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Abstract

Weintroduce feature terms containing sorts, variables, nega-
tion and named disjunction for the specification of feature
structures. We show that the possibility to label disjunc-
tions with names has major advantages both for the use
of featurc logic in computational linguistics and its imple-
mentalion. We give an open world semantics for feature
terms, where the denotation of a term is determined in de-
pendence on the disjunctive contlext, i.e. the choices taken
for the disjunctions. We define contezi-unique feature de-
scriptions, a relational, constraint-based representation lan-
guage and give a normalization procedure that allows to test
consistency of feature terms. This procedure does not only
avold expansion to disjuncéive normal form but maintains
also structure sharing between information contained in dif-

ferent disjuncts as much as possible. Context-unique feature
descriptions can be easily implemented in environments that
support ordinary unification (such as Proroa).

1 Introduction
1.1 Ambiguity in Natural Language

Our use of language mirrors our intellectual capacities,
which are as yet my no means understood. As long as we
can not formally describe the processes involved iu thinking
and understanding, formal descriptions of human language
have to be rough approximations, One particular instance
of this general fact is the problem of disambiguation of hu-
man utterances. Since our use of words fits our capabilities
of understanding thelr meaning, context and intent, systems
that do not have such capabilities can, at best, produce scis
of possible analyses. It is well known that such sets can be
very large in practice.

Ambiguity in natural language is fed by a couple of gources,
including lexical ambiguity, where differing analyses are pos-
sible for a given word concerning its part of speech, subcat-
cgorization for complements, morplological features, or any
other information assigned to it, and structural ambiguity
introduced by different possible groupings or interpretations
of phrases or different interrelations between them with re-
spect to subcategorization, meaning, pragmatics ctc. On
each level, a bunch of possibilities cxist, which could po-
tentially wultiply to an enormous space of combinations.
However, these possibilities interact and restrict each other
in such a way, that —— taking it all together -~ only a few
{(hopefully exactly one) interpretations remain.

1.2 Unification-Based Formalisms

For about a decade, many formal theories of natural lan-
guage have tried to describe their subject in terms of so
called feature structures, i.e. potentially nested bundels of
featurcs that are assigned to words and phrases. These
structures are sometimes seen as abstract linguistic objects,
which are described using a suitable description language,
sometimes they are given a concrete shape in form of finite
automatons and regarded themselves as descriptions of the
linguistic objects [Kasper/Rounds 86]. Despite such differ-
ences in interpretation, there is a consensus among the the-
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ories that linguistic descriptions should provide constraints
concerning feature structures and that a sct of such coun-
straints gives a partial description of the feature structures
associated with a phrase. A set of constraints defines a mini-
mal model, i.e. a minimal structure satisfying all constraints
in the set. The union of two sets of constraints not contra-
dicting each other leads to a minimal model which is the
Such
minimal common extensions can be constructed by unifica-
tion of the given models, hence the term unification-based

least common extension of the models of both sets.

formalisms.

There is also a consensus among feature-based theories that
ambiguity should be described with disjunctive formulas,
and most formalisms offer ways to specify them. If disjunc
tion is preosent, there is usnally a finite number of minimal
models instead of only one. [However, until now, the way
such disjunctive specifications have been processed compu-
tationally was not quite satisfactory. An enumeration of
the possibilities using a backtracking schewe or a chart,
which corresponds to an expansion to disjunctive normal
form in the underlying logic, often leads to computational
inefliciency.

Approachies to improve the situation both in terms of
the logic and the implementation (see eg. [Karttunen 84,
Kasper 87, Fisele/Dorre 88, Maxwell/Kaplan 89]) can be
subdivided in those assuming disjunctive values for features
and those allowing for more general forms of disjunction.
Roughly, we can state that formalistus and implementations
that provide value disjunction can be implemented more eas
ily and more efliciently, since they can exploit the fact that
disjunctive information for a certain feature has no effect on
other features {as long as disjunctive information does not
interact with path equivalences, see [isele/Dorre 88]). But
the restriction to value disjunction decreases the expressive
power of the formalism, since disjunctions coucerning dif-
ferent features must be stated on a higher level, Schemes
providing for general disjunction allow for a morce compact
representation of such cases. But if disjunctive information

is not local to single features, the interaction between diffor-
ent parts of the description 1s more difficult to handle {sec
e.g. [Kasper 87]).

