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Abstract :  The paper deals with the integration of 
intonation algorithms into a concep t - to - speech  

system for German 1). The algorithm for 

computing the stress hierarchy of a sentence 
introduced by Kiparski (1973) and the theory of 
syntactic grouping for intonation patterns 
developed by Bierwisch (1973) have been studied 
extensively, but they have never been implemented 
in a concep t - to - speech  system like the one 
presented here.  We describe the back end of this 
concep t - to - speech  system: The surface generator 
transfers a hierarchical dependency structure of a 
sentence into a phoneme string by traversing it in a 
recurs~ve-descent manner.  Surface structures 
unfold while generation p r o c e e d s ,  which means 
that at no point of the process does the full 
syntactic tree structure exist. As they depend on 
syntactic features, both the indices introduced by 
the Kiparski (degrees of stress) and the Bierwisch 
(indexed border  markers) formalism have to be 
inserted by the generator. Th i s  implies some 
changes to the original algorithms, which are 
demonstrated in this paper. The generator has 
been tested in the domain of an expert system that 
helps to debug electronic circuits. The synthesized 
utterances of the test domain show significant 
improvements over monotonous forms of speech 
produced by systems not making use of intonation 
information. 

1. Introduction 

The goal of the system, a part of which is described 
in this paper, was to synthesize speech utterances 
starting from a conceptual representation of the 
knowledge to be uttered (concept-to-speech 
system). Compared to speech reproduction, our 
approach is far more flexible. In contrast to 
t ex t - to - speech  synthesis (Frenkenberger  et.al. 
1988) on the other hand, our approach allows for 
an easier integration of prosodic elements, as 
syntactic data such as phrases and tree 
dependencies are directly available. 
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Appropriate formalisms for obtaining a basis for 
stress and pitch information were introduced by 
Kiparski (1973), who proposed an algorithm for 
computing a stress hierarchy for a whole sentence, 
and Bierwisch (1973), who showed how to 
determine pitch variation patterns depending on 
the phrasal structure of a sentence. Like Kiparsky's 
stress markers,  the boundary indices introduced by 
Bierwisch can be computed from the syntactic 
structure of the sentence. 

In this respect, concep t - to - speech  contrasts with 
t ex t - to - speech  systems: In t ex t - to -speech  
synthesis - at least for the German language - it is 
virtually impossible to carry out a complete 
syntactic analysis because of the large number of 
ambiguities which can only be resolved at the 
semantic level. Thus, the derivation of prosodic 
information in existing tex t - to -speech  systems is 
based on a very rudimentary syntactic analysis 
which consists in a purely linear segmentation of 
the input sentences (e.g. Kulas & Riihl 1982, 
Zingle 1982, Schnabel 1988, Frenkenberger  et al. 
1988). 

In concep t - to - speech  synthesis, on the other 
hand, we are in a position to exploit the inherently 
available syntactic structure of the given text, so 
that we can apply the formalisms described by 
Bierwisch and Kiparsky. 

Both processes are only theoretically developed 
and have not been fully implemented in a working 
system before. We have integrated these processes 
into the surface generator of our 
concep t - to - speech  system and applied some 
necessary changes and adaptations to them. 

In this paper we concentrate on the computation of 
stress and intonation markers, integrated into the 
surface generation component .  The reader 

interested in the overall structure of the system, an 
application domain and the first phase of 
generation which starts with concepts and produces 

1) This work was supported by the Jubiliiumsfonds der Oesterreichischen Nationalbank, as part of 
project no. 2901. 
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the input structure to the surface generator 
(henceforth 'deep structure') is referred to 
Dorffner,  Trost & Buchberger (1988). 

2. The  Surface  G e n e r a t o r  

The deep structure which forms the input to the 
surface generator consists of a hierarchical 
structure of essentially two building blocks: 
CLAUSEs, which roughly correspond to entire 
sentences and PHRASEs like NPs, PPs or APs (fig. 
1). A PHRASE can be modified by other 

PHRASE 

type noun, adj 

head *lxm*wid . . . .  

mods <phrase>, <clause> I 

feats . . . . .  I 

PHRASE-FEATURES 

det def, indef . . . .  

betont t, nil 

vorfeld t, nil 

p r o n . ,  t, nil ........ 

case e -zero ,  ,., 

num si,ng, plur, 10 . . . .  

