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A B S T R A C T :  Noncanonica l  semant ic  representat ions 
are representa t ions  which cannot  be derived by some 
g rammar  G al though they are semanticMly equivalent  to 
representat ions which can be derived by G. This paper  
presents a generat ion Mgorithm which deals with non- 
canonical  input.  The proposed approach also enhances 
por tabi l i ty  and language independence in tha t  (i) linguis- 
tic decisions made  by independent  modules (e.g., planner,  
transfer component )  can be communica ted  to the gener- 
a ter  in a naturM way and (ii) the same algor i thm coupled 
with different g rammars  will yield sentences in the cor- 
responding languages. 

1 Introduct ion  

not derivable under  G. Representa t ions  tha t  cannot  be 
der ived under  a g r ammar  G are said to be noncanonical 
with respect to G. 

In this paper,  we present a generat ion a lgor i thm for Uni- 
fication Categoria l  G r a m m a r  [6] ( , c a )  which addresses 
the problem raised by non-canonicM input  (section 2 and 
3). An interest ing upshot  of the s t ra tegy we propose is 
that  it allows :['or language independent  generat ion.  Sec- 
tion 4 i l lustrates this point  by considering how, s tar t ing 
from one semantic  representa t ion,  two sentences can be 
generated:  one in English and one in French. Section 5 
relates our work to previous proposals by Van Noord and 
Shieber.  

Two major  requirements  on a genera tor  is that  it be cor- 
rect and complete.  A generator  is said to be correct if 
given two semant ic  representat ions R1 and R.~ which are 
not  semant ical ly  equivalent,  R1 and R2 do not generate  
the same string. A generator  is said to be complete  if 
any two senmn tically equivalent  representat ions generate  
the same set of strings. 

An obvious case of incompleteness  occurs when the gen- 
erator  fails to t e rmina te  on some well-defined input.  An- 
o ther  less obvious cause for incompleteness can be ex- 
plMned as follows. Consider a g rammar  G and its as- 
sociated semant ic  representat ion language L. It is often 
the case that  syntact ical ly different strings of L will have 
equivalent semantics.  A simple case in point  is the se- 
mantic equivalence holding between ¢ A ¢ and ¢ A ¢ in 
e.g. proposi t ional  logic. On the other  hand, it is also 
often the case tha t  the same g r ammar  G will not  derive 
for a given string all the formulae which may represent  
its meaning.  From the point  of view of generat ion,  this 
means that  given two semanticMly equivalent  represen- 
tat ions R1 and R2 there is always a possibility that  R1 
generates a s t r ing S but that  R2 doesn ' t  because R2 is 

*The work reported here has been carried out ,as part of the 
ESPRIT project P393 ACORD on "The Construction and In- 
terrogation of Knowledge-B~es using Natural Language Text 
and Graphics". It is the result of joint work with Michael 
Reape of the Center for Cognitive Science, University of Ed- 
inburgh (Scotland, UK). 

2 Generat ing  from a deep 
structure  

It is somet imes the case that  a g r ammar  will assign to a 
string several possible der ivat ions with equivalent  semen- 
ties. This phenomena  is par t icular ly  acute in categorial  
g rammars  [2] and is referred to in the l i tera ture  as that  
of spurious ambiguity. In g rammars  where the semantics 
is buil t  by unification,  the syntac t ic  differences holding 
between these equivalent  semantics  resides in the relat ive 
ordering of the subformulae within the formula.  Tha t  is, 
there is a direct relat ionship between the syntact ic  shape 
of a semantic  formula and the der ivat ional  history of the 
corresponding string. Consequently,  a given formula will 
be non-canonk:al  wrt  to a par t icular  g rammar  G if the 
relat ive sequencing of its subformulae does not  reflect a 
possible der ivat ion in C .  Hence, to allow for generat ion 
from non-canonical  input ,  we need to abs t rac t  away from 
the der ivat ional  informat ion reflected in the l inear order- 
ing of the input  formula.  Three  major  a l ternat ives  come 
to mind. First ,  we could try to generate  all sentences 
whose semantics  are logically equivalent  to the input  se- 
mantics.  In uc(~, this means tha t  generat ion is carried 
out with the two addi t ional  logical axioms of associativ- 
ity and commuta t iv i ty .  However,  this solution produces a 
search space factorial  in the number  of conjunct ion s and 
must  thus be rejected as computa t iona l ly  intractable .  