The method we propose combines advantages of both ap-
proaches. Tt can be seen as a generalization of value dis-

junction, which allows for a concise description of disjunc-

tion concerning more than onc {eature or path., I can also
be seen as an efficient implementation of general disjunction
which allows to exploit the locality of disjunctive informa-
tion wheunever this is possible.

2 Yeature Terms
2.1 Disjunction Nameos

The background of our approach is the simple observation
that general disjunction affecting more than one feature can
be reduced to value disjunction for those features, provided
that the correspondence between such disjunctions can be
expressed within the formalism. In order to state such cor-
respondences, we will label disjunctions with a disjunction
name. Take, for instance, the formula (1) that could be used
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Figure 1: Syntax and Semantics of I'eature Terms

to express that the directional reading of the german prepo-
sition “in” (=into) corresponds to the accusative case of the
following noun phrase, whereas the static reading (=in) cor-
responds to the dative case. This can also be expressed by
(2), where the index d; at the disjunction sign indicates the
mutual dependence of both disjunctions. Throughout this
paper, we will assume that each disjunction is labelled with
aname. Evenin cases where a disjunction appears only once
in the initial description, naming it will help us to treat the
interaction between disjunction and path equivalence cor-
rectly.

(1)
()

(syn : arg : case : dat A sem : rel : stat.in)
V (syn : arg : case : acc A sem : rel : dir.in}
syn : arg : case : (dat Vg, acc)

A sem : rel : (statin Vg, dir.in)

2.2 Syntax and Semantics of Feature Terms

We incorporate named disjunction into a language of so-
called feature terms (similar to those in [Smolka 88]), where
each feature term describes a set of possible feature struc-
tures. The language allows for the use of sort symbols
A,/ B,C... € S, on which some partial order < induces a
lower semilattice {(i.e. VA, B € S : GLB(A,B) € 8). T
and L are the greatest and least element of 5. We also dis-
tinguish a set of singleton sorts (a,b,c... € Sg C 8), which
include the special sort NONE. L is the only sort smaller than
a singleton sort. The language provides a set I' of feature
symbols (written f, g, h,...), an infinite set 'V of variables
(written x,9,z,21,91,...) to express path equivalence, and
an infinite set D of disjunction names (written d, dy,d2, .. .).
S, F, V and D are pairwise disjoint. Sort symbols and vari-
ables can be negated to express negative values and path
equivalence (simple negation). The restriction of negation
to sort symbols and variables is not essential, since the nega-
tion of any feature term can always be reduced to these forms
in linear time [Smolka 88].

Definition 1 (Feature Terms) We define the set FT of
feature terms with variables, simple negation and named dis-
Junction by the context-free production rules given in Fig. 1.
Letters s, t, ty, ... will always denote feature terms.

The semantics of our terms is defined with respect to an
interpretation, which is a pair (¥, ~I) of a universe of the
interpretation and an interpretation function such that:

e TZ=U and 1T =4
for all sorts A, B: GLB(A, B)t = A* n B*
singleton sorts are mapped onto singleton sets
for every feature f: f7 is a function & — U.
if a is a singleton sort and f is a feature symbol, then
% maps o’ into NoNE?

When interpreting a feature term with variables and named
disjunctions, we have to make sure that the same value is
assigned to each occurrence of a variable and that the same
branch is chosen for each occurrence of a named disjunction.

To achieve this, we introduce variable assignments that map
variables to elements of the universe and disjunctive contexts
that assign to each disjunction name the branch that has to
be taken for this disjunction and hence specify a possible
interpretation of a formula with named disjunction. Since
we limit ourselves to binary disjunctions, a branch of a dis-
junction can be specified by one of the symbols I or 7.

