
G e n e r a t i n g from a D e e p S t r u c t u r e *

Claire Gardent
Universitfi Blaise Pascal- Clermont Ferrand (France)

and University of Edinburgh
2 Buccleuch Place

Edinburgh EH8 9LW (Scotland)

Agnes Plainfossfi
Laboratoires de Marcoussis

Route de Nozay
91460 Marcoussis (France)

A B S T R A C T : Noncanonica l semant ic representat ions
are representa t ions which cannot be derived by some
g rammar G al though they are semanticMly equivalent to
representat ions which can be derived by G. This paper
presents a generat ion Mgorithm which deals with non-
canonical input. The proposed approach also enhances
por tabi l i ty and language independence in tha t (i) linguis-
tic decisions made by independent modules (e.g., planner,
transfer component) can be communica ted to the gener-
a ter in a naturM way and (ii) the same algor i thm coupled
with different g rammars will yield sentences in the cor-
responding languages.

1 Introduct ion

not derivable under G. Representa t ions tha t cannot be
der ived under a g r ammar G are said to be noncanonical
with respect to G.

In this paper, we present a generat ion a lgor i thm for Uni-
fication Categoria l G r a m m a r [6] (, c a) which addresses
the problem raised by non-canonicM input (section 2 and
3). An interest ing upshot of the s t ra tegy we propose is
that it allows :['or language independent generat ion. Sec-
tion 4 i l lustrates this point by considering how, s tar t ing
from one semantic representa t ion, two sentences can be
generated: one in English and one in French. Section 5
relates our work to previous proposals by Van Noord and
Shieber.

Two major requirements on a genera tor is that it be cor-
rect and complete. A generator is said to be correct if
given two semant ic representat ions R1 and R.~ which are
not semant ical ly equivalent, R1 and R2 do not generate
the same string. A generator is said to be complete if
any two senmn tically equivalent representat ions generate
the same set of strings.

An obvious case of incompleteness occurs when the gen-
erator fails to t e rmina te on some well-defined input. An-
o ther less obvious cause for incompleteness can be ex-
plMned as follows. Consider a g rammar G and its as-
sociated semant ic representat ion language L. It is often
the case that syntact ical ly different strings of L will have
equivalent semantics. A simple case in point is the se-
mantic equivalence holding between ¢ A ¢ and ¢ A ¢ in
e.g. proposi t ional logic. On the other hand, it is also
often the case tha t the same g r ammar G will not derive
for a given string all the formulae which may represent
its meaning. From the point of view of generat ion, this
means that given two semanticMly equivalent represen-
tat ions R1 and R2 there is always a possibility that R1
generates a s t r ing S but that R2 doesn ' t because R2 is

*The work reported here has been carried out ,as part of the
ESPRIT project P393 ACORD on "The Construction and In-
terrogation of Knowledge-B~es using Natural Language Text
and Graphics". It is the result of joint work with Michael
Reape of the Center for Cognitive Science, University of Ed-
inburgh (Scotland, UK).

2 Generat ing from a deep
structure

It is somet imes the case that a g r ammar will assign to a
string several possible der ivat ions with equivalent semen-
ties. This phenomena is par t icular ly acute in categorial
g rammars [2] and is referred to in the l i tera ture as that
of spurious ambiguity. In g rammars where the semantics
is buil t by unification, the syntac t ic differences holding
between these equivalent semantics resides in the relat ive
ordering of the subformulae within the formula. Tha t is,
there is a direct relat ionship between the syntact ic shape
of a semantic formula and the der ivat ional history of the
corresponding string. Consequently, a given formula will
be non-canonk:al wrt to a par t icular g rammar G if the
relat ive sequencing of its subformulae does not reflect a
possible der ivat ion in C . Hence, to allow for generat ion
from non-canonical input , we need to abs t rac t away from
the der ivat ional informat ion reflected in the l inear order-
ing of the input formula. Three major a l ternat ives come
to mind. First , we could try to generate all sentences
whose semantics are logically equivalent to the input se-
mantics. In uc(~, this means tha t generat ion is carried
out with the two addi t ional logical axioms of associativ-
ity and commuta t iv i ty . However, this solution produces a
search space factorial in the number of conjunct ion s and
must thus be rejected as computa t iona l ly intractable .