1 127 



The second possibility is to define a semantic represen- 
tation language for which all well-formed formulas are 
in normal form. This approach is essentially unavailable 
to any grammar framework in which the semantics of a 
given expression results from the unification of partially 
specified semantic representations because normal forms 
can only be defined on languages with fully instantiated 
formulae. 

A third possibility consists in generating from an alterna- 
tive representation i.e. one that is related to but not iden- 
tical with the semantic representation used by the gram- 
mar. This is what we chose to do. The alternative rep- 
resentation we adopted is closely related to D-structure 
in cn theory where D-structure is a level of syntactic 
structure which mirrors semantic functor-argument de- 
pendencies. Syntactic information is encoded in terms 
of schematic X theory familiar from modern generative 
grammar. The deep structures (DS) we generate from 
consist of four types: heads, complements, modifiers and 
specifiers (we follow LEG f-structure and ucc  subcate- 
gorisation structure in treating subjects as ordinary com- 
plements rather than specifiers of clauses) whereby Spec- 
ifiers are of the form: s p e c i f i e r ( S e m a n t i c s ,  Head). 
That is, they specify their own semantics and the prop- 
erties of their head. In contrast, Heads are of the 
form: head(Semantics ,  ArgLis t ,  Adjunc tLis t ) .  That 
is, they specify their own head semantics and a list of 
arguments and adjuncts which are also either specifier 
or head structures. All of these structures also allow the 
encoding of syntactic requirements on arguments and ad- 
juncts. 

The use of DSs has two other consequences. First, by 
allowing for the association of syntactic with semantic 
information, D-structures offer a way to mediate the re- 
sults of linguistic decisions made by an eventual planner 
to the generator. This may be useful. For instance, NP 
planning could be accounted for. In the present context, 
a planner is any system which given some information 
about what to say will return some decision about how 
to say it. For instance, if we want to expre,~s the fact 
that Jon runs, the planner will have to decide on how 
to refer to Jon, i.e. it could decide to describe him us- 
ing a complex NP as in 'the man with the red scarf who 
stands negt to Irene', or a pronoun e.g. 'he' or simply 
his name i.e. '.Ion'. The point is that the syntactic deci- 
sion made by the planner must be communicated to the 
generator. Since DSs contain syntactic information, they 
are a good candidate for the necessary interface between 
planner and generator. 

A second advantage of DSs is that because they are lan- 
guage independent, they allow for language independent 
generation. That is, for any acceptable input deep struc- 
ture, the algorithm presented below will generate e.g., 
a French sentence if coupled with a UCG grammar for 
French and an English sentence if coupled with a coo 
grammar for English. This is only possible because the 
input deep structure the generation algorithm relies on 
is both sufficiently abstract to be language-independent 
and general enough that it can be mapped onto language 
dependent surface syntactic structures. Language inde- 
pendent generation is discussed in more detail in section 
4. 

In relation with the problem raised by non-canonical in- 
put, an important property of DSs is that they contain 
no indication of either surface syntactic order of the com- 
plements and adjuncts or of the relative scope of quan- 
tifiers occurring in either complements or modifiers. In- 
stead, thematic dependencies between subformulae are 
kept track of by the X schema where no reference is made 
to derivational history. The generator is thus free to real- 
ize both scope and surface syntactic structure in any way 
which is consistent with the deep structure specification 
and the particular grammar used. The reader might ob- 
ject to this elimination of scope distinctions. However, 
within UOG any scope distinctions which are produced by 
the individual grammars or as a result of some seman- 
tics construction process are in fact artefactual. Further- 
more, it might reasonably be argued that it should be 
possible to generate all possible scopes. This is typically 
done with quantifier shifting rules. Our solution is simply 
not to specify scope. 

An immediate consequence of using DSs is that non- 
canonical input is no longer a problem. The reason for 
this simply is that the generation algorithm no longer 
relies on the assumption that the input semantic repre- 
sentation i8 canonical i.e. derivable under the grammar 
used. Rather, the assumption is that the input will be 
some well-formed DS that will contain all the information 
contained in the corresponding semantics but none of the 
information embodied in the linear ordering of the for- 
mula about the derivational history of the corresponding 
string. 