Definition 2 (i{-Assignment) A .assignment a is an
element of L(V, i.e. a function from 'V to ld.

Definition 3 {(Context) A of
{1, 7‘}D, i.e. a function from D to the set {l,v}. The symbols
k, &', ete. will always denote contexts.

context is an element

For a given interpretation, we define the denotation of a
feature term in a context x € {I,‘r}D under an assignment

o € UV as shown in Fig. 1. The denotation of a feature
term as such is defined by:

= J U [slan

we{l,r}P acltV

3 Context-Unique Feature Descriptions

To describe the computational mechanisms needed for an
implementation, we will introduce a relational language to
express constraints over variables. Unlike similar approaches
(e.g. [Smolka 88]), our constraint language will also be used
to express disjunctive information. For this language, wewill
define a normal form that exhibits incousistencies, and simn-
plification rules that allow to normalize a given specification.
Onur language will provide only two kinds of constraints, one
that relates a variable to some feature term (written = | ¢)
and one that expresses that certain contexts are excluded
from consideration becaunse the information known for them
is inconsistent (written L[£]).

In order to refer to scts of contexts, we define

Definition 4 (Context Descriptions)

A context description is a propositional formula wherve the
constant TRUE, variables written d,:l und di:;v with d, € D,
and the operators A, V and — may be employed,

CD will denote the set of context descriptions. The symbols
k, ki, ... will dlways denote members of CD.

The set of purely conjunclive context descriptions (not con-
taining the operators V and =) is denoted by CD..

Fach context k satisfics the context description TRUE (wril-
ten & |=. TRUE), whereas k = d: b for b € {I,r} only if
&(d) = b. The meaning of conteat descriptions involving A,
V and = is defined as in propositional logic.

If K k=c k, we will also say that k describes or covers x or
that k lies in k.

A context description is called contradictory, of no contcat
satisfies it.

Two context descriptions k, k' which are satisfied by exactly
the same conteats are called equivalent (written kb = k'),
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An important form of constraints for our approach are con-
straints like z ]z Lla, 2 which expresses that z and z; have
to be equal in contexts where x(d1) = ! and so do z and
z2 in contexts where x(d1) = r. Such constraints are called
bifurcations and z1,x2 are called (the di:l- and dy:v-) vari-
ants of x. Assume an additional constraint =, | z3 L4, x4,
then za will be called the dy:] A dy:l-variant of 2 and so on.
Now, instead of accumulating constraints on the variable z
which might be effective in different contexis and could in-
teract in complicated ways, we can introduce new variables
as variants of = and attach the inflormation to them.

We will sometiines refer to a varlant of a variable z without
having a variable name for this variant. 1o this end, we will
use a special notation z/k to denote the k-variant of . Such
expressions will be called contezted variables.

Definition 5 (Contexted Variables) A contexted vari-
able is a pair 2 /k where x € V and k € CD..

V. will denote the union of V with the set of contexted vari.
ables. Elemnents of V. will be written with capital letters
XY, 2, X, Y1 ... To mark the distinction, we will some-
times call the members of V' pure variables.

During the normalization of feature descriptions we will
sometimes neced variable substitution. If a description con-
tains e.g. x|y, where other constraints might express con-
flicting information aboui z and y, we want to concentrate
this information on one variable (say z) by substituting all
occurcnces of y in other constraints by ©. This could lead to
problems when constraints attached to @ and y are relevant
in different contexts. One way to treat this situation cor-
rectly would be the introduction of conditional substitution
(sec [Fisele/Darre 90] for details). The way we choose here
is to restrici the use of variables in such a way that it is
always safe to use conventional substitution.

Our trick will be to require that essentially all occurences of
a variable @ are relevant to the same set of contexts. We call
this condition {defined more precisely below) the context-
uniqueness of variables. We will set up the normal form and
the rewrite system in such a way, that context-uniquenecss
of a description is maintained during the simplification pro-
cess. (See [Eisele/Dorre 90] for a more detailed motivation
of context-uniqueness). The set of relevant contexts will be
regarded as an inherent and invariant property of variables,
and we will introduce a context assignment, i.e. a partial
function Con : V + CD, thal maps cach variable in use
to a purely conjunctive description of the contexts it is rel-
evant to. We extend Con to contexted variables by defining
Con{a/k) = Con(z) A k.

