Generating from a Deep Structure *

Claire Gardent

Université Blaise Pascal - Clermont Ferrand (France)
and University of Edinburgh

2 Buccleuch Place

Edinburgh EH8 9LW (Scotland)

ABSTRACT: Noncanonical semantic representations
are representations which cannot be derived by some
grammar G although they are semantically equivalent to
representations which can be derived by G. This paper
presents a generation algorithm which deals with non-
canonical input. The proposed approach also enhances
portability and language independence in that (i) linguis-
tic decisions made by independent modules (e.g., planner,
transfer component) can be communicated to the gener-
ator in a natural way and (ii) the same algorithm coupled
with different grammars will yield sentences in the cor-
responding languages.

1 Introduction

Two major requirements on a generator is that it be cor-
rect and complete. A generator is said to be correct if
given two semantic representations R1 and R2 which are
not semantically equivalent, B1 and R2 do not generate
the same string. A generator is said to be complete if
any two semantically equivalent representations generate
the same set of strings.

An obvious case of incompleteness occurs when the gen-
erator fails to terminate on some well-defined input. An-
other less obvious cause for incompleteness can be ex-
plained as follows. Consider a grammar G and its as-
sociated semantic representation language L. It is often
the case that syntactically different strings of L will have
equivalent semantics. A simple case in point is the se-
mantic equivalence holding between ¢ A and P A ¢ in
e.g. propositional logic. On the other hand, it is also
often the case that the same grammar G will not derive
for a given string all the formulae which may represent
its meaning. From the point of view of generation, this
means that given two semantically equivalent represen-
tations BRI and R2 there is always a possibility that R1
generates a string S but that R2 doesn’t because R2 is

*The work reported here has been carried out as part of the
ESPRIT project P393 ACORD on “The Construction and In-
terrogation of Knowledge-Bases using Natural Language Text
and Graphics”. It is the result of joint work with Michael
Reape of the Center for Cognitive Science, University of Ed-
inburgh (Scotland, UK).

Agnes Plainfossé
Laboratoires de Marcoussis
Route de Nozay
91460 Marcoussis (France)

not derivable under G. Representations that cannot be
derived under a grammar G are said to be noncanonical
with respect to G.

In this paper, we present a generation algorithm for Uni-
fication Categorial Grammar [6] (vcG) which addresses
the problem raised by non-canonical input (section 2 and
3). An interesting upshot of the strategy we propose is
that it allows for language independent generation. Sec-
tion 4 illustrates this point by considering how, starting
from one semantic representation, two sentences can be
generated: one in English and one in French. Section 5
relates our work to previous proposals by Van Noord and
Shieber.

2 Generating from a deep
structure

It is sometimes the case that a grammar will assign to a
string several possible derivations with equivalent seman-
tics. This phenomena is particularly acute in categorial
grammars [2] and is referred to in the literature as that
of spurious ambiguity. In grammars where the semantics
is built by unification, the syntactic differences holding
between these equivalent semantics resides in the relative
ordering of the subformulae within the formula, That ig,
there is a direct relationship between the syntactic shape
of a semantic formula and the derivational history of the
corresponding string. Consequently, a given formula will
be non-canonical wrt to a particular grammar G if the
relative sequencing of its subformulae does not reflect a
possible derivation in G. Hence, to allow for generation
from non-canonical input, we need to abstract away from
the derivational information reflected in the linear order-
ing of the input formula. Three major alternatives come
to mind. First, we could try to generate all sentences
whose semantics are logically equivalent to the input se-
mantics. In vcq, this means that generation is carried
out with the two additional logical axioms of associativ-
ity and commutativity. However, this solution produces a
search space factorial in the number of conjunctions and
must thus be rejected as computationally intractable.

127



The second possibility is to define a semantic represen-
tation language for which all well-formed formulas are
in normal form. This approach is essentially unavailable
to any grammar framework in which the semantics of a
given expression results from the unification of partially
specified semantic representations because normal forms
can only be defined on languages with fully instantiated
formulae.

