
Constraining Tree Adjoining Grammars by Unification

Karin H a r b u s c h

Deutsches F o r s c h u n g s z e n t r u m fiir Kiinst l iche ln te l l igenz
S tuh l sa tzenhausweg 3, 6600 Saa rb r i i cken 11

F . R . G .
Phone: (+49 681) 302 5271, Fax: (+49 681) 302 4261

E-Mai l : ha rb usch@dfk i .un i - sb .de

Abstract
In a proposal, Vijay-Shanker and Joshi presented a definition for combining ttw two formalisms Tree

Adjoining Grammars and PATR unification. The essential idea for that combination is the separation
of the two recursion operations - adjoining and unification - to preserve all properties of both
formalisms which is not desirable for natural language applications. In this paper, a definition for the
integrated use of both processes is given and the remaining properties of the resulting formalism are
discussed - especially weighing the appropriateness of this d~finition for natural language processing.

i1 Introduction
iln the field of natural language analysis, Unification
Grammars are a main research topic. Presently,
Unification is defined as extension of context-flee
grmnm~s.
Knowing th, e formalism of Tree Adjoining Grammars
(in the following called TAGs in short), which is
closely related to context-free gr,'tmmars (in the
I611owing abbreviated CFG), the idea arises to replace
the context-free grammar in a Unification Grammar by
;t TAG. The advantage of TAGs is that complete
context-fl'ee derivation trees or parts of them build the
rqles of that grammar type (e.=.,, with the intention of
~epresenting a whole linguistic phenomenon). The
~ecursion operation for TAGs allows the replacement of
nodes by a tree (defined by a TAG-rule), so that larger
t;tructure u'ees are processed.
In the literature, a first definition for combining these
two formalisms was proposed, where the main idea is
Io sepwate the two recursion processes - adjoining and
unification - to preserve all properties of both Here a
different approach is chosen, where both recursion
processes are integrated. The main point to emphasize
here is that the different approaches not only represent a
.';witch between two modes of interpreting the same
definition, but a change in the properties of the
resulting formalism.
This can be sirnply demonstrated by the property of
monotonicity of the unification. Associated with each
lree of a TAG all sp¢ification rules for the unification
are interpreted at once (e.g., represented as links
between the DAG representation of the specification
rules at each node in the tree). If now the recursion
process of TAGs, the adjoining operation, combines
two trees, which both have DAGs, a strategy for
reinterpretation of specification information must be
defined, because an adjoining modifies inner nodes,
where links still are installed.
la the following, the two formalisms are briefly
revisited to have a common terminological basis with
rite reader, before the existing definition of Tree
Adjoining Grammars with Unification is presented. In
contrast to this approach, the new definition is

motivated and its properties are discussed. Finally, our
experience with an implementation of that definition in
the application domain of syntax analysis (e.g., in a
natural language dialogue system) is summarized.

2 T h e T w o Bas i c F o r m a l i s m s T A G
a n d P A T R
In this section, the formalism of TAGs is motivated to
be appropriate to replace a context-free grammar in
natural language descr ipt ion. Weighing the
disadvantages remaining for TAGs, which are the seane
as for CFGs, the same extending formalism as for
CFGs - Unification Grammars - has been chosen to
resolve these disadvantages for TAGs.

2.1 A Sho r t Ou t l ine of T r e e Adjo in ing
G r a m m a r s
In 1975, the formalism of Tree Adjoining Grammars
(TAGs) was introduced by Aravind K. Joshi, Leon S.
Levy and Masako Takahashi (see [Joshi et al. 75]).
Since then, a wide variety of properties - formal
properties as well as linguistically relevant ones - were
studied (see, e.g., [Joshi 85] for a good overview).
The following example describing the crossed
dependencies in Dutch should illustrate the formalism
(see Figure 1, where the node numbers written in
slanted font should be ignored here, they make sense in
combination with Figure 3). A TAG is a tree
generation system. It consists of two different sets of
trees, which are combinable. Intuitively, the set of
initial trees can be seen as context-free derivation trees.
This means, the start symbol is the root node, all inner
nodes are nonterminals and all leaves are terminals
(e.g., in Figure 1 tree ~). The second set, the auxiliary
trees, which can replace a node in an initial tree (which
is possibly modified by further adjoinings) during the
process of adjoining, must have a form that again a
derivation tree results. The trees ~31 and [~2 demonstrate
that restriction. A special leaf (the foot node) must
exist, labelled with the same nonterminal as the root
node is labelled with. Further, it is obligatory that an
auxiliary tree derives at least one terminal. The union of
the initial mid the auxili~u:y trees, so to speak the set of
rules of a 'FAG, is called lhe set of elementary trees.