In order to obtain context-unique descriptions, we generalize
our feature terms so that they may also contain contexted
variables.

Definition 6 (Contexted Feature Terms) A contexted
feature term is buslt according to definttion 1, but where both
pure and conterted variables may occur. The set of contexted
feature terms will be denoted by I'T.. The symbols 5,1, t; . ..
may henceforth also denote conteated feature terms.

The denotation of a contexted feature term in a context k €

{1, »r}D under an assignment o € uV i defined as for usual

feature terms by adding:

if 5 =c k

otherwise

[z/k]ax = ;}a(m)}

We can now define the context compatibility of a feature
term. This definition is somewhat technical and the reader
can skip it, since our algorithm will produce only context-
unique descriptions, anyway.
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Definition 7 (Context compatibility) Given a partial
assignment Con . 'V — CI., a contexted feature term t
1s contert-compatible to a conteat description k with respect
to Con, writtent ~con k, according to the following condi-

tions. A ~con k  for arbitrary k € CD,
X ~con k iffCon(X)=k
~t ~con bk ifft ~con k
fit ~con k ifft ~con k
8Tt ~con k iff s ~con k and t ~con k
gtiagt ~con k  iffs ~con kA

and t ~con kAd:iT
Definition 8 (Context-unique feature descriptions)
A context-unique feature description (xo, CUC, Con) is a

triple such that: )
e zo € V, called the root variable

e CUC is a set of context-unique constraints which ei-
ther have the form
Lik], where k € CD or
Xt where X € Vo, t ¢ FT: andt ~con Con(X)

o Con is a context assignment which is defined for all
variables in CUC

The semantics of context-unique feature descriptions is
given by the satisfaction relation k¢, between wvari-
able assignments', contexts and constraints,
parametrized with a context assignment.

which s

o,k FEoon Xt ] & b Con(X)
a, k5 Frcon LIK] i ko k

The denotation of a context-unique f-description is:

or a(X) & [thax

Lo, CUC, Con)] 1= {a(xo) | a € L«(V, k¢ {l, r}D 8.t
Ve € CUC : o, K Fcon ¢}

Given a feature term ¢ not containing the variable zo, we

can find an equivalent coniext-unique feature description

(za, {20 | '}, Con) as follows, We initialize the context as-

signment Con so that zo and all variables contained in ¢

arc mapped to TRUE (they are regarded as relevant to all
contexts). Then we obtain the contexted feature term t' by
replacing all occurences of variables in ¢ which are embed-
ded in disjunctions by their appropriate variants, such that

' ~eon TRURZ,

Proposition: If ¢t does not contain the variable xo, and if
Con and t’ are obtained from ¢ as described above,
then [t} == [(zo, {xo | t'},Con)]. Tor a proof sec
[isele/ Dorre 90).

4 Normal Feature Descriptions

One way to eliminate a contexted variable (take e.g. z/d1:1)
from a description is to introduce a bifurcation (z ]z Ug, 22)
and replace the variable by an appropriate variant (in this
case z1). Analogously, contexted variables with more com-
plex context descriptions can be rveplaced by introducing
several bifurcations. However, it turns out that our rep-
resentation can be more compact if we allow for the use of
contexted variables. But we have to prevent conflicting in-
formation from being attached to variants of a variable. Our
normal form will therefore allow the use of contexted vari-
ables in certain places, but in some cases, a pure variable
has to be used.

Lo is extended to contexted variables by: oo(z/k) = o(w)
?In the sequel we will also assume that inaccessible disjuncts
resulting from nested disjunctions with identical names (e.g. t»

in {; Ug (t2 Ug t3)) are removed.