A third possibility consists in generating from an alterna-
tive representation i.e. one that is related to but not iden-
tical with the semantic representation used by the gram-
mar. This is what we chose to do. The alternative rep-
resentation we adopted is closely related to D-structure
in 6B theory where D-sfructure is a level of syntactic
structure which mirrors semantic functor-argument de-
pendencies. Syntactic information is encoded in terms
of schematic X theory familiar from modern generative
grammar. The deep structures (DS) we generate from
consist of four types: heads, complements, modifiers and
specifiers (we follow LFa f-structure and vcc subcate-
gorisation structure in treating subjects as ordinary com-
plements rather than specifiers of clauses) whereby Spec-
ifiers are of the form: specifier(Semantics, Head).
That is, they specify their own semantics and the prop-
erties of their head. In contrast, Heads are of the
form: head(Semantics, Arglist, AdjunctList). That
is, they specify their own head semantics and a list of
arguments and adjuncts which are also either specifier
or head structures. All of these structures also allow the
encoding of syntactic requirements on arguments and ad-
juncts.

In relation with the problem raised by non-canonical in-
put, an important property of DSs is that they contain
no indication of either surface syntactic order of the com-
plements and adjuncts or of the relative scope of quan-
tifiers occurring in either complements or modifiers. In-
stead, thematic dependencies between subformulae are
kept track of by the X schema where no reference is made
to derivational history. The generator is thus free to real-
ize both scope and surface syntactic structure in any way
which iz consistent with the deep structure specification
and the particular grammar used. The reader might ob-
ject to this elimination of scope distinctions. However,
within UcG any scope distinctions which are produced by
the individual grammars or as a result of some seman-
tics construction process are in fact artefactual. Further-
more, it might reasonably be argued that it should be
possible to generate all possible scopes. This is typically
done with quantifier shifting rules. Our solution is simply
not to specify scope.

An immediate consequence of using DSs is that non-
canonical input is no longer a problem. The reason for
this simply is that the generation algorithm no longer
relies on the agsumption that the input semantic repre-
sentation is canonical i.e. derivable under the grammar
used. Rather, the assumption is that the input will be
some well-formed DS that will contain all the information
contained in the corresponding semantics but none of the
information embodied in the linear ordering of the for-
mula about the derivational history of the corresponding
string.

128

The use of DSs has two other consequences. First, by
allowing for the association of syntactic with semantic
information, D-structures offer a way to mediate the re-
sults of linguistic decisions made by an eventual planner
to the generator. This may be useful. For instance, NP
planning could be accounted for. In the present context,
a planner is any system which given some information
about what to say will return some decision about how
to say it. For instance, if we want to express the fact
that Jon runs, the planner will have to decide on how
to refer to Jon, i.e. it could decide to describe him us-
ing a complex NP as in ‘the man with the red scarf who
atands nezxt to Irene’, or a pronoun e.g. ‘he’ or simply
his name i.e. ‘Jon’. The point is that the syntactic deci-
sion made by the planner must be communicated to the
generator. Since DSs contain syntactic information, they
are a good candidate for the necessary interface between
planner and generator.

A second advantage of DSs is that because they are lan-
guage independent, they allow for language independent
generation. That is, for any acceptable input deep struc-
ture, the algorithm presented below will generate e.g.,
a French sentence if coupled with a ucg grammar for
French and an English sentence if coupled with a vca
grammar for English. This is only possible because the
input deep structure the generation algorithm relies on
is both sufficiently abstract to be language-independent
and general enough that it can be mapped onto language
dependent surface syntactic structures. Language inde-
pendent generation is discussed in more detail in section
4.