1 16 7

Tree y in Figure 1 shows a TAG derivation tree, which
is an initial tree with an arbitrary number of adjoinings
(here [51 is adjoined at the node S* in ct and ~2 in the
node S* in the adjoined tree 131).

or: So0

vr°
NlPol 1 VP zwern-

iol2men
~0111~30121

Marie

13x: Slo ~=: S~o

A
("/Xy

N $1121V121122 Jan zag 1111 [
I

Piet

~. S oo

I too°

~ laten

Jan NP111 VP_ zag
I

Marie

Figure 1: A small sample TAG demonstrating the
process of adjoining

The most obvious property of TAG rules (elementary
trees), which arises from the close relation with
context-free derivation trees - with which linguists are
familiar - is the easy way to write and understand such
rules. The advantage instead of a context-free grammar
producing the derivation trees is that related facts can be
described in one rule. E.g., in Figure 1, each tree
contains exactly the dependent pieces without any

further processing (for more examples see, e.g., [Kroch,
Joshi 85]).
With the close relation between TAGs and CFGs, one
can think that both formalisms are equivalent. But
TAGs are more powerful. In the linguistic community,
it is discussed controversially, how powerful a
linguistic formalism should be (see, e.g., Pullum 84]
or [Shieber 85]). TAGs are mildly context-sensitive,
which means that they can describe some context-
sensitive languages, but not all (e.g., www with w e

{a,b} , but ww is acceptable for a TAG). There is the
thesis that natural language can be described very well
by a mildly context-sensitive formalism. But this can
only be empirically confirmed by describing difficult
linguistic phenomenons (here, the example in Figure 1
can only give an idea for the appropriateness of TAGs
fbr natural language description).
If an efficient implementation of a parser for TAGs is
desired (e.g., in a natural language access system to an
expert system), the existence of polynomial time
acceptors for the word problem of TAGs becomes
relevant (upper time bound O(n 4 log n), see [Harbusch
89]). On the basis of thi~ efficient algorithm the new
definition has been implemented which is mentioned
later in the summary.
With this short impression of some advantages of the
TAG formalism, the disadvantages sbould now be
tackled. The main property, which has its roots in the
close relation to context-free grammars, is the same
problem with subcategorisation. Further information
encoded in the category name leads to combinatory
explosion of the grammar. In the framework of CFGs,
this disadvantage is removed by defining a Unification
Gr~Jnrnar c× tending a context-free grcunmar.

2.2 PATR Unificat ion Brief ly Revisited
A Unification Grammar U (brief!y called UG or PATR
grammar) consists of a CFG G, where each rule is
extended by a possibly empty set of specification rules
(for a good introduction to Unification Grammars, e.g.,
see [Shieber 87]). Such a rule consists of two paths
which ,are unified. A path consists of a number uniquely
referring to a constituent in the context-free rule
together with a list of feature names and/or an atomic
value.
A pair (context-free rule, list of specification rules) is
called unification rule. E.g.,((S NP VP)) (((0 fset)(1
fset))((lfset syntax)(2 fset syntax))((2 fset syntax
verbform) active)))) is such a rule. Another
representation of the specification rules is a DAG
(d i r e c t e d a c y c l i c graph). Figure 2 shows this
representation for the above described exauaple rule. It is
built by representing the numbers, feature names and
values as nodes which are connected in the way riley are
put together in the string representation. Common
prefixes are represented only once.

