  the 
en~pty sequence) 

Right  rules: F, y:i ~ x : f  I/R] y:i,  1" ~ : x : f  

r ~,×/y:~i./ r ~,x\y:~;./[\R] 

Left rules: A =>lY:g F + x : f g + A  =:>~z:h 
I/Li 

F+x/y:f+(A, A) :>:z:h 

A =>ly:g F÷x:fg+A =>2z:h 
[\L] 

(F, ~ , )+×\y : f" i -A -->~ z:h 

[2~-*1] rule: A + x : f + F  =>~y:g where y is an ~tomi(: 
[2~-*1] type,  and x := y or x 

A, x:f, r -~ly:g  a funct ion  onto y 

Observe that  the axiom inference specifies a Type 2 
sequent, with the single antecedent type being the 
designated head of that  sequent. This corresponds 
to clause (a) of the definition of CNF in (6). The 
left inference rules have Type 2 sequents for their 
conclusion and major premise and a Type 1 sequent 
for the minor premise. Note that  the active type for 
the inference is the designated head of the conclusion 
and its value subformula is the designated head of 
the major premise. This corresponds to clause (b) of 
the CNF definition. The right rules have a Type 1 

l e F r o m  this it follows tha t  the  reduc t ive  NF sys t em exhibi ts  
the  Church -Rosse r  property,  

1 7 7  



premise and conclusion, in line with clause (d) of the 
CNF definition. In addition, there is a rule [2~-41], 
corresponding to the clause (c) of the CNF defini- 
tion. Note there is a condition on the rule which 
does not correspond to anything hi clause (c). It is 
easily shown that  this condition is always fulfilled by 
T2 proof~s, so its addition does not alter the set of 
proofs admit ted by the PC. However, the condition 
will considerably limit the application of the [2~-.1] 
rule in top-down search for proofs and so increase the 
efficiency of theorem proving. It is easily shown that  
PC and CNF proofs exist in 1-to-1 correspondence. 

4 D i s c u s s i o n  

It can be seen that  the form of any CNF proof is 
strongly tied to the form of the lambda expression it 
assigns a.s its meaning. As we have seen, the lambda 
term corresponding to the meaning of any (cut free) 
proof in I, is always a fl-NF term of the form: 

~vl . .v~.(hUi. .U~) (n, m > 0) 

where h is a variable, and the main branch of a CNF 
proof is always of the following form (starting at the 
root): zero or more right inferences, followed by zero 
or more left inferences, terminating with an axiom 
inference. The correspondence between the two is as 
follows: the initial sequence of right inferences cor- 
responds to the lambda abstractions of ~he variables 
vi..v~, and the ensuing left inferences are just those 
required to apply the variable h (the semantics of the 
head) to each of its arguments Ui..Um in turn, with 
e~ch of the subterms Ui being 'constructed '  in the 
subproof for a minor premise. 

These observations provide the basis for relating 
this approach to that  of Khnig (1989), mentioned ear- 
lier. Khnig uses a non-standard method for arriving 
at a notion of NF proof which involves firstly map- 
ping proofs into objects called ' syntax trees',  where 
proofs that  yield the same syntax tree form an equiv- 
alence class, and then mapping from each syntax tree 
to a single NF proof. From the form of such NF 
proofs, Khnig derives a set of Cnesting constraints '  
which are used to limit the operation of a top-down 
theorem prover, and which are such that  they will 
never prevent the construction of any NF proof. As 
Khnig points out, however, the ~nesting constraints '  
do not exclude the construction all non-NF proofs 
when used with a s tandard propositional formulation 
of the Lambek Calculus (though bet ter  results are 
obtained with a unification-based version of the Lam- 
bek Calculus that  Khnig describes). Khnig's syntax 
trees can be seen to bear a strong correspondence, 
in terms of their structure, to the lambda term for 
the meaning assigned by a proof (although the for- 
mer include sufficient information, of types etc, to 
allow (re)construction of a complete proof for the ini- 
tial sequent), and the relation of Khnig's NFs to the 
syntax trees used to define them closely parallels the 
relation between CNF proofs in the present approach 
and their corresponding lambda terms. 
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A further topic worthy of comment  is the rela- 
tion between the current approach and natural  de- 
duction approaches such as that  of Prawitz (1965). 
As Prawitz observes, sequent calculi can be under- 
stood as meta-calculi for corresponding natural  de- 
duction systems. Introduction rules correspond to 
right rules and elimination rules to left rules. In 
Prawitz 's  NFs, an introduction rule may never ap- 
ply to the major  premise of an elimination rule (such 
a subproof being a redex) so that  eliminations always 
appear  above introductions on the main branch of 
a NF proof, l i  which seems to parallel the form of 
CNF sequent proofs. However, the relation is not 
so straightforward. For a natural  deduction formu- 
lation of the (product-free) Lambek Calculus, i2 the 
occurrence of a relevant redex in a natural  deduction 
proof (i.e. where an introduction rule applies to the 
major premise of an elimination) corresponds to the 
occurrence of a fl-redex in the corresponding proof 
term. For sequent proofs, however, the occurrence 
of a fl-redex corresponds to a use of the cut rule in 
the p roof - - the  lambda terms for cut-free proofs are 
always in fl-NF. Unfortunately, limitations of space 
prevent due discussion of this topic here. 
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