1 127

The second possibility is to define a semantic represen-
tation language for which all well-formed formulas are
in normal form. This approach is essentially unavailable
to any grammar framework in which the semantics of a
given expression results from the unification of partially
specified semantic representations because normal forms
can only be defined on languages with fully instantiated
formulae.

A third possibility consists in generating from an alterna-
tive representation i.e. one that is related to but not iden-
tical with the semantic representation used by the gram-
mar. This is what we chose to do. The alternative rep-
resentation we adopted is closely related to D-structure
in cn theory where D-structure is a level of syntactic
structure which mirrors semantic functor-argument de-
pendencies. Syntactic information is encoded in terms
of schematic X theory familiar from modern generative
grammar. The deep structures (DS) we generate from
consist of four types: heads, complements, modifiers and
specifiers (we follow LEG f-structure and ucc subcate-
gorisation structure in treating subjects as ordinary com-
plements rather than specifiers of clauses) whereby Spec-
ifiers are of the form: s p e c i f i e r (S e m a n t i c s , Head).
That is, they specify their own semantics and the prop-
erties of their head. In contrast, Heads are of the
form: head(Semantics , ArgLis t , Adjunc tLis t) . That
is, they specify their own head semantics and a list of
arguments and adjuncts which are also either specifier
or head structures. All of these structures also allow the
encoding of syntactic requirements on arguments and ad-
juncts.

The use of DSs has two other consequences. First, by
allowing for the association of syntactic with semantic
information, D-structures offer a way to mediate the re-
sults of linguistic decisions made by an eventual planner
to the generator. This may be useful. For instance, NP
planning could be accounted for. In the present context,
a planner is any system which given some information
about what to say will return some decision about how
to say it. For instance, if we want to expre,~s the fact
that Jon runs, the planner will have to decide on how
to refer to Jon, i.e. it could decide to describe him us-
ing a complex NP as in 'the man with the red scarf who
stands negt to Irene', or a pronoun e.g. 'he' or simply
his name i.e. '.Ion'. The point is that the syntactic deci-
sion made by the planner must be communicated to the
generator. Since DSs contain syntactic information, they
are a good candidate for the necessary interface between
planner and generator.

A second advantage of DSs is that because they are lan-
guage independent, they allow for language independent
generation. That is, for any acceptable input deep struc-
ture, the algorithm presented below will generate e.g.,
a French sentence if coupled with a UCG grammar for
French and an English sentence if coupled with a coo
grammar for English. This is only possible because the
input deep structure the generation algorithm relies on
is both sufficiently abstract to be language-independent
and general enough that it can be mapped onto language
dependent surface syntactic structures. Language inde-
pendent generation is discussed in more detail in section
4.

In relation with the problem raised by non-canonical in-
put, an important property of DSs is that they contain
no indication of either surface syntactic order of the com-
plements and adjuncts or of the relative scope of quan-
tifiers occurring in either complements or modifiers. In-
stead, thematic dependencies between subformulae are
kept track of by the X schema where no reference is made
to derivational history. The generator is thus free to real-
ize both scope and surface syntactic structure in any way
which is consistent with the deep structure specification
and the particular grammar used. The reader might ob-
ject to this elimination of scope distinctions. However,
within UOG any scope distinctions which are produced by
the individual grammars or as a result of some seman-
tics construction process are in fact artefactual. Further-
more, it might reasonably be argued that it should be
possible to generate all possible scopes. This is typically
done with quantifier shifting rules. Our solution is simply
not to specify scope.

An immediate consequence of using DSs is that non-
canonical input is no longer a problem. The reason for
this simply is that the generation algorithm no longer
relies on the assumption that the input semantic repre-
sentation i8 canonical i.e. derivable under the grammar
used. Rather, the assumption is that the input will be
some well-formed DS that will contain all the information
contained in the corresponding semantics but none of the
information embodied in the linear ordering of the for-
mula about the derivational history of the corresponding
string.