3 The  basic  a lgor i thm 

3.1  A b r i e f  i n t r o d u c t i o n  t o  U C G  

In UOO the basic linguistic unit  is a sign which includes 
phonological, syntactic, semantic and ordering informa- 
tion. In the sequel, a sign will be represented either by 
a complex feature structure or as Pho :Synt :Sera: Drder. 
The phonological field of a sign contains its orthographic 
string. The syntactic field is categorial i.e. it can be 
either basic (e.g s,np,n etc) or complex in which case, 
it will be of the form C / S i g n  where C is a syntactic 
field and Sign is a sign. Moreover, any basic category 
can be assigned some morphosyntactic information. For 
instance s[fin] denotes the category sentence with mor- 
pholog-y feature value: finite. The semantic field contains 
the semantics of the expression whereby the semantic rep- 
resentation language is a linear version of Discourse Rep- 
resentation Theory in which each condition is preceded 
by a sorted variable called the index. As in most unifi- 
cation based grammars, the semantics of any expression 
results from the unification of the semantics of its sub- 
parts. Finally, the Order field is a binary feature with 
value either pre or post which constrains the applicabil- 
ity of grammar rules. 

Grammar rules in uco  are of two types: binary and 
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unary. Binary rules include forward and backward func- 
tional applicat ion.  These  are s tated below. 

P h o : ( S y n t / S i g n ) : S e m : 0 r d e r ,  S ign  
- ->  P h o : S y n t : S e m : O r d e r  

if the order value of Sign is pro 

Sign, Pho:(Synt/Sign):Sem:Order 
--> P h o : S y n t : S e m : 0 r d e r  

if the order value of Sign i8 post 

Unary  rules are of the form c~ --+ fl where c, and fl are 
signs. Unary  rules are used for the t r ea tmen t  of un- 
bounded dependencies ,  syntact ic  forms of type-rais ing 
and subcategor lsa t ion for opt ional  modifiers.  

aetive(SignO,Active), 
apply(SignOoActive,Result), 
retrleve(DS,SubDS,NewDS), 

generate(SubDS, Active), 

reduee(Result,Sign,NewDS). 

The algor i thm presented above makes many  simplifying 
assumptions which are incompat ib le  wi th  a wide coverage 
u o c  g rammar .  To produce a complete  genera tor  with re- 
spect  to u o o  we need to ex tend  the basic a lgor i thm to 
account  for type-raised NPs,  ident i ty  semant ic  functors,  
lexical modifiers and unary  rules. For  more details on the 
general  content  of these extensions see Ill. For their  im- 
p lementa t ion  cf. the listing of the generat ion a lgor i thm 
given in the appendix.  

3.2 A sketch  of  the  a l g o r i t h m  

Following work by [11, [5] and [3], the algori thm we 
present here follows a mixed top-down and bo t tom-up  
strategy.  

The  generat ion process s tar ts  with a deep s t ructure  DS 
and a sign S ign  whose syntax  embodies  the goal cate- 
gory (e.g. sentence(fini te)) ,  get deepstr info extracts  
from the deep s t ructure  some semant ic  (Sere) and syntac- 
tic (Synt)  information on the next  sign to be generated.  
c r e a t e  s i g n  creates a new sign Sign0 on the basis of Sem 
and Syn~. Lexlcal  look-up on Sign0 returns  a sign with 
ins tant ia ted syntax  and phonology. The  call to r educe  
ensures tha t  this lexical sign is reduced to the goal sign 
S ign  in the process ins tant ia t ing  the generated string. 

g e n e r a t e ( D S .  S ign)  : -  
g e t _ d s e p s t r _ i n f o ( D S , [ S y n t , S e m ] , R e s t Q f D S ) ,  
create sign(Synt,Sem,SignO), 

lexical(SignO), 
reduce(SignO,Sign0Rest0fDS). 

There are two main ways of reducing a sign Sign0 to a 
goalsign Sign.  The  base case occurs when Sign0 unifies 
with S ign  and the deep-s t ruc ture  is empty  i.e. all the 
input  semant ic  mater ia l  has been made use of in gener- 
ating the result string. The recursive case occurs when 
Sign0 is a syntact ic  functor.  If the syntax  of Sign0 is 
of the form R e s u l t / A c t i v e ,  we apply R e s u l t / A c t i v e  to 
A c t i v e  thus get t ing a new sign R e s u l t .  r e t r i e v e  non- 
determinis t ical ly  retr ieves from the current  deep struc- 
ture DS, a subs t ruc ture  SubDS and returns  the remaining 
deep-s t ruc ture  NewDS. The a rgument  A c t i v e  is then gen- 
erated on the basis of the ext rac ted  sub..structure SubDS 
with a new goal sign whose syntax  is that  predicted by 
the syntact ic  functor  Sign0.  The result ing sign R e s u l t  
is recursively reduced to the original  go,~l sign Sign.  