0 ---£set ~,)

1 - - f s e t - L s y n t a x ~

2 - - f s e t - - s y n t a x - X - v e r b f o r m - - ' a c t i ve

Figure 2: Example of a DAG representation

168 2.

The pro~'ess of recursion - called u n i f i c a t i o n - is defined
as an operation of union on all specification rules
according to a context-free derivation, loosely spoken.
More h)rmally, the result of the unification of two
DAGs x and y (UNIFY(x,y)) is defined inductively as a
new DAG z, where
- z = x , i f x = y ,
- z = x, if x is atomic and y is empty, and vice versa

z = y, if y is atomic and x is empty,
- if neither x nor y is atomic, then V features I such

that II,ul ~ x, II,vl e y, I1,UNIFY(u,v)I e z and
V features I such that II,wl ~ (u u v) - (u r~ v),
II,wl e z.

It is easy to see that this extension of the context-free
formalism allows us to introduce various additional
information by specification rules. The main problem
of the formalism is that it has Turing capacity - and so
all disadvan 'tages inherited with this power. Informally,
this paper shows that the combination with TAGs
restricts the power of unification.

3 The Two Different Definitions
of TAGs with Unification
Although Turing capacity is not a wishful property,
unification seems to be a good extension for TAGs as

speeif iat ion rules :

(((10
(11

((11

well. In this section, two different definitions for TAGs
with Unification (UTAGs) are presented in a common
terminology to simplify their comparison.

3.1 T i l e D e f i n i t i o n o f t i l e G r a m m a r f o r
T A G s w i t h U n i f i c a t i o n
Same as to define specification rules according to a
context-free rule, where the relation between both sets
is represented by unique node numbers to refer to the
different constituents in a rule. Here, according to an in-
itial or an auxiliary tree, these specifications are defined
between father and sons or between brothers via unique
node numbers all over the trees. The trees c~, 131 and ~2
in Figure 1 (now interpreting the unique node numbers
of the elementary trees) together with the according
specifications in Figure 3 describe an example TAG
with Unification, which produces the propagation of
some syntactic and senmntic information from the lexi-
cal items to the root node of the different subsentences.
Note that the unique node numbers are also helpful to
identify the individual adjoined trees in the derivation
tree. To prevent the ambiguity resulting from adjoining
the same tree more than once, the node number of the
eliminated node is taken as a prefix for all new nodes.

(((00 fset)(01 fset))
((01 fset)(02 fset))
((01 fset)(012 set))
((011 fset)(012 fset))
((012 fset)(0121 fset))
((011 fset)(0111 fset)))

fset sem_role dep sent action) (((20 fset sere_role dep_sent action)
fset sem_role action)) (22 fset sere_role action))
fset)(12 fset)) ((20 fset sem role dep_sent dep_sent action)

((11 fset)(112 fset))
((111 fset)(112 fset))
((111 fset)(1111 fset))
((11 2 fset)(1121 fset)

((112 fset sem_role dep_sent actor)
(1121 fset sem_role actor)))

Lexicon

(22 fset sem__role dep_sent action))
((21 fset)(22 fset))
((211 fset)(211 fset))
((22 fset)(222 fset))
((22 fset sem_role dep_sent dep sent actor)
(221 fset sem_role dep sent actpr))

((22 fset sere_role dep sent actor)
(221 fset sem_role actor)))

: (Marie ((N ((syntax hum) sing)((syntax case) nom)((syntax pers) 3)
((synt_role subject) Marie)(sem_role actor) Marie)))

((N ((syntax hum) sing)((syntax case) dat)((syntax pers) 3)
((syntrole d_obj) Marie) ((sere_role recipient) Marie)))

((N ((syntax num) sing)((syntax case) acc)((syntax pers) 3)
((syntrole i d obj) Marie)((sem_role recipient) Marie))))

... same information for Jan and Piet ...
(zwemmen ((V ((syntax verbform) inf)((syntrole verb) zwemmen)

((synt role subject))((synt_role d_obj) NONE)
((syntrole i d obj) NONE)((sem_role action) zwemmen))