Fig. 1 

I_l 

PHRASEs or CLAUSEs, thus forming a 
hierarchical structure for complex utterances 
(Dorffner, Kommenda & Frenkenberger  1988). 

Surface generation now works on this hierarchical 
structure of building blocks and transfers it into a 
surface structure consisting of phonemic strings 
which are subsequently synthesized. Our generator 
differs from the often encountered two-step 
approach - generate the syntactic tree with lexical 
items as its leaves and morphological and other 
features at tached to them, then scan all its leaves 
and synthesize the lexical elements (see e.g. 
McDonald 1983) - in an important way, for 
reasons of efficiency and plausibility. The deep 
structure, as introduced above, was designed so as 
to already correspond to the surface structure of 

the sentence 1), except  for aspects of order  and 

function words. In other words, the (unordered) 
hierarchy of deep structure building blocks is 
isomorphic (after order  has been imposed) to the 
syntactic tree structure of the surface sentence. 
This can be easily achieved in German,  where 

constituent order  is much less strict than in other 

languages, such as English. As a result of this 
property of German,  the position of phrases within 
a sentence is not tied to their functional role and 
thus does not have to be reflected in the deep 
syntactic structure. This design of a deep structure 
as being isomorphic to surface structure implies a 
simplification in the surface generator, compared 
to the two-step approach mentioned above: The 
surface tree does not have to be produced entirely 
before lexical items can be synthesized, but can 
unfold while the hierarchy of building blocks is 
scanned recursively. 

The  process of surface generation is as follows: For 
each CLAUSE or PHRASE, a corresponding 
surface building block (e.g. an NP) is generated, 
depending on their features and lexical heads (fig. 
2). Such a building block contains slots for either 

NP-PP  

prep det 

Lexem <detp> 

modl head modi 

<phrase> Lexem <phra/ 
<clause> <clau~ 

Fig. 2 

pointers to other building blocks or lexical items in 
their correct order. Now each slot can be scanned 
and synthesized (if it contains a lexical item) or 
recursively t reated like the other building blocks 
(Fig.3, Dorffner Kommenda  & Frenkenberger  
1988). 

DS (CLAUSE) 

r ~ c e s ~ - - - -  ] SS .. surface structure 
/ building block eep structure [ 

DS .. deep structure 
/ 

building block 

S ~ pass element 
P A SS. S to next component  

surface structure ~ --~n'tlaesis 

building block ] z, ir~n.me 7 
e.g. DETP 

Fig. 3 

This form of generation process has serious 
consequences on the intended integration of 
intonational information: All syntactic information 

1) Strictly speaking, this differs from a deep structure as defined in Chomsky (1975) 
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is available during the process, but the syntactic 
tree never  exists in its entirety. Fur thermore,  
indices have to be produced (during synthesis of 
lexical items) before the remainder  of the syntactic 

structure has unfolded. At first sight this looks like 
a major  restriction and reduction of available 
information.  As it turns out, however,  the 
approaches  of Kiparski and Bierwisch can both be 
modified so as to fit into this scheme.  An 
interesting s ide-effect  is that synthesis of speech, 
starting :from deep structures, works in a strict 
lef t - to-r ight  manner ,  which seems psychologically 

very plausible. 

3. Insert ion of  Kiparski Stress Markers 

Kiparski (1973) introduced two rules for 
computing stress markers  based on a syntactic tree: 

(1) (a) t t ead  stress rule: 

the first ( lef t -most)  node keeps its index, 
all others are incremented by 1 

(b) Tail stress rule: 

the last (right-most) node keeps its index, 
all others are incremented by 1 

The algorithm works as follows: 

(2) -ass ign the index 1 to each stressable lexical 

i tem 
- s c a n  the tree bot tom-up and apply rule (]a) 

or ( lb )  to each significant node 

This algorithm works strictly b o t t o m - u p  and thus 
requires the entire syntactic tree. As a result, it 
cannot  be integrated into our generator in this 
form. It is, however, possible to rewrite the 
algorithm so that it works top-down and 
depth-f i rs t  so as to fit into the generation scheme 
described above. The new algorithm is the 
following: 

O)  Introduce a pair of  indices and maintain it as 
follows while scanning the tree top down. At the 
root, start with the pair (1 1). 