3 The basic algorithm

3.1 A brief introduction to UCG

In vca the basic linguistic unit is a sign which includes
phonological, syntactic, semantic and ordering informa-
tion. In the sequel, a sign will be represented either by
a complex feature structure or as Pho:Synt:Sem:0rder.
The phonological field of a sign contains its orthographic
string, The syntactic field is categorial i.e. it can be
either basic (e.g s,np,n etc) or complex in which case,
it will be of the form C/Sign where C is a syntactic
field and Sign is a sign. Moreover, any basic category
can be assigned some morphosyntactic information. For
instance s[fin] denotes the category sentence with mor-
phology feature value: finste. The semantic field contains
the semantics of the expression whereby the semantic rep-
resentation language is a linear version of Discourse Rep-
resentation Theory in which each condition is preceded
by a sorted variable called the index. As in most unifi-
cation based grammars, the semantics of any expression
results from the unification of the semantics of its sub-
parts. Finally, the Order field is a binary feature with
value either pre or post which constrains the applicabil-
ity of grammar rules.

Grammar rules in vcc are of two types: Dbinary and



unary. Binary rules include forward and backward func-
tional application. These are stated below.

Pho: (Synt/Sign) :Sem:0Order, Sign
~-> Pho:Synt:Sem:0rder
if the order value of Sign is pre

Sign, Pho:(Synt/Sign) :Sem:0rder
-~> Pho:Synt :Sem:Order
if the order value of Sign is post

Unary rules are of the form o — § where o and § are
signs. Unary rules are used for the treatment of un-
bounded dependencies, syntactic forms of type-raising
and subcategorisation for optional modifiers.

3.2 A sketch of the algorithm

Following work by [1], [5] and [3], the algorithm we
present here follows a mixed top-down and bottom-up
strategy.

The generation process starts with a deep structure DS
and a sign Sign whose syntax embodies the goal cate-
gory (e.g. sentence(finite)). get_deepstr_info extracts
from the deep structure some semantic (Sem) and syntac-
tic (Synt) information on the next sign to be generated.
create_sign creates a new sign SignO on the basis of Sen
and Synt. Lexical look-up on Sign0 returns a sign with
instantiated syntax and phonology. The call to reduce
ensures that this lexical sign is reduced to the goal sign
Sign in the process instantiating the generated string.

generate(DS, Sign) :-
get_deepstr_info(DS, [Synt,Sem] ,Rest0fDS),
create_sign(Synt,Sem,Sign0),
lexieal(8igno0),
reduce(Sign0,Sign,Rest0fDS) .

There are two main ways of reducing a sign Sign0 to a
goalsign Sign. The base case occurs when SignO unifies
with Sign and the deep-structure is empty i.e. all the
input semantic material has been made use of in gener-
ating the result string. The recursive case occurs when
SignO is a syntactic functor. If the syntax of SignO is
of the form Result/Active, we apply Result/Active to
Active thus getting a new sign Result. retrieve non-
deterministically retrieves from the current deep struc-
ture DS, a substructure SubDS and returns the remaining
deep-structure NewDS. The argument Active is then gen-
erated on the basis of the extracted sub-structure SubDS
with a new goal sign whose syntax is that predicted by
the syntactic functor Sign0. The resulting sign Result
is recursively reduced to the original goal sign Sign.

reduce(Sign,Sign, [[],[]]).
reduce (Sign0,Sign, DS) :-

active(Sign0,Active),
apply(SignO,Active,Result),
retrieve(DS,SubDS, NewDS) ,
generate (SubDS, Active),
reduce (Result,Sign, NewDS) .

The algorithm presented above makes many simplifying
agsumptions which are incompatible with a wide coverage
vca grammar. To produce a complete generator with re-
spect to UcG we need to extend the basic algorithm to
account for type-raised NPg, identity semantic functors,
lexical modifiers and unary rules. For more details on the
general content of these extensions see [1]. For their im-
plementation cf. the listing of the generation algorithm
given in the appendix.