3 The basic a lgor i thm

3.1 A b r i e f i n t r o d u c t i o n t o U C G

In UOO the basic linguistic unit is a sign which includes
phonological, syntactic, semantic and ordering informa-
tion. In the sequel, a sign will be represented either by
a complex feature structure or as Pho :Synt :Sera: Drder.
The phonological field of a sign contains its orthographic
string. The syntactic field is categorial i.e. it can be
either basic (e.g s,np,n etc) or complex in which case,
it will be of the form C / S i g n where C is a syntactic
field and Sign is a sign. Moreover, any basic category
can be assigned some morphosyntactic information. For
instance s[fin] denotes the category sentence with mor-
pholog-y feature value: finite. The semantic field contains
the semantics of the expression whereby the semantic rep-
resentation language is a linear version of Discourse Rep-
resentation Theory in which each condition is preceded
by a sorted variable called the index. As in most unifi-
cation based grammars, the semantics of any expression
results from the unification of the semantics of its sub-
parts. Finally, the Order field is a binary feature with
value either pre or post which constrains the applicabil-
ity of grammar rules.

Grammar rules in uco are of two types: binary and

128 2

unary. Binary rules include forward and backward func-
tional applicat ion. These are s tated below.

P h o : (S y n t / S i g n) : S e m : 0 r d e r , S ign
- -> P h o : S y n t : S e m : O r d e r

if the order value of Sign is pro

Sign, Pho:(Synt/Sign):Sem:Order
--> P h o : S y n t : S e m : 0 r d e r

if the order value of Sign i8 post

Unary rules are of the form c~ --+ fl where c, and fl are
signs. Unary rules are used for the t r ea tmen t of un-
bounded dependencies , syntact ic forms of type-rais ing
and subcategor lsa t ion for opt ional modifiers.

aetive(SignO,Active),
apply(SignOoActive,Result),
retrleve(DS,SubDS,NewDS),

generate(SubDS, Active),

reduee(Result,Sign,NewDS).

The algor i thm presented above makes many simplifying
assumptions which are incompat ib le wi th a wide coverage
u o c g rammar . To produce a complete genera tor with re-
spect to u o o we need to ex tend the basic a lgor i thm to
account for type-raised NPs, ident i ty semant ic functors,
lexical modifiers and unary rules. For more details on the
general content of these extensions see Ill. For their im-
p lementa t ion cf. the listing of the generat ion a lgor i thm
given in the appendix.

3.2 A sketch of the a l g o r i t h m

Following work by [11, [5] and [3], the algori thm we
present here follows a mixed top-down and bo t tom-up
strategy.

The generat ion process s tar ts with a deep s t ructure DS
and a sign S ign whose syntax embodies the goal cate-
gory (e.g. sentence(fini te)) , get deepstr info extracts
from the deep s t ructure some semant ic (Sere) and syntac-
tic (Synt) information on the next sign to be generated.
c r e a t e s i g n creates a new sign Sign0 on the basis of Sem
and Syn~. Lexlcal look-up on Sign0 returns a sign with
ins tant ia ted syntax and phonology. The call to r educe
ensures tha t this lexical sign is reduced to the goal sign
S ign in the process ins tant ia t ing the generated string.

g e n e r a t e (D S . S ign) : -
g e t _ d s e p s t r _ i n f o (D S , [S y n t , S e m] , R e s t Q f D S) ,
create sign(Synt,Sem,SignO),

lexical(SignO),
reduce(SignO,Sign0Rest0fDS).

There are two main ways of reducing a sign Sign0 to a
goalsign Sign. The base case occurs when Sign0 unifies
with S ign and the deep-s t ruc ture is empty i.e. all the
input semant ic mater ia l has been made use of in gener-
ating the result string. The recursive case occurs when
Sign0 is a syntact ic functor. If the syntax of Sign0 is
of the form R e s u l t / A c t i v e , we apply R e s u l t / A c t i v e to
A c t i v e thus get t ing a new sign R e s u l t . r e t r i e v e non-
determinis t ical ly retr ieves from the current deep struc-
ture DS, a subs t ruc ture SubDS and returns the remaining
deep-s t ruc ture NewDS. The a rgument A c t i v e is then gen-
erated on the basis of the ext rac ted sub..structure SubDS
with a new goal sign whose syntax is that predicted by
the syntact ic functor Sign0. The result ing sign R e s u l t
is recursively reduced to the original go,~l sign Sign.

r educe (S ign . S ign , [[] 0 []]) .
r educe (SignO, S ign , DS) :-

4 Bi l ingual Genera t ion

Consider the following synonymous sentences.

a The mou.,m misses the cat

b Le chat manque ~l la souris
(Lit. the cat misses to the mouse)

(1)
There are two main differences between (la) and (lb) .