- at each significant node that has at least two 
significant successor nodes, do the following, 

given the index pair (n m): 
- with head stress rule: 

assign the pair (n m+l)  to the first successor 
assign the pair (n+m 1) to all the others 

- with tail stress rule: 
assign the pair (n re+l) to the last successor 

assign the pair (n+m 1) to all the others 
- at the leaves of  the tree (= lexical entry), with 

assigned pair (n m): 
- n is the Kiparski marker for the lexical item 

If one considers the preferred successor (head or 
tail, depending on the rule) as the winner of the 
rule and all others as losers, algorithm (3) can be 

interpreted as follows: The  second index of a pair 
(m) counts how often a node is on the winning 
side. All losers have to increment  their marker  by 
that amount .  Thus, at each decision, the winner 

keeps its marke r  (n), while the markers  of all the 
others have to be increased by m (n+m). As there 
can be only one leaf that is on the winning side 
each time, it is ensured that only one lexical item 
receives marke r  1. 

A similar algorithm could be applied to yield the 
stress pat tern within complex words (which are 
quite numerous  in German) .  However,  as the 
lexicon of the generator contains morphemes  and 

complex lexernes with pointers to each morpheme,  
a decision about stress within a word can be stored 
lexically and no algorithmic t reatment  is necessary. 
A syllable now receives a Kiparski marker  if 

- it is in a stressable morpheme (lexical feature)  

- it is marked by the lexical entry o f  the (possibly 

complex) word A N D  
- algorithm (3) has assigned an index pair to the 

lexical entry 

The so computed  marker  is inserted into the 
phonemic  string during the morphologic synthesis 
of the word. 

4. Insert ion of  Bierwisch Boundary  Indices 

Bierwisch (1973) suggests inserting a marker  at 
each word boundary  to express how many 
significant nodes dominate both words involved. 
His algorithm was designed in a bo t tom-up  
fashion. We show again that it can be formulated 
top -down (as required in our system): 

(4) Assign an index to each node. At the root, 
start with 1. For each node with index i 

for  each successor do, left to right: 
- i f  the successor is a lexical item, synthesize it 

and append i as boundary marker 

- i f  the successor is a significant node, assign 
index i+ l 

- otherwise assign index i 
when all nodes on that level have been processed, 
- overwrite the index that was written last with i 

The problem that a lef t - to-r ight  process cannot  
know whether the following word is on the same 
level in the tree is solved by permitting to overwrite 
a marker  already written. 

5. Acoust ic  Real izat ion of Prosodic  Patterns 

Starting from the above stress and boundary 
markers ,  the prosodic structure of a sentence is 
derived by applying a phonological rule set. In 
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particular, some of the previously computed 
boundaries are deleted, others receive a pause 
marker. Furthermore, the resulting phrases are 
provided with an intonation contour, which, 
according to Bierwisch (1973), is specified in terms 
of so-called SON values. In a subsequent phonetic 
component the phrasal structure and the SON 
values are exploited to generate the acoustic 
correlates of the prosodic information, in 
particular, the duration of phonetic segments and 
pauses and the pitch values for all voiced phones. 

6. An Example 

An annotated example shall illustrate the process 
of generation. Take the following sentence: 

Betr•gt die Spannung am Kondensator 10 Volt? 
(Is the voltage at the capacitor equal to 10 Volts?) 

The deep structure of the sentence, which is the 
input to the surface generator is depicted in fig.4, 

CLAUSE ] 
lxm: betrag 

lcX~e: SePaznenrUo ng even 

PHRASE 3 
lxm: Kondensator 
case: location 

Fig.4 

the corresponding syntactic tree, which is unfolded 
during generation, in fig.4a. Both structures have 
been simplified. 

sl I, 1,1--.4._1 I 
Betr~igt NP-PP P-PP 

I , ;  , i , i l  i , i , i  
/ I I I I 

die Spannung ] 10 Volt 
NP-PP 

I / I  I\l\ I 
am Kondensator 

Fig.4a 

Each building block in the dependency structure 
(to the left) has a feature case which indicates the 
conceptual role of the element (adapted from 

Engel 1982). e-zero, for example, refers to the 
nominative phrase or subject of a sentence. The 
structure to the right consists of the surface 
building blocks. Each slot (drawn as a box) 
corresponds to a possible position which can be 
filled with a lexical item or another building block, 
depending on the features of CLAUSE and 
PHRASE. Slots that remain empty are ignored 
during synthesis. One can see in this example that 
the tree of CLAUSEs and PHRASEs has a 
corresponding isomorphic tree of S and NP-PPs 
(there are other surface elements like AP, as well), 
with the exception that in the former ca,;e there is 
no order information yet. This illustrates the above 
mentioned isomorphism between deep and surface 
structure. 