4 Bilingual Generation

Consider the following synonymous sentences.

a The mouse misses the cat

b Le chat manque & la souris
(Lit. the cat misses to the mouse)
(1)
There are two main differences between (1a) and (1b).
First, a NP (the mouse) translates to a PP (4 la souris).
Second, a structural transfer occurs i.e. the object NP in
(1a) becomes a subject in (1b) and vice-versa. For the
generator described above, this poses no particular prob-
lem. Because DSs encode thematic rather than grammat-
ical dependencies, structural transfer is no issue. Further,
since at DS all arguments are represented as NPs !, the
generation of (1a) is straightforward. Generating (1b)
is a little more intricate but results naturally from the
interaction of the generator with the grammar 2. Note
that if the PP were represented as such in the DS, then
generation would fail for the English sentence. This sug-
gests that the deep structures we generate from offer the
right level of abstraction for generation to be possible in
several languages.

The case of structural transfer illustrated in (1) is a good
example of the problems that occur with generators that
are unable to deal with non-canonical input. To illustrate
this consider the following situation. Suppose that given
two grammars, one for English(Gr) and one for French
(Gr), (1a) and (1b) each have one unique derivation with
resulting semantics as in (2).

a The(mouse(m), the(cat(c), miss(m,c))

b The(cat{c), the{mouse{m), miss(m,c)))
2
Furthermore, suppose (3a) is non-canonical with l'esp((ac%
to G (i.e. (3a) is not derivable under Gr) and (3b) is
non-canonical wrt Gg. For any generator G that cannot
deal with non-canonical input, this means that G cannot
be used in a system where parsing occurs on one language

IThis is in accordance with the view that prepositions oc-
curing within argumental PPs have no semantic content.

2For more details on the generation of subcategorised PPs
within UCG see [1].

129



and generation on another. More to the point, if G is cou-
pled with the grammar Gg, then it will fail to generate
when given (2b) as input - and similarly when coupled
with Gp and given input (2a). To understand why deep
structures allow for grammar independent generation,
let us first examine why traditional top-down/bottom-
up generators such as the one described in [1] fail on
non-canonical input. ® Consider the case where we try
to generate under G the English sentence in (1a) from
the semantic (2b) and - as already mentioned - (2b) is
non-canonical wrt Gg. The main steps of the genera-
tion process will be as follows. * Suppose the goal sign is
Sign0 with category s[fin]. First, a sign Stgnl is created
whose semantics is as in (2b). Lexical access on Signl re-
turns the sign for ‘¢he’. On the basis of the syntactic and
semantic predictions made by Signl, the sign Sign2 for
‘cat’ is then generated. Reduction of Signl with Sign2
yields a new sign Sign3 with phonology ‘the cat’and syn-
tax C/(C/np) °. In turn, Sign3 makes some predictions
which lead to the generation of a new sign Sign4 with
syntax C/(C/np) and phonology ‘the mouse’. Finally,
on the basis of Sign4, the sign Sign5 for ‘miss’ is gen-
erated. At this point in generating, the two signs in (3)
must combine to reduce to a sign with category C/np.

r b
pho : Wb
r 7
pho i Va
pho : themouse
synt : n
| synt:cC/ ot :mp
synt : C/ sem : m.mouse(m)
order : 01
gsem : VP
order : 01

gem : the(m.mouse(m), VP)
order : 02

pho : misses

pho : Wa pho : Wb
synt: s/ synt : np(non| / synt : nplacc]

sem : m.NP1 sem: c.NP2

order : pre order : post

gem : mmiss(m,c)
order: 03

But under the UCG rules of combination (see 3.1), these
two signs cannot combine because of the unification clash
occuring between the semantics of the accusative NP in
the verbal sign (c.NP2) and that of the NP sign within

3Note that in this case, reduction to normal form is no
longer a possible solution even if we were able to define a
normal form for our semantic representation language. For
suppose that (2a) is the normal form, then (1b) is not derivable
and if (2b) is, then (1a) is not derivable.

4For more information on the details of the generation pro-
cedure, see [1].