First , a NP (the mouse) t ransla tes to a P P (g~ la souria).
Second, a s t ruc tura l t ransfer occurs i.e. the object NP in
(la) becomes a subject in (lb) and vice-versa. For the
genera tor described above, this poses no par t icular prob-
lem. Because DSs encode themat ic ra ther than g rammat -
ical dependencies, s t ruc tura l t ransfer is no issue. Further ,
since at DS all a rguments are represented as NPs x, the
generat ion of (la) is s t ra ightforward. Genera t ing (lb)
is a l i t t le more intr icate but results natural ly from the
interact ion of the genera tor with the g r ammar =. Note
that if the P P were represented as such in the DS, then
generat ion would fail for the English sentence. This sug-
gests tha t the deep s t ructures we genera te from offer the
right level of abst ract ion for generat ion to be possible in
several languages.

The case of s t ruc tura l t ransfer i l lustrated in (1) is a good
example of the problems that occur with generators that
are unable to deal with non-canonical input. To i l lustrate
this consider the following s i tuat ion. Suppose that given
two grammars , one for Eng l l sh (G~) and one for French
(GF), (la) and (lb) each have one unique derivat ion with
result ing semantics as in (2).

a The(mouse(m) , the(cat(c) , miss(re,c))

b The(ca t (c) , the(mouse(m) , tulsa(re,c)))
(2)

Fur thermore , suppose (3a) is non-canonlcal with respect
to C,~ (i.e. (an) is not derivable under C,~) and (3b) is
non-canonic.M wrt GE. For any genera tor G that cannot
deal with non-canonical input , this means tha t G cannot
be used in a system where parsing occurs on one language

IThis is in accordance with the view that prepositions oc°
curing within argumental PPs have no semantic content.

2For more details on the generation of subcategorised PPs
within UCG see [1}.

3 129 '

and generat ion on another . More to the point , if G is cou-
pled with the g rammar GE, then it will fail to generate
when given (2b) as input - and similarly when coupled
with GF and given input (2a). To unders tand why deep
s tructures allow for g rammar independent generation,
let us first examine why t radi t ional top -down/bo t tom-
up generators such as the one described in [1] fail on
non-canonical input . 3 Consider the case where we try
to generate under G s the English sentence in (la) from
the semantic (2b) and- as already mentioned- (2b) is
non-canonical wrt GE. The main steps of the genera-
tion process will be as follows. 4 Suppose the goal sign is
SignO with category s[fin]. First , a sign Sig~l is created
whose semantics is as in (2b). Lexical access on Signl re-
turns the sign for 'the'. On the basis of the syntact ic and
semantic predictions made by Signl, the sign Sign2 for
'cat' is then generated. Reduct ion of Signl with Sign2
yields a new sign Sign3 with phonology 'the cat'and syn-
tax C/(C/np) 5. In turn , Sign3 makes some predictions
which lead to the generat ion of a new sign Sign4 with
syntax C/(C/np) and phonology 'the mouse'. Finally,
on the basis of Sign4, the sign Sign5 for 'miss' is gen-
erated. At this point in generating, the two signs in (3)
must combine to reduce to a sign with category C/np.

pho:~i~)

synt : C/

pho : Wa

synt:C/

pho:themouse
syat:np
sem :m.mouse(m)
order:Of

sem:VP
order:Of

o r d e r : 0 2

pho : misses

I pho : Wa

synt :s/ synt : np[nom]
sere : m.NPI
order : pre

sem : m.miss(m,c)

order : 03

pho : Wb

/ sr t: npb]
sere : c.NP2
order : post

But under ti~e UCG rules of combina t ion (see 3.1), these
two signs cannot combine because of the unification clash
occuring between the semantics of the accusative NP in
the verbal sign (c.NP2) and that of the NP sign within

aNote that in this case, reduction to normal form is no
longer a possible solution even if we were able to define a
normal form for our semantic representation language. For
suppose that (2a) is the normal form, then (lb) is not derivable
and if (2b) is, then (la) is not derivable.

4For more information on the details of the generation pro-
cedure, see [1].