(laten ((V ((syntax verbform) inf)
((syntrole verb)laten)syntrole d_obj) NONE)
((syntrole i d obj) NONE)(((sem role action) laten)))

(zag ((V ((syntax verbform) fin) ((syntax pers) 3)((syntax hum) sing)
((syntrole verb) zagen)((synt_role d_obj) NONE)
((synt_role i d obj) NONE)((sem_role action) zagen)))

Figure 3: Specification rules for c~, 131 and 132 in Figure 1

3 169

To get an impression of what that grammar does, one
can read all relations between father and sons in all
initial and auxiliary trees as context-free rules annotated
with the corresponding specification rules.
To realize this partial interpretation of specification
rules, the following sets for each node x are defined:
l"x := the set of all specification rules with x father or
brother of the other mentioned node in that rule,
Sx := the set of all specification rules, where x is a son
of the further mentioned node in that rule and
0x := the set of all specification rules, where a value of
x is defined.
It is easy to see that for each node these sets can be
automatically computed. E.g, for the node 01 in c~, 1"01
:= {(((00 fset)(01 fset)), ((01 fset)(02 fset))}, $01 :=
{(((01 fest)(012 fset))}, 001 := ~ . Vijay-Shanker and
Joshi prefer to write the grammar in the 1" (TOP, or
briefly called t) and $ (BOTTOM, b) terminology,
which allows slide differences in expressiveness, e.g., a
non-empty TOP set of the root node of an auxiliary tree
can be specified.
The Unification Grammar, consisting of all rules built
by interpreting each father and all its sons in all
elementary trees as context-free rules, together with all
TOP sets, can be interpreted as described in section 2.2.
But it is important to note, the two resulting grammars
are not equivalent, because the context-free grammar
doesn't require the derivation of the whole tree, if one
context-free rule out of it is in use.
Considering this simple and intuitive interpretation of a
UTAG, the problem of defining adjoining and
unification directly for such a grammar becomes
obvious. Only the relations between father and sons or
brothers are interpreted directly, although there are links
defined over a whole tree. This is exactly the point,
where the two defin~.tions differ.

3.2 The Definition of Vijay-Shanker and
Joshi
The definition of Vijay-Shanker and Joshi separates this
local information (for a description of their approach
see, e.g., [Vijay-Shanker 87]). It reminds us of the
interpretation of attributes after computing the context-
free derivation tree for an Attribute Grammar (e.g., see
[Aho et al. 86]).
In their approach, the 1" and $ sets remain isolated until
all adjoinings are made. With this strategy it is clear
that the unification cannot be used to reduce the number
of structure trees, which are unificationally ill-formed.
More formally spoken, the adjoining is defined as
described in Figure 4 (for the reason of uniquely
referencing to the 1" and $ sets at each node X, t and b
with different bar levels are used). After all adjoinings
were made, all 1" and $ sets at each node are unified.
The disadvantage of this sequential interpretation of
adjoining and unification can be demonstrated by the
example grammar. In the lexicon, all names, "Marie",
"Piet" and "Jan", have three different cases (nominative,
dative and accusative). Therefore, three structurally
equivalent trees are produced for each tree c¢, [~1 and ~2.
These are structurally combined by adjoining. Out of
this collection, by the specification rule, which
demands a subject, unification selects one correct

reading. But this is checked after building nine different
derivation trees.

Figure 4: The adjoining definition for the approach of
Vijay-Shanker and Joshi

One way to handle that problem is to use unification
with disjunction to reduce the set of structurally
equivalent trees. But this doesn't tackle the problem
fundamentally, because it cannot reduce ambiguities,
which only can be eliminated by interpreting the
specification rules at once. This integration is realized
in our new approach. The different approaches are
abbreviated with SUTAG for the more sequential
approach of Vijay-Shanker and Joshi, and IUTAG for a
more integrated approach, which is presented now.