A context-unique feature description (2o, CUC, C'on) is nor-
mal if it satisfies the following conditions:

A) All constraints in CUC have one of the forms:

L{#]

T l 21 Ug 2o

z |-y, where ¢ # y

z|Aoraz|-A

| f:Y

where k € CD,xy, 22,2,y € V,Y € Vo, d € D and A €
S\{T, L1}

B

®© & & o ©

The following restrictions apply:

L. If L{k] and z|¢ are in CUC, then Con(z) A =k is not

contradictory

ifz]Aand 2| B arcin CUC, then A= D3

3. if @] and z]t are in CUC, then t =«

4. if ¢ | A and 2 | -3 are in CUC, then 4 £ B and
GLB(A, B) # L

5 i z]-A and 2 |=B are in CUC, then A £ B

6. fz|f:Y and 2| f:Z are in CUC, then Y = Z

7. if L[k} and L[k'] are in CUC, then k = &'

8 if o|ay Ugze and x|t are in CUC, then ¢ = 21 Uy a2

~—

S

4.1 Simplification Rules for Normalization

For normalization, we have to consider all ways a context-
unigque feature description could fail to be normal, and we
have to find an equivalent description that is in (or closer
to) normal form. To this end, we give simplification rules
for each possible case. Since there are many different ways
to violate normal form, we get a lot of different rules, but
each of them is very simple and their correctness should
be casy to see. The rules are parametrized with the root
variable (which should not be substituted away) and with
the context assignment, which will be extended to new vari-
ables during simplification.  To facilitate notation, we use
¢ & CUC to denote {c} UCUC where CUC is snpposed
not to contain the censtraint ¢, and CUC, .., denotes CUC
with all occurences of = replaced by y. Also, if we write
d:b A K’ then &' is supposed not to contain d:b. The cases
we have to handle are grouped in those that treat single
nou-normal constraints (S) and those that treat interactions
between different constraints (M).

There are S-Rules for all forms of constraints which conflict
with condition A), i.e. which are of onc of the forms

l.oa/k|t
2 x|y/k
3. z|Y

4. xltor x|t where £ has the formn T, Lor z
5. w)fity, where L € V.

6. x|t Mty

7. w|ti Ug ta, where {#1,8} ¢V

Among the situations in which a contexted variable 2 /k con-
flicts with normal form, we have to distinguish several cases.
If & = 1RUE, then the context description is irrelevant and
we can replace x/k by » (Rule Scu1b). Otherwise, if there
cxists already a bifurcation x|z Ugz,, such that k = d : bAL'
for some b € {{,r} and £’ € CD,, where k' docs not contain
d : b, then we can replace z/k by the shorter term zs/k’
(Rule Sculc). 1f there is a bifurcation z | z; Ug 2 where
d does not appear in &, the constraint attached to z/k is
distributed over the variables z; and z, (Rule Seuld). In
order to maintain context-nniqueness, the variables appear-
ing in the constraint have to be replaced by their respective
d:l- and d:r-variants. We use t/k as a shorthand for a con-
texted feature term, where each variable has been replaced

by its k-variant, i.e. z has been replaced by z/k and 2'/k’
by z'/(k' A k) (sec also rule (M .8¢), below). Only if no bi-
furcation exists for ¢ we have to introduce a new bifurcation
(Rule Scule). We select a disjunction name d from & such
that £ = d:b Ak’ for some b € {l,7} and &' € CD,, where
k’ does not contain d : b, we add a bifurcation z |z U4 2,
to CUC, where z; and z, are new variables, and we extend
Con by mapping z; to Con(z) Ad:l and z, to Con(z) Ad:r.
Now we can replace z/k by zp/k’.

The other rules handle equalities by substituting a variable
by some other variable, eliminate redundant constraints,
handle inconsistencies, or decompose constraints with com-
plex feature terms into a sct of simple constraints.