~For the sake of clarity, the syntactic part of Sign3 is here
simplified in that non-syntactic fields (Phonology, Semantics
etc.) are omitted. Note also that in UCG, NPs are typer-
aised i.e they are assigned the syntactic category C/(C/np)
as opposed[to just np.

the sign for 'the mouse' (m.mouse(m)) . Hence generat ion
fails. Consider now how the problem is dealt with when
generat ing from deep structures. Ra ther than being as
indicated in (2b), the input to the generator is 6

head(miss(m, e),
[specifier(the, head(moose(m), [], [])),
specifier(the, head(cat(e), [l, [l))]
[])

(3)
Roughly, generat ion will proceed as follows. Suppose the

goal sign SignO has category s[fin]. First , the semantics
corresponding to the head of the clause (i.e. mi,Js(m, c))
is extracted from (3) and a sign Signl is created with
semantics miss(re, c). Lexical access on Signl returns
the sign given in (3) above. Signl must then be re-
duced to SignO with category s[fin]. At this stage, the
remaining DS is [specifler(the, head(mouse(m), [], [])),
speci/ier(the, head(cat(c), [l, []))] To generate the first ar-
gument
of Signl, we then have the choice between generat ing
on the basis of specifier(the, head(mouse(m), [], [])) or
of specifier(the, head(cat(c), [], [1)) 7 As demonst ra ted
above, if we generate the sign for 'the mouse' first, re-
duct ion cannot apply and generat ion will fail. Bu t here,
failure is only t empora ry and on backtracking, the sign
for 'the cat' will eventual ly be generated; it will then
reduce with Signl to generate Sign2 with phonology
'misses the cat'. At this point , the remaining DS will
be [specifier(the, head(mouse(m), [], []))]. This will trig-
ger the generat ion of Sign3 with phonology 'the mouse'
which will then combine with Sign2 to reduce to SignO
with result ing phonology 'the mouse misses the cat'.

To generate the French sentence 'Is chat manque h la
8ouris ', the same generat ion process applies bu t this t ime
in connect ion with GF and in a reverse order i.e. the sign
for 'Is souris'(the mouse) is generated before the sign cor-
responding to the N P 'Is chat' (the cat). Fur ther , because
in the French lexicon 'manque' (miss) subcategorises for
a dat ive NP, the preposit ion ~ is generated and combined
with the sign for 'Is souris' before reduct ion of the thus
obta ined P P with the verb. Because DSs make no as-
sumpt ion about the l inear ordering of the cons t i tuents
to be generated, the problem raised by non-canonic i ty
simply does not arise.

5 C o m p a r i s o n s w i t h R e] [a t e d

R e s e a r c h

To compare our algori thm with previous work, we first
show how it can be amended to phrase s t ructure gram-
mars. Consider the following extension to reduce .

reduce(SignO, Sign, DS) :-
rule(Morn, SignO, Kids),

6For the sake of simplicity, the syntactic information usu-
ally contained in the deep structures input to the generator is
here omitted.

7cf. the non-determinism of the r e t r i eve predicate.

130 4

g e n e r a t e _ s i s t e r s (Kids , DS, NewDS),
r educe (gem, S ign , NewDS).

g e n e : t : ' a t e _ s i s t e r s ([] , DS, DS).
gene:t:afie_sisfiers([HIT], DS, NewDS) : -

index (tI, I d x) ,
me I; eh (Idx , DS, SubDS, NewDS 1) ,
g ene ra t e (SubDS , H),
g e n e r a t e s i s t e r s (T , NewDS1, llewDS).

This clause is very similar in s t ruc ture to the second
clause of r educe , the main difference being tha t the new
claus(, makes fewer assumptions about the feature struo-
tures being manipula ted , r u l e enmnera tes rules of the
grammar , its first a rgument represent ing the mother con.
stitu~ut, its second the head daughter and its third a list
of non-head daughters which are to be recursively gener-
ated by the predicate g e n e r a t e s i s t e r s . The behaviour
of this clause is just like tha t of the clause for r e d u c e
which implements the uc(; rules of function application.
On tire basis of the generated lexical sign Sign0 an ap-
plical.ion of the rule is hypothesised and we then a t t emp t
to prove that ru]e applicat ion will lead to a new sign gem
whiel, reduces to the original goal Sign.