3.3 All Integrated Definition for TAG and
Unif icat ion
The basis for our definition is a UTAG given in the
notation as described in section 3.1. For each
elementary tree, a set of specification rules is defined,
which can be interpreted as unified DAGs over the
whole tree. E.g., the path "fset sem_role action" of node
01 has the value "zwemmen".
If an adjoining should happen in a node X, for this node
the sets '['X, SX and <)X are computed because this
node and with it "all links from its DAG to other DAGs
are replaced by an auxiliary tree. Structurally, the
adjoining looks like the original one for TAGs (and
same as for SUTAGs). In the case of an adjoining, a
node in an (possibly modified) initial tree should be
replaced by a whole auxiliary tree [3, and all links that
node had have to be modified by the information of ~.
You can imagine the new linked DAGs all over the
adjoined Iree as being a filter for the former propagated
information. E.g., information passing a node X, where
an adjoining will take place, must not be supported by
the path from the root to the foot node of the adjoined
auxiliary tree. So the propagation is stopped somewhere
in the tree.
More formally spoken, the definition of adjoining can
be given as described in Figure 5. The DAG of the
node, in which the adjoining will take place, is
represented by $ and $ sets.
Here, r and f stand for the whole DAG of the root and
foot node of the auxiliary tree, which will be adjoined.
But it is obvious that the 1" set of r is empty as well as
the $ set of f. This is clear because there exists no
father of the root and no son of the foot node where
these links can end.
Using the same terminology for the auxiliary tree as in
Figure 4 (r is separated in t" and b', and f in t " and b") ,
one can write instead of "UNIFY(t,r)" as well

17o 4

"UNIFY(t ,b ')" and for "UNIFY(b,f)" as well
"UNIFY(b,t")". What becomes obvious is that in the
:cesulting m~e each node has a DAG, which is connected
with the DAGs of its neighbors in the tree. This was
lhe aim of the new definition, always to produce linked
DAGs all over the derivation tree to test for failure of
anification at once.

~ i IFY(t'r)

NIF¥(b, f)

Figure 5: Tile adjoining definition for IUTAGs

~ut this is not the complete definition; there are two
things to be added. One is the concrete handling of the
elimination of links and the second is the reintroduction
of the value definition of the eliminated node.
t~eginning with the elimination of links, the separation
into q" and $ at a node X, an adjoining will take place,
means that all information propagated along the node X
is eliminated (e.g., one can imagine a reason mainte-
nance system to keep track of that task, so that unifi-
cation is no more commutative and independent from
the time of introducing information). E.g., information
t'rom a leaf is propagated to the root of the whole tree.
This propagation can be interrupted, modit'ied or kept
tmtouched if an adjoining takes place. Intuitively, the
adjoined tree can be imagined as a filter for the propa-
?~ation.
Some extra computation must be done for tile reintro-
duction of 'din value inl\-)rmation (0X) in the following
way. Since tim node, in which a value is defined, will
be eliminated in the case of an adjoining, the question
arises, what should happen to the value definition?
tlere, it was decided to find a point for the reintro-
duction of that information. The first idea can be to say,
i.~y definition add it to the root node. But now a fail can
t,,e produced in the case ltmt lhe adjoined tree adds parts
~f the path to reach that value (e.g., if the value
definition in node X with the node number 01 is ((01
ilset) val) and in tile root node (10) of the adjoined tree,
dm specification rule exists ((10 fset next) (11 fset)), a
tail is produced because fset has at the same time a
feature and a value as successo0. To allow this property
to be interpreted without failure, which is desirable for
ihe idea of defining a filter via adjoining, a computation
t)f such paris of paths in the adjoined tree is done to find
the maximal extension of the path, behind which the
value can be added without producing a fail.
in this process, called computation of the inheritance
history, all maximal prefixes of paths in the adjoined
auxiliary tree are computed. Out of this set, those
candidates are chosen, which have the value definition
as prefix p. Behind these maximal paths the value is
reintroduced. Because this selection does not always
have a unique path at exactly one node as result (e.g., if
~-oot and foot node add two different feature names
behind p, but between both no propagation occurs), at