5For the sake of clarity, the syntactic part of Sign3 is here
simplified in that non-syntactic fields (Phonology, Semantics
etc.) are omitted. Note also that in UCG, NPs are typer-
aised l.e they are assigned the syntactic category C/(C/np)
as opposed to just np.

130

the sign for ‘the mouse’ (m.mouse(m)). Hence generation
fails. Consider now how the problem is dealt with when
generating from deep structures. Rather than being as
indicated in (2b), the input to the generator is ®

head(miss(m,c),
[speci fier(the, head(mouse(m), (], (1)),
specifier(the, head(cat(c), [}, []))]

1)

(3)
Roughly, generation will proceed as follows. Suppose the
goal sign Sign0 has category s[fin). First, the semantics
corresponding to the head of the clause (i.e. miss(m,c))
is extracted from (3) and a sign Signl is created with
semantics miss{m,c). Lexical access on Signl returns
the sign given in (3) above. Signl must then be re-
duced to Sign0 with category s[fin|. At this stage, the
remaining DS is [spectifier(the, head(mouse(m)}, ], [])),
spect fier(the, head(cat(c),[],[]))] To generate the first ar-
gument
of Signl, we then have the choice between generating
on the bagis of specifier(the, head(mouse(m),(],[])) or
of specifier(the, head(cat(c),[],[])) 7 As demonstrated
above, if we generate the sign for ‘the mouse’ first, re-
duction cannot apply and generation will fail. But here,
failure is only temporary and on backtracking, the sign
for ‘the cat’ will eventually be generated; it will then
reduce with Signl to generate Sign2 with phonology
‘misses the cat’. At this point, the remaining DS will
be [speci fier(the, head(mouse(m),[],(]))]. This will trig-
ger the generation of Sign3 with phonology ‘the mouse’
which will then combine with Sign2 to reduce to Sign0
with resulting phonology ‘the mouse misses the cat’.

To generate the French sentence ‘le chat manque & la
souris’, the sgame generation process applies but this time
in connection with Gp and in a reverse order i.e. the sign
for “a sourss’ (the mouse) is generated before the sign cor-
responding to the NP 4e chat’ (the cat). Further, because
in the French lexicon ‘manque’ (miss) subcategorises for
a dative NP, the preposition 4 is generated and combined
with the sign for ‘la souris’ before reduction of the thus
obtained PP with the verb. Because DSs make no as-
sumption about the linear ordering of the constituents
to be generated, the problem raised by non-canonicity
simply does not arise.

5 Comparisons with Related
Research

To compare our algorithm with previous work, we first
show how it can be amended to phrase structure gram-
mars. Consider the following extension to reduce.

reduce(Sign0, Sign, D§) :-
rule(Mom, SignO, Kids),

SFor the sake of simplicity, the syntactic information usu-
ally contained in the deep structures input to the generator is
here omitted.

7¢f. the non-determinism of the retrieve predicate.



generate_sisters(Kids, DS, NewDS),
reduce(Mom, Sign, NewDS).

generate_sisters([], DS, DS).
generate_sisters ([H|T], DS, NewDS) :-
index (M, Idx),
mal;ch (Idx,DS, SubDS, NewDS1),
generate (SubDs, H),
generate_sisters(T, NewDS1, WewDS).

This clause is very similar in structure to the second
clause of reduce, the main difference being that the new
clause makes fewer assumptions about the feature struc-
tures being manipulated. rule enumerates rules of the
graminar, its first argument representing the mother con-
stituent, its second the head daughter and its third a list
of non-head daughters which are to be recursively gener-
ated by the predicate generate_sisters. The behaviour
of this clause is just like that of the clause for reduce
which implements the uca rules of function application.
On the basis of the generated lexical sign Sign0 an ap-
plicaiion of the rule is hypothesised and we then attempt
to prove that rule application will lead to a new sign Mom
which reduces to the original goal Sign.