r educe  (S ign .  S ign ,  [ [] 0 [] ] ) . 
r educe  (SignO, S ign ,  DS) :-  

4 Bi l ingual  Genera t ion  

Consider the following synonymous  sentences.  

a The  mou.,m misses the cat 

b Le chat  manque  ~l la souris 
(Lit. the cat misses to the mouse) 

(1) 
There  are two main differences between ( la)  and ( lb) .  

First ,  a NP  (the mouse) t ransla tes  to a P P  ( g~ la souria). 
Second, a s t ruc tura l  t ransfer  occurs i.e. the object NP in 
( la )  becomes a subject  in ( lb)  and vice-versa.  For the 
genera tor  described above, this poses no par t icular  prob- 
lem. Because DSs encode themat ic  ra ther  than  g rammat -  
ical dependencies,  s t ruc tura l  t ransfer  is no issue. Further ,  
since at DS all a rguments  are represented as NPs  x, the 
generat ion of ( la )  is s t ra ightforward.  Genera t ing  ( lb)  
is a l i t t le more intr icate  but  results natural ly  from the 
interact ion of the genera tor  with the g r ammar  =. Note 
that  if the P P  were represented as such in the DS, then 
generat ion would fail for the English sentence.  This sug- 
gests tha t  the deep s t ructures  we genera te  from offer the 
right level of abst ract ion for generat ion to be possible in 
several  languages. 

The  case of s t ruc tura l  t ransfer  i l lustrated in (1) is a good 
example  of the problems that  occur  with generators  that  
are unable to deal  with non-canonical  input.  To i l lustrate 
this consider the following s i tuat ion.  Suppose that  given 
two grammars ,  one for Eng l l sh (G~)  and one for French 
(GF),  ( la )  and ( lb)  each have one unique derivat ion with 
result ing semantics  as in (2). 

a The(mouse(m) ,  the(cat(c) ,  miss(re,c)) 

b The(ca t (c) ,  the(mouse(m) ,  tulsa(re,c))) 
(2) 

Fur thermore ,  suppose (3a) is non-canonlcal  with respect 
to C,~ (i.e. (an) is not  derivable under  C,~) and (3b) is 
non-canonic.M wrt  GE. For any genera tor  G that  cannot  
deal  with non-canonical  input ,  this means tha t  G cannot  
be used in a system where parsing occurs on one language 

IThis is in accordance with the view that prepositions oc° 
curing within argumental PPs have no semantic content. 

2For more details on the generation of subcategorised PPs 
within UCG see [1}. 
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and generat ion on another .  More to the point ,  if G is cou- 
pled with the g rammar  GE, then it will fail to generate 
when given (2b) as input  - and similarly when coupled 
with GF and given input  (2a). To unders tand  why deep 
s tructures  allow for g rammar  independent  generation,  
let us first examine why t radi t ional  top -down/bo t tom-  
up generators such as the one described in [1] fail on 
non-canonical  input .  3 Consider the case where we try 
to generate under  G s  the English sentence in ( la)  from 
the semantic (2b) and- as already mentioned- (2b) is 
non-canonical wrt GE. The main steps of the genera- 
tion process will be as follows. 4 Suppose the goal sign is 
SignO with category s[fin]. First ,  a sign Sig~l is created 
whose semantics  is as in (2b). Lexical access on Signl re- 
turns  the sign for 'the'. On the basis of the syntact ic  and 
semantic predictions made by Signl, the sign Sign2 for 
'cat' is then generated.  Reduct ion of Signl with Sign2 
yields a new sign Sign3 with phonology 'the cat'and syn- 
tax C/(C/np) 5. In turn ,  Sign3 makes some predictions 
which lead to the generat ion of a new sign Sign4 with 
syntax C/(C/np) and phonology 'the mouse'. Finally,  
on the basis of Sign4, the sign Sign5 for 'miss' is gen- 
erated. At this point  in generating,  the two signs in (3) 
must combine to reduce to a sign with category C/np. 