the end of both paths the value is reintroduced by
definition. It is clear that the computation of the
inheritance history can be done once for all paths in all
auxiliary trees, so that this part of the definition doesn't
extend the execution time very much. The most
elaborate work has to be done in reconstructing the
correct links all over the derivation tree after an
adjoining. In the worst case, changes of propagation all
over the derivation tree are required.
To give an idea of how this definition works, in Figure
6 the changes during the adjoining of [31 and 132 in a
are represented. Here only the nominatve reading is in
use, because the lexical reading with case dative and
accusative produces a fail in unification with the
valency description of the verbs. Concentrating on the
feature path "fset sere_role" (note, we don't claim that
this is a serious semantics of the sentence!), first the
meaning of "Marie zwemmen" is produced (action is
"zwemmen" and actor is "Marie"), which is modified
during the adjoining by "Piet laten" and "Jan zag".

3.4 Tile Comparison of tile Properties of
SUTAG and IUTAG
Finally, let's weigh the two approaches. A first
impression in reading both definitions can be that the
differences are marginal. It is simply a decision in
ordering processes. But a second look offers that there
,are more differences. The ideas of what should be
represented by an adjoining are different. A SUTAG
supports the monotone idea behind unification and the
parallel and absolute presence of propagated knowledge
(what is written in tile '1" and ,[, sets should be
propagated exactly fiom that node all over the tree
withot,t any more changes). In a UTAG, the idea of
filtering propagated information has the highest
priority. Specification information should be revisable
by new adjoinings. Each of the two approaches works
more efficient for different problem classes, which
cannot be characterized in more detail here.
For SUTAGs, the main disadvantage is the late
interpretation of the specifcation rules. Especially here
lies the motivation for the definition of IUTAGs. In the
above mentioned example, the focus in describing the
advantage of online unification is demonstated by the
representation of the intermediate states of the DAGs,
but it is clear as well, how the lexical readings with
case equal dative or accusative for "Marie","Pict" and
"Jan" are eliminated.
Another distinguishing feature of IUTAGs is that
unification is not further a monotone process as it is in
SUTAGs (same as for UGs). Links, which have been
installed, can be eliminated. This is the more formally
circumscribed effect of a filter, which is the intuitive
idea behind that definition. It is obvious that the
realization of that fact is more expensive than to wait
until all adjoinings are realized. But it comes up with a
reduction of execution time for invalid readings.
Actually, this is a trade off, which has more or less
effect on the time complexity in the relation in which
specification rules are used to subcategorize and restrict
the structural descriptions. Therefore, both definitions
probably have more lxzrfect application domains.
A point which was mentioned as a disadvantage of the
Unification formalism, was the Turing capacity. For
both definitions of UTAGs, the power is restricted in a

5 i71

way t!hat no path can be introduced via specifications
without adding a piece of structure, because the
definition of an elementary tree requires a non-empty
leaf. Therefore, the defined unification process underlies
the constant growth property. At the moment, it is not
yet clear, what class of languages can exactly be

described with that formalism, but it is obvious that it
is less powerful than Turing machines (e.g., languages
such as a 2n are not describable). But a result for an
upper time bound of an algorithm for that formalism is
yet unknown.

by 1'(01) reaching 01 in cc by 1'(11) reaching 11 in ~1:

and reintroduced at 11 (and reintroduced at 20
~ r yd!oining ,of 131) ' , after adjoining of [32)

ntax- veroform- in! ~set'~" fset t-syntax- verbform- inf
y[It [ule vero-zwemmen , ~, .^, a ~,^~

~:1 i - . d obj-NONE
Ld_obj-NONE i d obj

g e m role-actiontzwemmen / , 7 . - , .
- ~, sem_role,~ actlon-laten

, - , ~ ~ ~ sent k ac_tj.oj3,,
oy 4,(01) reacning 01 in cc - - . . , . . " bv .$tl 1 ~ r e a c ~
(ano reintroouceo at 1121
after adjoining of [31) (and reintroduced at2_21

~,fset rsyntax ~-uase-nom after adjoining of ~9)
Ipers. 3 fset [syntax i-ease-nSm
-num-sg i ~pers-3 / / "