Having generalised our basic a lgor i thm to phrase struc-
ture ~ran]mars, we can now compare it to previous work
by [5} and [3]

Van Iqoord's B o t t o m - U p Genera tor (BUG) is very similar
in s t ruc ture to our basic a lgorkhm. Closer examinat ion
of the. two programs however reveals two differences. The
first is that daugthers in a rule are separated into those
that })recede the semant ic head and those that follow it.
The ,'.econd more meaningful difference involves the use
of a ' l ink ' predicate implement ing the t ransi t ive closure
of the semant ic head relation over the g rammar rules.
The link predicate is similar in purpose to reachibil i ty
table~ in parsing algor i thms and contr ibutes to reducing
the search space by producing some syntact ic information
on the sign to be generated. I towever, such a predicate is
of litt.le use when generat ing with a categorial g r ammar
in par t icular and with any strongly lexicalist linguistic
theory in general since in these, the g r ammar rules are
extremely schematised. Their information content is so
impoverished tha t the computa t ion of and resort to a link
predicate cannot be expected to reduce the search space
in a n / m e a n i n g f l f l way. In the algori thm presented above
however~ this shor tcoming is redressed by exploit ing the
syntactic information contained in the deep-s t ructure we
start from.

In [5], Shieber et al. present a "semant ic-head-dr iven"
generat ion algori thm that is closely related to van No-
ord's. In contras t to Van Noord 's a lgori thm however,
this ~dgorithm also opera te on grammars violat ing the
sema~dic head con.~traint (SHC) according to which any
sema~tic representa t ion is a further ins tant ia t ion of the
semantic representa t ion of one of i~s const i tuents called
the semantic head. This is achieved as follows. First , a
dist lnction is made between chain--rules and non-chain-
rules whereby non-chain-rules are used to introduce se-
mantic mater ia l syncategorematical ly . The dist inct ion

between the two types of rules can be sketched as fol-
lows.

i. Chain-rule (Sem, lhs --> Head(Sem), Sisters)

2. Non-Chain-rule (Sem, lhs(Sem) --> Daughters)

(1) indicates tha t given a semant ic Sere, a chain rule
will be such that Sere unifies with the head daughter ' s
semantics whilst (2) shows that non-chMn-rules are such
that the input semant ics must unify with the semantics of
the lhs of the rule. The intui t ion is tha t non-chain-rules
will help find the lowest node in the der ivat ion tree whose
semantics unify with the input semantics. Fur thermore ,
the top-down base case for non-chain-rules corresponds to
the case in which the lhs of the rule has no non- terminal
daughters i.e. to lexieal look up. Consider now the top
call to generate.

g e n e r a t e (R o o t) : -
non_cha in r u l e (R o o t , P i v o t , P . h s) ,
g e n e r a t e rhs (Rhs)0
c o n n e c t (P i v o t , R o o t) .

Two cases obtain with regard to the applicatlon of the
non- c h a i n - r u l e predicate. E i ther the base case occurs
and lexical look-up takes place exactly as in our algo-
r i thm or a non-chain-rule is triggered top-down before
the conat i tuents in the rhs are generated by a recursive
call to g e n e r a t e . Hence the solution to the int roduct ion
of syncategoremat ic mater ia l is essentially a reintroduc-
tion of the top-down generat ion strategy. The result is
that there is no guarantee that the a lgor i thm will termi-
nate. This point seems to have been overlooked in [5 t .
Therefore, the extension may be of less uti l i ty than it ap-
pears to be at first sight a l though it may well be the case
for l inguistically mot iva ted g rammars tha t te rminat ion
problems never arise.

6 F u r t h e r R e s e a r c h

The general backtracking reghne character is ing the al-
gori thm presented in this paper means t h a t failure at a
first a t t empt to generate might induce the recomputa-
tion of par t ia l results. Perhaps the use of a chart could
contr ibute to enhance generat ion efficiency. Ii1 relation
to [4] where chart edges conta in no ordering information,
it would be interes t ing to invest igate whether dur ing the
generat ion process some ordering informat ion can be re-
covered. Tha t is, whether the chart could be constructed
in such a way tha t t:he relat ive posi t ioning of edges mir-
rors the knowledge embodied in the g r a m m a r about lin-
ear precedence within and between const i tuents . In this
way, only the relevant par t of the chart would need to be
looked up before a t t empt ing to build a new edge.