pho:~i~) 

synt : C/ 

pho : Wa 

synt:C/ 

pho:themouse 
syat:np 
sem :m.mouse(m) 
order:Of 

sem:VP 
order:Of 

o r d e r : 0 2  

pho : misses 

I pho : Wa 

synt :s/ synt : np[nom] 
sere : m.NPI 
order : pre 

sem : m.miss(m,c) 

order : 03 

pho : Wb 

/ sr t: npb  ] 
sere : c.NP2 
order : post 

But  under  ti~e UCG rules of combina t ion  (see 3.1), these 
two signs cannot  combine because of the unification clash 
occuring between the semantics  of the accusative NP in 
the verbal  sign (c.NP2) and that  of the NP sign within 

aNote that in this case, reduction to normal form is no 
longer a possible solution even if we were able to define a 
normal form for our semantic representation language. For 
suppose that (2a) is the normal form, then (lb) is not derivable 
and if (2b) is, then (la) is not derivable. 

4For more information on the details of the generation pro- 
cedure, see [1]. 

~For the sake of clarity, the syntactic part of Sign3 is here 
simplified in that non-syntactic fields (Phonology, Semantics 
etc.) are omitted. Note also that in UCG, NPs are typer- 
aised i.e they are assigned the syntactic category C/(C/np) 
as opposed[ to just np. 

the sign for 'the mouse' (m.mouse(m)) .  Hence generat ion 
fails. Consider now how the problem is dealt  with when 
generat ing from deep structures.  Ra ther  than  being as 
indicated in (2b), the input  to the generator  is 6 

head(miss(m, e), 
[specifier(the, head(moose(m), [], [])), 
specifier(the, head(cat(e), [l, [l))] 
[]) 

(3) 
Roughly, generat ion will proceed as follows. Suppose the 

goal sign SignO has category s[fin]. First ,  the semantics  
corresponding to the head of the clause (i.e. mi,Js(m, c)) 
is extracted from (3) and a sign Signl is created with 
semantics miss(re, c). Lexical access on Signl returns 
the sign given in (3) above. Signl must  then be re- 
duced to SignO with category s[fin]. At this stage, the 
remaining  DS is [specifler(the, head(mouse(m), [], [])), 
speci/ier(the, head(cat(c), [l, []))] To generate the first ar- 
gument 
of Signl, we then have the choice between generat ing 
on the basis of specifier(the, head(mouse(m), [], [])) or 
of specifier(the, head(cat(c), [], [1)) 7 As demonst ra ted  
above, if we generate the sign for 'the mouse' first, re- 
duct ion cannot  apply and generat ion will fail. Bu t  here, 
failure is only t empora ry  and on backtracking,  the sign 
for 'the cat' will eventual ly  be generated;  it will then 
reduce with Signl to generate Sign2 with phonology 
'misses the cat'. At this point ,  the remaining DS will 
be [specifier(the, head(mouse(m), [], []))]. This  will trig- 
ger the generat ion of Sign3 with phonology 'the mouse' 
which will then combine with Sign2 to reduce to SignO 
with result ing phonology 'the mouse misses the cat'. 

To generate the French sentence 'Is chat manque h la 
8ouris ', the same generat ion process applies bu t  this t ime 
in connect ion with GF and in a reverse order i.e. the sign 
for 'Is souris'(the mouse) is generated before the sign cor- 
responding to the N P  'Is chat' (the cat).  Fur ther ,  because 
in the French lexicon 'manque' (miss) subcategorises for 
a dat ive  NP, the preposit ion ~ is generated and combined 
with the sign for 'Is souris' before reduct ion of the thus 
obta ined P P  with the verb. Because DSs make no as- 
sumpt ion  about  the l inear ordering of the cons t i tuents  
to be generated,  the problem raised by non-canonic i ty  
simply does not  arise. 

5 C o m p a r i s o n s  w i t h  R e ] [ a t e d  

R e s e a r c h  

To compare our  algori thm with previous work, we first 
show how it can be amended to phrase s t ructure  gram- 
mars.  Consider  the following extension to reduce .  

reduce(SignO, Sign, DS) :- 
rule(Morn, SignO, Kids), 

6For the sake of simplicity, the syntactic information usu- 
ally contained in the deep structures input to the generator is 
here omitted. 