[synt_role--subject- Marie ~ num-sg [
'sem role- a c t o r k , , ~ ~ }ynt role--subjeet-fPiet

- - ~ " - ~ ~em-roleltactor ~
~lep sent L a c t ~

information at the root of 7:

fset, syntax-~erbform-fin
' c a s e - n o m

'pers-3
~synt role~'verb-lzagen

- ~subject-Jan
| ~d _obj-NONE

I 'i d__obj-NONE
\ 'sem_role~action-laten
\ [actor-Jan
\ Idep sent- a c t o r - - " ~
\ \ dep_sen ~action " - ~ !
[N I "dep-sent aet°r ~)~ I
~ i ~ - d e p sent a e t ~

Figure 6: Some intermediate states for an example demonstrating the adjoining definition for IUTAGs

4 Summary
Also the UTAG definition can be seen purely as a
theoretical result, syntax description as the most
prominent application domain has influenced the
design. Therefore, our experience with an imple-
mentation of the IUTAG definition running a natural
language grammar is mentioned here (for all technical
details see [Buschauer et al. 89]). The system is written
in Common LISP on a Hewlett Packard machine of the
9000 series with emphazise on efficiency. E.g., the
response time for a small test grammar and sentences of
a lertgth of about 10 words is less than 10 milli-
seconds. Presently, this pure parser is extended by tools
(e.g., consistency check) to build a workbench for
linguists designing IUTAGs.
On this basis, more empirical results should be
produced for that domain. Currently, we work on further
extensions of the definition (e.g., ID/LP for free word
order in German). Our main emphazise lies on the
aspect of incrementality. In this paper the interpretation
direction of the definitions was analysis. But the other
direction, the problems in generation are faced now,
with the ambitious aim to verify that IUTAGs are
appropriate for a bidirectional and integrated description
of syntactic, semantic and pragmatic facts.

Literature
[Aho et al. 861. A. V. Aho, R. Sethi, J. D.
Ullman: Compilers: Principles, Techniques, and
Tools, Addison-Wesley, Reading, Massachusetts, 1986.

[Buschauer et al. 89] B. Buschauer, P. Poller, A.
Schauder , K. t t a rbusch : Parser fiir TAGs mit
Unifikation, "AI-Laboratory" Memo in press,
Department of Computer Science, University of the
Sau'land, Saarbr~icken, FRG, 1989.
~ ~ K. H a r b u s c h : E f f i z i e n t e
Strukturanalyse natiirlicher Sprache mit Tree Adjoining
Grammars, PhD Thesis, University of Saarland,
Sa,'ubriicken, FRG, 1989.
[J o ~] A. K. Joshi: An lntroductior~ to Tree
Adjoining Grammars, Technical Report MS-CIS-64,
Univers i ty of Pennsy lvan ia , Phi ladelphia ,
Pennsylvania, 1985.
[Josl]i e t al. 75] A. K. Joshi, L. S. Levy, M.
Takahashi : Tree Adjunct Grammars, Journal of the
Computer and System Sciences 10, 1975.
[Kroch, Joshi 85] A. S. Kroch, A. K. 3oshi: The
Linguistic Relevance of Tree Adjoining Grammars,
Technical Report MS-CIS-16, University of
Pennsylvania, Philadelphia, Pennsylvania, 1985.
[Pullum 84.] G. Pullum: On Two Recent Attempts
to Show That English is Not a CFL, Computational
IJnguistics 10:4, 1984.
[~ S. M. Shieber: Evidence against the
Context-Freeness of Natural Langage, Linguistics and
Philosophy 8, 1985.
[Shieber 87_] S. M. Shieber: An Introduction to
Unification-Based Approaches to Grammar, CSLI-
Lecture Notes 4, Stanford, California, 1987.
[Vijay-Shanker 87] K. Vijay-Shanker: A Study of
Tree Adjoining Grammars, PhD Thesis, University of
Pennsylvania, Philadelphia, Pennsylvania, 1987.

172 6