The cases where a pair of constraints violates some of the
conditions B31-7 can be treated as for similar non-disjunctive
rewrite systems (sec [Smolka 88] or [Eliscle/Dorre 90}).
Rules M1 —7 handle those. When a bifurcation z|a; Ugze
occurs together with some other constraint on z, this could
lead to a contradiction with information known about 2
and z,. Here, we distinguish three cases. 1f the other con-
straint happens to be a bifurcation z | yy Uq y2 with the
same disjunction name d, we get equalities between both
d: l-variants and both d: r-variants (Rule M:.8q). If the
other constraint is a bifurcation z | y1 Ug y2 with a differ-
ent disjunction name, then the two disjunctions interact and
have to be multiplicd out for the variable @ (Rule M. 80).
To this end, four new variables are introduced as variants
of z and new bifurcations are installed that link the new
variables to those already in use. Con is extended for the
new variables. In any other case, the constraint attached
to r is distributed over both variants, and context descrip-
tions for variables on the right-hand side of the constraint
are introduced or adapted as required by context-uniqueness

(Rule M,..8¢).

4.2  Soundness, Completencss and Termination

We can show that our simplification rules coustitute an al-
gorithm for the consistency (or unification) problem, which
is sound and complete and guaranteed to terminate. For de-
tailed proofs the reader is referred to [Lisele/Dorre 90]. Be-
low, we give the key intuitions or strategies for the proofs.
Soundness can be scen by inspecting the rules. Each rule
rewrites a clause to one with an equivalent denctation. To
show that the algorithm always finds an answer, we first ob-
serve that to every context-unique feature description that
is produced during translation or normalization and that
is not normal at least one of the rules applics. When the
result of simplification is the single constraint L[k] where
&k = Trup, this means that the description failed to unify.
In any other case we can construct models from the normal
form result. The basic idea is to choose a context & which is
not covered by the context description of a constraint L{k]
in our formula and ‘project’ the formula into this context by
regarding only those constraints which are relevant to this
context, thereby degenerating bifurcations to nondisjunctive
bindings z|y. This nondisjunctive sct of constraints can be
made into a model.

In order to prove termination we construct a complexity
measure for descriptions (a natural number) which is de-
creased in every rewrite step (see [Eiscle/Dorre 90]). Here
we take advantage of the fact that although there are rules
which increase the number of constraints and hence scem to
add to complexity, these rules also can be seen as part of
an inherently irreversible process, since thev distribute in-
formation attached to a variable over variables in more spe-
cific contexts, But since the number of disjunction names
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(Seula) 2/k|z/k’ & CUC —uy,con CUC (k = k' due to context-uniquencss)
(Sculb) zfk|t & CUC —qzycon x|t & CUC,ifk = TRUE
(Seule) z/k|t & zleiUaz, & CUC =z con rof/k'|t & zlziUazr & CUC, ifk=dbAk!
(Sculd) okt & zlziUsz, & CUC —augcon ai/k|t/d:l & wo/k|t/dir & zlz Ugz, & CUC,
if (Sculc) does not match
(Sm,,le) .’l)/klt & CUC —rzg,Con xb/k'|t & :I)l:m Ugzr & CUC
if (Scula,b,¢,d) do not match, k = d:bA k', zi, 3, are new,
and Con(zs) := Con(z) Ad:b
(Scu?2) x|-y/k & CUC —up,con ylk|-2z & CUC
(Scuda) z|y/k & CUC —sycon ylklz & CUC
(Scu3b) tly & CUC —gpcon CUCry ifz #xo
(Seudc) 2oly & CUC —ppcon CUCyr,
(Scuta) gt & CUC —gycon L[Con(z)] & CUC ift=L1Lt=~-Tort=-z
(Seudb) 2|t & CUC —wycon CUC ,ift=T,t=-lort=z
(Scud) clf:t & CUC —apcon zlfiy & ylt & CUC |i{tgV,
where y is new and Con(y) := Con(z)
(SCuG) z[tl Mt, & CUC —zg,Con :E[tl & Iltz & CUlC
(Scu7) :I?l'tzudtr & CUC —4,,con .’I:Izszx,« & »’El'tl & 17-|£r & CUC
where {t1,12} ¢ V, x4 are new and Con(zp) := Con(z) A d:b
(Mcul) Lk] & z|t & CUC —zjcon L[k] & CUC, I Con(z) A —k is contradictory
(Mew?2) ¢|A & z|B & CUC —ucon z|GLB(A,B) & CUC
(Mcu3a) zla & z|=y & CUC —sy,con zla & yl—a & CUC
(M:u3b) tgla & z|fiY & CUC —au50on zla & Y|none & CUC
(Mouta) 2|A & z|-B & CUC —ucom L[Con(a)] & CUC,if A< B
(M. aD) 2|A & g]|~B & CUC —sycon z|A & CUC,if GLB(A,B) = L
(Mcu5) z|-A & z|-B & CUC —sycon z|mB & CUCHHACB
(Mcub6) el Y & z|fiZ & CUC —ypcom z|fiY & ZIY & CUC
(M) L[k] & LK) & CUC —gpcon LEVE] & CUC
(Mcu8a) zlziUgze & zlmlay: & CUC —upcon zlriUgz: & (CUCY, ~z )ys—zs
(Me86)  @|ziUg 22 & z|yUayz & CUC —zgcon zlzilg e & zily U 2t & 22|p2Ue, 2 &
ylyrUa, y2 & zlz Ua 22 & CUC,
where d; # d2 and 91,92, 21, 22 are new
(Mcu8e) g|ley Ugze & z|t & CUC —gpcon zlzilaze & 11 [t/d:l & zp|tfd:ir & CUC