7cf. the non-determinism of the r e t r i eve  predicate. 
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g e n e r a t e _ s i s t e r s  (Kids ,  DS, NewDS), 
r educe (gem,  S ign ,  NewDS). 

g e n e : t : ' a t e _ s i s t e r s ( [ ]  , DS, DS). 
gene:t:afie_sisfiers([HIT], DS, NewDS) : -  

index  (tI, I d x ) ,  
me I; eh ( Idx ,  DS, SubDS, NewDS 1 ) ,  
g ene ra t e (SubDS ,  H), 
g e n e r a t e  s i s t e r s ( T ,  NewDS1, llewDS). 

This clause is very similar in s t ruc ture  to the second 
clause of r educe ,  the main difference being tha t  the new 
claus(, makes fewer assumptions about  the feature struo- 
tures being manipula ted ,  r u l e  enmnera tes  rules of the 
grammar ,  its first a rgument  represent ing the mother  con. 
stitu~ut,  its second the head daughter  and its third a list 
of non-head daughters  which are to be recursively gener- 
ated by the predicate  g e n e r a t e  s i s t e r s .  The behaviour  
of this clause is just  like tha t  of the clause for r e d u c e  
which implements  the uc(;  rules of function application.  
On tire basis of the generated lexical sign Sign0 an ap- 
plical.ion of the rule is hypothesised and we then a t t emp t  
to prove that  ru]e applicat ion will lead to a new sign gem 
whiel, reduces to the original goal Sign.  

Having generalised our basic a lgor i thm to phrase struc- 
ture ~ran]mars, we can now compare  it to previous work 
by [5} and [3] 

Van Iqoord's B o t t o m - U p  Genera tor  (BUG) is very similar 
in s t ruc ture  to our basic a lgorkhm.  Closer examinat ion  
of the. two programs however reveals two differences. The 
first is that  daugthers  in a rule are separated into those 
that  })recede the semant ic  head and those that  follow it. 
The ,'.econd more meaningful  difference involves the use 
of a ' l ink '  predicate  implement ing  the t ransi t ive closure 
of the semant ic  head relation over the g rammar  rules. 
The link predicate  is similar in purpose to reachibil i ty 
table~ in parsing algor i thms and contr ibutes  to reducing 
the search space by producing some syntact ic  information 
on the sign to be generated.  I towever,  such a predicate is 
of litt.le use when generat ing with a categorial  g r ammar  
in par t icular  and with any strongly lexicalist linguistic 
theory in general since in these, the g r ammar  rules are 
extremely schematised.  Their  information content  is so 
impoverished tha t  the computa t ion  of and resort to a link 
predicate cannot  be expected to reduce the search space 
in a n / m e a n i n g f l f l  way. In the algori thm presented above 
however~ this shor tcoming is redressed by exploit ing the 
syntactic information contained in the deep-s t ructure  we 
start  from. 

In [5], Shieber  et al. present  a "semant ic-head-dr iven"  
generat ion algori thm that  is closely related to van No- 
ord's.  In contras t  to Van Noord 's  a lgori thm however, 
this ~dgorithm also opera te  on grammars  violat ing the 
sema~dic head con.~traint (SHC) according to which any 
sema~tic representa t ion is a further  ins tant ia t ion of the 
semantic representa t ion of one of i~s const i tuents  called 
the semantic  head. This  is achieved as follows. First ,  a 
dist lnction is made between chain--rules and non-chain- 
rules whereby non-chain-rules  are used to introduce se- 
mantic  mater ia l  syncategorematical ly .  The dist inct ion 

between the two types of rules can be sketched as fol- 
lows. 

i. Chain-rule (Sem, lhs --> Head(Sem), Sisters) 

2. Non-Chain-rule (Sem, lhs(Sem) --> Daughters) 

(1) indicates tha t  given a semant ic  Sere, a chain rule 
will be such that  Sere unifies with the head daughter ' s  
semantics  whilst (2) shows that  non-chMn-rules are such 
that  the input  semant ics  must  unify with the semantics of 
the lhs of the rule. The  intui t ion is tha t  non-chain-rules 
will help find the lowest node in the der ivat ion tree whose 
semantics  unify with the input  semantics.  Fur thermore ,  
the top-down base case for non-chain-rules  corresponds to 
the case in which the lhs of the rule has no non- terminal  
daughters  i.e. to lexieal look up. Consider  now the top 
call to generate. 

g e n e r a t e ( R o o t )  : -  
non_cha in  r u l e ( R o o t , P i v o t , P . h s ) ,  
g e n e r a t e  rhs (Rhs)0  
c o n n e c t ( P i v o t , R o o t ) .  