Having generalised our basic algorithm to phrase struc-
ture grammars, we can now compare it to previous work
by [5] and [3]

Van Noord’s Bottom-Up Generator (BUG) 1s very similar
in structure to our basic algorithm. Closer examination
of the two programs however reveals two differences. The
first is that daugthers in a rule are separated into those
that precede the semantic head and those that follow it.
The second more meaningful difference involves the use
of a ‘link’ predicate implementing the transitive closure
of the semantic head relation over the grammar rules.
The link predicate is similar in purpose to reachibility
tables in parsing algorithms and contributes to reducing
the search space by producing some syntactic information
on the sign to be generated. However, such a predicate is
of little use when generating with a categorial grammar
in particular and with any strongly lexicalist linguistic
theory in general since in these, the grammar rules are
extremely schematised. Their information content is so
impoverished that the computation of and resort to a link
predicate cannot be expected to reduce the search space
in any meaningful way. In the algorithmn presented above
however, this shortcoming is redressed by exploiting the
syntactic information contained in the deep-structure we
start from.

In [5], Shieber et al. present a “semantic-head-driven”
generation algorithm that is closely related to van No-
ord’s. In contrast to Van Noord’s algorithm however,
this olgorithm also operate on grammars violating the
semantic head constraint (SHC) according to which any
semantic representation is a further instantiation of the
semantic representation of one of its constituents called
the semantic head. This is achieved as follows. First, a
distinction is made between chain-rules and non-chain-
rules whereby non-chain-rules are used to introduce se-
mantic material syncategorematically. The distinction

between the two types of rules can be sketched as fol-
lows,

1. Chain-rule (Sem, lhs --> Head(Sem), Sisters)

2. Non-Chain-rule (Sem, lhs(Sem) --> Daughtera)

(1) indicates that given a semantic Sem, a chain rule
will be such that Sem unifiee with the head daughter’s
semantics whilst (2) shows that non-chain-rules are such
that the input semantics must unify with the semantics of
the lhs of the rule. The intuition is that non-chain-rules
will help find the lowest node in the derivation tree whose
semantics unify with the input semantics. Furthermore,
the top-down base case for non-chain-rules corresponds to
the case in which the ths of the rule has no non-terminal
daughters i.e. to lexical look up. Consider now the top
call to generate.

generate (Root) :-
non_chain_rule(Root,Pivot,Rhs),
generate_rhs(Rhs),
connect (Pivot,Root) .

Two cages obtain with regard to the application of the
non- chain-rule predicate. Either the base case occurs
and lexical look-up takes place exactly as in our algo-
rithm or a non-chain-rule is triggered top-down before
the constituents in the rhe are generated by a recursive
call to gencrate. Hence the solution to the introduction
of syncategorematic material ia essentially a reintroduc-
tion of the top-down generation strategy. The result is
that there is no guarantee that the algorithm will termi-
nate. This point seems to have been overlooked in [5].
Therefore, the extension may be of less utility than it ap-
pears to be at first sight although it may well be the case
for linguistically motivated grammars that termination
problems never arise.

6 Further Research

The general backtracking regime characterising the al-
gorithm presented in this paper means that failure at a
first attempt to generate might induce the recomputa-
tion of partial results. Perhaps the use of a chart could
contribute to enhance generation efficiency. In relation
to [4] where chart edges contain no ordering information,
it would be Interesting to investigate whether during the
generation process some ordering information can be re-
covered. That is, whether the chart could be constructed
in such a way that the relative positioning of edges mir-
rors the knowledge embodied in the grammar about lin-
ear precedence within and between constituents. In this
way, only the relevant part of the chart would need to be
looked up before attemipting to build a new edge.

The algorithm described above is implemented in CPro-
log on a Sun4 and constitutes part of the generation com-

131



ponent in the ACORD prototype. The generator can be
coupled with either a UCG grammar for French or one
for English thus generating either French or English sen-
tences.