where 1 is not a bifurcation

Figure 2: Simplification Rules

is limited, the contexts associated to variables can not be  over their respective variants. We eventually get:

arbitrarily specific and hence, this process must terminate. \f
zolf: z
Toalgres/dd,

wolh : z, ’
A P {l
ro, { x|z a2y, ! |1 vr/did,

ylyi Ua zr,
z|zt Ug 2,

4.3  An Example

s Cons

Dne to lack of space, our example can not demonstrate all
capabilities of the formalism, but will concentrate on the
treatment of disjunction and the support of structure shar-
ing between different disjuncts. Assume as initial feature
term f: (x Mg :tg)Mh: ((xlqy)e: tr) where tg and
t; might be themselves complex. Translation to context-

zelt i xr/dir,

Although the resulting description contains contexted vari-
ables which refer to variants of z5 and 7, we do not have to
introduce bifurcations for these variables. Hence the infor-

unique form will produce the description (zo, {zolf : (Mg :
te) b ((z/d:1Ug y/d:7) T4 2 ¢7)}, Cony) where i and
t7 might contain contexted variables if necessary. Partial
normalization then produces

zolf 1z, 2lg: za, za|tt
zo, < o4 7|z/d TUgy/dir, “SUG 5 Cong
zolh : =z xrity
zlt:zg,
where the further decomposition of the constraints

zglts, tr|ty need not interest us. Since the bifurca-
tion for z contains contexted variables, it is replaced by
z|z1 Ug zr, zi|z /d: 1, 2}y /d: 7, but the latter two constraints
lead to the introduction of bifurcations also for  and y. Fur-
thermore, the feature constraints on z and z are distributed
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mation contained in constraints on the variables 2 and zy
is not duplicated, although both variables are used within
a disjunction. However, if there would be more information
on the values of the g— or i-features of z, %, or z, for
instance a constraint of the form z/|g : z’, this would lead
to the introduction of a bifurcation for zg, and some parts
of the structure embedded under x¢ would have to be dis-
tributed over the variants of z5. But the unfolding of the
structure below g would be limited to the minimal neces-
sary amount, since those parts of the structure that do not
interact with information known about z’ could make use of
contexted variables.

Informally speaking, if we unify a structure with a disjunc-
tion, only those parts of the structure have to be copied that



interact with the information contained in the disjunction.