Two cases obtain  with regard to the applicatlon of the 
non- c h a i n - r u l e  predicate.  E i ther  the base case occurs 
and lexical look-up takes place exactly as in our algo- 
r i thm or a non-chain-rule  is triggered top-down before 
the conat i tuents  in the rhs are generated by a recursive 
call to g e n e r a t e .  Hence the solution to the int roduct ion 
of syncategoremat ic  mater ia l  is essentially a reintroduc- 
tion of the top-down generat ion strategy.  The result is 
that  there is no guarantee  that  the a lgor i thm will termi- 
nate. This point  seems to have been overlooked in [5 t . 
Therefore,  the extension may be of less uti l i ty than it ap- 
pears to be at first sight a l though it may well be the case 
for l inguistically mot iva ted  g rammars  tha t  te rminat ion  
problems never arise. 

6 F u r t h e r  R e s e a r c h  

The general  backtracking reghne character is ing the al- 
gori thm presented in this paper  means t h a t  failure at a 
first a t t empt  to generate  might  induce the recomputa-  
tion of par t ia l  results. Perhaps  the use of a chart  could 
contr ibute  to enhance generat ion efficiency. Ii1 relation 
to [4] where chart  edges conta in  no ordering information,  
it would be interes t ing to invest igate  whether  dur ing the 
generat ion process some ordering informat ion can be re- 
covered. Tha t  is, whether  the chart  could be constructed 
in such a way tha t  t:he relat ive posi t ioning of edges mir- 
rors the knowledge embodied in the g r a m m a r  about  lin- 
ear precedence within and between const i tuents .  In this 
way, only the relevant par t  of the chart  would need to be 
looked up before a t t empt ing  to build a new edge. 

The algori thm described above is implemented  ill CPro- 
log on a Sun4 and const i tutes  part  of the generat ion cola- 
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ponent in the ACORD prototype. The generator can be 
coupled with either a UCG grammar for French or one 
for English thus generating either French or English sen- 
tences. 
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Listing of the whole program 
(Low level procedures have been omitted) 

generate(DeepStro Sign) :- 

get_deepstr_info(DeepStr°[Synt. Sem],RestOfDeepStr). 
create_sign(Synt°Sem°SignO), 
lexical(Sign0), 
reduce(SignO,Sign,Rest0fDeepStr). 

reduce(SignoSigno [ [] o [] ] ). 
reduce(SignO°Sign° DeepStr) :- 

active(SignO,Active), 
apply(SignO°Active,Reault), 
retrieve(DeepStr,SubDeepStr,NewDeepStr)° 
generate(SubDeepStr, Active), 
reduce(ResultoSign°NewDeepStr). 

reduce(SignO, Sign. DeepStr) :- 
transform(SignO, Signl, DeepStr, NewDeepStr) 
reduce(Signl° Sign, NewDeepStr). 

Identity Semantic Fun(torn 

transform(Sign,NewSign,DeepStr,DeepStr) :- 
not_idsign(Sign). 
create_id_functor(IdSemFctor, Sign), 
identity(IdSemFctor), 
apply(NewSign. IdSemFctor0Sign)° 
defreeze_order(AdjSign, Sign, NewSign) 

% Lexical Adjtmcts 

traneform(Sign,NewSign0DS,NewDS) :- 
create_lexical_adjunct(Sign, 

ASign0DS,NewDS,DS2) o 
generer(DS2, ASign), 
apply(NewSign, ASign, Sign). 

Type-raise Verbs to C/(C/NP) 

transform(Sign,NewSign,DS,NewDS) :- 
type_raise vb to_np(Sign, RaisedSign), 
getjub deepstr(Sign0 DS, SubDS, NewDS) 
generer(SubDS, RaisedSign), 
apply(NewSign, RaisedSign, Sign) 
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Unary rules 

transform(Sign,NewSign°DeepStr,DeepStr) 
unary_rule(NewSign,Sign). 

Identity Semantic Functor 
(Case marking Prepositions) 

transform(Sign,NewSign,DeepStr,DeepStr) 
active(Sign,VB), 
active(VB, NP), 
category(NP, np) o 
create_id_prep(Np,PREP)° 
identity(PREP), 