The algori thm described above is implemented ill CPro-
log on a Sun4 and const i tutes part of the generat ion cola-

5 131

ponent in the ACORD prototype. The generator can be
coupled with either a UCG grammar for French or one
for English thus generating either French or English sen-
tences.

R e f e r e n c e s

[l] Ca lder , J . , R e a p e , M. a n d Zeevat , H. [1989]
An Algorithm for Generation in Unification Cate-
gorial Grammar. In Proceedings of the Fourth Con-
ference of the European Chapter of the Association
for Computational Linguistics, University of Manch-
ester Institute of Science and Technology, Manch-
ester, England, 10-12 April, 1989, 233-240.

[2] Gardent, C., Bes, G., Jurle,P.F. and
B a s c h u n g , K. [1989] Efficient P;~rsing for French.
In Proceedings of the 27th annual meeting of the As-
sociation for Computational Linguistics, University
of British Columbia. Vancouver, 26-29 June 1989,
280-287.

[3] van N o o r d , G. [1989] BUG: A Directed Bottom
Up Generator for Unification Based Formalisms.
Manuscript. Department of Linguistics, University
of Utrecht, M~rch 14, 1989.

[4] Shieber , S. [1988] A Uniform Architecture for
Parsing and Generation. In Proceedings of the 12th
International Conference on Computational Linguis-
tics, Budapest, 22-27 August, 1988, 614-619.

[5] Shieber , S., van N o o r d , G., Moore , R. a n d
Pere i ra , F . C . N . [1989] A Semantic-Head-Driven
Generation Algorithm for Unification-B,nsed For-
malisms. In Proceedings of the 27th Annual Meet-
ing of the Association/or Computational Linguistics.
University of British Columbi.% Vancouver, British
Columbia, Canada, 26-29 June, 1989, 7-17.

[61 Zeevat H., Klein, E. and Ca lder , J. [19871 An
Introduction to Unification C~tegorial Grammar. In
Haddock, N.J., Klein, E. and Morrill, G. (eds.) Edin-
burgh Working Papers in Cognitive Science, Volume
1: Categorial Grammar, Unification Grammar and
Parsing.

Listing of the whole program
(Low level procedures have been omitted)

generate(DeepStro Sign) :-

get_deepstr_info(DeepStr°[Synt. Sem],RestOfDeepStr).
create_sign(Synt°Sem°SignO),
lexical(Sign0),
reduce(SignO,Sign,Rest0fDeepStr).

reduce(SignoSigno [[] o []]).
reduce(SignO°Sign° DeepStr) :-

active(SignO,Active),
apply(SignO°Active,Reault),
retrieve(DeepStr,SubDeepStr,NewDeepStr)°
generate(SubDeepStr, Active),
reduce(ResultoSign°NewDeepStr).

reduce(SignO, Sign. DeepStr) :-
transform(SignO, Signl, DeepStr, NewDeepStr)
reduce(Signl° Sign, NewDeepStr).

Identity Semantic Fun(torn

transform(Sign,NewSign,DeepStr,DeepStr) :-
not_idsign(Sign).
create_id_functor(IdSemFctor, Sign),
identity(IdSemFctor),
apply(NewSign. IdSemFctor0Sign)°
defreeze_order(AdjSign, Sign, NewSign)

% Lexical Adjtmcts

traneform(Sign,NewSign0DS,NewDS) :-
create_lexical_adjunct(Sign,

ASign0DS,NewDS,DS2) o
generer(DS2, ASign),
apply(NewSign, ASign, Sign).

Type-raise Verbs to C/(C/NP)

transform(Sign,NewSign,DS,NewDS) :-
type_raise vb to_np(Sign, RaisedSign),
getjub deepstr(Sign0 DS, SubDS, NewDS)
generer(SubDS, RaisedSign),
apply(NewSign, RaisedSign, Sign)

132

Unary rules

transform(Sign,NewSign°DeepStr,DeepStr)
unary_rule(NewSign,Sign).

Identity Semantic Functor
(Case marking Prepositions)

transform(Sign,NewSign,DeepStr,DeepStr)
active(Sign,VB),
active(VB, NP),
category(NP, np) o
create_id_prep(Np,PREP)°
identity(PREP),