References

[1] Calder, J., Reape, M. and Zeevat, H. [1989)
An Algorithm for Generation in Unification Cafe-
gorial Grammar. In Proceedings of the Fourth Con-
ference of the European Chaptler of the Association
for Compuiational Linguistics, University of Manch-
ester Institute of Science and Technology, Manch-
ester, Iingland, 10-12 April, 1989, 233-240.

[2} Gardent, C., Bes, G., Jurie,P.F. and
Baschung, K. [1989] Efficient Parsing for French.
In Proceedings of the 27th annual meeting of the As-
soctiation for Computational Linguistics, University
of British Columbia. Vancouver, 26-29 June 1989,
280-287.

[3] van Noord, G. [1989] BUG: A Directed Bottom
Up Generator for Unification Based Formalisms.
Manuscript. Department of Linguistics, University
of Utrecht, March 14, 1989.

Shieber, S. [1988] A Uniform Architecture for
Parsing and Generation. In Proceedings of the 12th
International Conference on Computational Linguts-
tics, Budapest, 22-27 August, 1988, 614-619.

Shieber, S., van Noord, G., Moore, R. and
Pereira, F.C.N. [1989] A Semantic-Head-Driven
Generation Algorithm for Unification-Based For-
malisms. In Proceedings of the 27th Annual Meet-
ing of the Association for Computational Lingutstics.
University of British Columbia, Vancouver, British
Columbia, Canada, 26-29 June, 1989, 7-17.

[6] Zeevat H., Klein, E. and Calder, J. {1987] An
Introduction to Unification Categorial Grammar. In
Haddock, N.J., Klein, E. and Morrill, G. (eds.) Edin-
burgh Working Papers in Cognitive Science, Volume
1: Categorial Grammar, Unification Grammar and
Parsing.

[4

[5

132

Listing of the whole program
(Low level procedures have been omitted)

generate (DeepStr, Sign) :-

get_deepstr_info(DeepStr, [Synt, Sem] ,Rest0fDeepStr),

create_sign(Synt,Sem,Signo),
lexical(Sign0),
reduce(Sign0,Sign,Rest0fDeepStr) .

reduce(Sign,Sign,[[],[1]).
reduce(Sign0,Sign, DeepStr) :-
active(Sign0,Active),
apply(SignO,Active,Result),
retrieve(DeepStr,SubDeepStr,NewDeepStr),
generate (SubDeepStr, Active),
reduce (Result,Sign, NewDeepStr) .

reduce(Sign0, Sign, DeepStr) :-
transform{Sign0, Signl, DeepStr, NewDeepStr),
reduce(Signl, Sign, NewDeepStr).

% Identity Semantic Functors

transform(Sign,NewSign,DeepStr,DeepStr) :-
not_idsign(Sign),
create_id_functor(IdSemFctor, Sign),
identity(IdSemFctor),
apply (¥ewSign, IdSemFctor,Sign),
defreeze_order(AdjSign, Sign, NewSign).

% Lexical Adjuncts

tranaform(Sign,NewSign,DS,NewDS) :-
create_lexical_adjunct(Sign,
ASign,DS,NewDS,DS2),
generer{DS2, ASign),
apply(NewSign, ASign, Sign).

% Type-raise Verbs to C/(C/NP)

transform{Sign,NewSign,DS,NewDS) :-
type_raise_vb_to_np(Sign, RaisedSign),
get_sub_deepstr(Sign, DS, SubDS, NewDS),
generer(SubDS, RaisedSign),
apply(NewSign, RaisedSign, Sign).

% Unary rules

transform(Sign,NewSign,DeepStr,DeepStr) :-
unary_rule(NewSign,Sign).

% Identity Semantic Functor
% (Case merking Prepositions)

transform(Sign,NewSign,DeepStr,DeepStr) :-
active(Sign,VB),
active(VB, NP),
category (NP, np),
create_id_prep(Np,PREP),
identity(PREP),

*ty (Mo»i«'jk , S"r ,Prep).