4.4 Algorithmic Considerations

One major advantage of our treatment is its similarity with
conventional rewrite systems for feature logic. Since we per-
form only conventional substitution of variables {opposed
to conditional substitution as in [Maxwell/Kaplan 89], see
[Eisele/Dorre 90] for a discussion), our system can be eas-
ily implemented in environments providing term unification
{ProOLOG), or the almost lincar solution of the union/find
problem could be exploited (see e.g. [Ait-Kaci 84]). The only
essential extension we need concerns the treatment of con-
text descriptions. A context description contained in a con-
texted variable is always purely conjunctive. Hence the nec-
gssary operations (comparison with TRUE, locating, adding
or deleting a simple conjunct) can each be implemented by
one simple list operation. In the constraiut expressing in-
consistent contexts (_L[k]), ¥ is a disjunction of the inconsis-
tencies found so far (which themselves arc purely conjunc-
tive). This could be also represented in a list of (purely
conjunctive) contexts. However, the exclusion of irrelevant
constraints z | ¢, where Con(z) is covered by k in L[k}, and
the (final) test if & = TRUE involves a bit more propositional
calculation. Since these tests might occur more often than
the detection of a new inconsistency, it might be worthwile
to use a representation that facilitates the test for entail-
ment. In any case, the implementation can make use of fast
bit-vector operations.

4.5 Maxwell and Kaplan’s Approach

An approach which ours is especially interesting to com-
pare with is the disjunctive constraint satisfaction proce-
dure given in [Maxwell/Kaplan 89], because of the similar
representations involved in the two approaches. They usc
also disjunction names and contexts to represent disjunc-
tive constraints and propose a general transformation pro-
cedure which turns a rewrite system for non-disjunctive con-
straints into one which handles disjunction of constraints
with the use of contexted constraints, having the impli-
cational form (k — ¢), where ¢ is some non-disjunctive
constraint. This is done by replacing every rewrite rule
by its “contexted version”, e.g., ¢1 A pp — 3 is re-
placed by (k1 — ¢1) A (k2 — ¢2) —— (ki A—hy — d1) A
(k2 A~ky =+ d2) A (ki ANka — ¢3), where ki and ke are
variables for context descriptions. There are two severe
efficiency-critical problems if we want to nse the cutcome
of this translation without farther optimization. First, any
rule of the generated form should only apply to a pair of con-
texted constraints whose contexts are compatible, l.e. &k Aks
is not contradictory. But now, since context descriptions
raay include conjunction and negation at any level, this test
itself is an N P-complete problem, which has to be solved
before every application of a rule. The second problem con-
cerns substitution. Consider a rule like z = yA P — D, ,.
"I'he translation produces a rule in which @ is rewritten to
both @ and ®,._., indexed with different context descrip-
tions. Thus, we cannot simply perform a replacement, but
instead, have to make a copy of ® (or at least those parts of ¢
containing y). Unfortunately, this prevents also the efficient
union/find method to be employed for building equivalence
classes for variables instead of actual substitution. All of
these problems arc avolded if we let the context description
of a contexted constraint depend 1mplicitly on the variables
i 1t through the introduction of context-unique variables.
I'rom this point of view, our method can be seen as an op-

timized implementation of the translated rewrite system for
unification in feature logic with sorts and negation.

5 Conclusion

To summarize, we have presented a new unification method
for the full language of feature logic including variables, sorts
and negation which avoids expansion to disjunctive normal
form, if possible. The basic principle is to minimize unnec-
essary interaction of different disjunctions by keeping them
local to those attributes which they specify different values
for through the introduction of disjunction names. With this
treatment we avoid exponential explosion in many practical
cases. A precursor of this algorithm [Dérre/Eisele 89] has
been implemented and is successfully used in a grammar de-
velopment environment. Besides the obvious advantage of
increased efliciency, our compact representation of disjunc-
tive information also facilitates the comparison of alternative
solutions with common parts, which has been proved to be a
very valuable property in our application. Our algorithm is
specified in a completely formalised way as a rewrite system
for which a model-theoretic semantics is given. [t may seem
that there are a lot of rules, but this can be explained by
the following facts: we include a complete reduction from
feature terms (like in Kasper/Rounds logic) to feature de-
scriptions (as used in LI'G); we handle all different types of
constraints, including sorts and negation in one framework;
and our rules only involve few primitive operations for which
simple and fast implementations exist.
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