Generation starts at the root of the deep structure, 
the CLAUSE. A Kiparski pair (1 1) and a 
Bierwisch index 1 are assigned, The corresponding 
surface building block, S, is generated, filled with 
the lexical item betrdgt (verb) and with the two 
PHRASES in their correct position (which can be 
determined by looking at the features and using 
some default heuristics as in Engel 1982). The 
structure at this point looks like the one in fig.5: 

S kip: (1 1) bier: 1 

._-1---4---1/1-¢-i 3 
Betrgigt / ~ . _ . . ° .  

J PHRASE 1 [PHRASE 
I lxm: Spannung lxm: Volt | 
I case: e-zero ca.se: e - s e ~  

I 
PHRASE 2 

Ixrn: Kondensator 
case: location 

Fig. 5 

Note that betrgigt can already be synthesized, even 
though the rest of the syntactic structure has not 
unfolded yet. For algorithm (3), actually three 
nodes in Kiparski's notation are comprised in S: 
Satz, S and D. Therefore, for (3) the structure has 
to be viewed as if it looked like the one in fig. 6. 

(3) applied to Satz yields the pair (1+1 1) for 
betrgigt and (1 1+1) for S (tail stress). S has only 
one successor, therefore (3) does not apply. It 
does, however, apply to D, where the pairs (1+2 1) 
and (1 2+1) are computed for the two PHRASEs 
(tail stress). The Bierwisch index is simply 
incremented by 1 for both PHRASEs. Thus the 
string in the lower left of fig.6 can already be 
written (phonemes are given in an ASCII 
representation of IPA notation, stress markers are 
preceded by ", boundary indices by #). 
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Satz kip: (1 1) bier: 1 

S 
Betr~gt 

kip: (2 1) I 

kip: (3 1) r, ~ . ~ ~ 4 . ~ :  (1 2) kip: (1 3) 
bier: 2 / "~ bier :  2 

-VH . . . .  
RASE 1 PHRASE 3 

[ lxm: Spannung lxm: Volt 
[case:  e-zero case: e-seven 

#0 b$ t r '2Egt  #1 

Fig. 6 

The process now recursively continues by 
generating the left PHRASE (Kiparski pair (3 1), 
Bierwisch index 2). As above, a corresponding 
surface building block (NP-PP)  is generated and 
filled with lexical items and the modifying 
PHRASE ("am Kondensator") .  The structure so 
produced is shown in fig.7. 

NP-PP  1 

die Spannung 

kip: (3 2) 

PHRASE 2 
lxm: Kondensator 
case: location _ _ 

"-I kip: (3 1) 
_3 bier: 2 

kip: (4 1) 
bier: 3 

#0 b$tr"2Egt #1 dI #2 Sp"3an=N #2 

Fig. 7 

Algorithm (3) is applied once (tail stress) and 
yields a stress marker  3 for Spannung. The 
Bierwisch index is incremented once again for the 
nested PHRASE 2 (note that the Kiparski pair for 
that PHRASE is the same as for a loser although it 
is behind the 'tail'. Kiparski, in his original article, 
did not mention pos t -head  modifiers). This 
PHRASE will subsequently be generated 
accordingly. The lower right of fig. 7 shows the 
result at this stage. The determiner  die is not a 
stressable item and therefore does not receive a 
stress :marker. The noun, on the other hand, is 

provided with the marker  3. 

After the final lexical item of PHRASE 2, 
Kondensator, a boundary marker  3 will be written. 
Now the last part of (4) comes to bear. As it is the 
end of the phrase, it is overwritten by the marker  
of the dominating phrase (NP-PP 1), 2. It is also 

the end of NP-.PP 1, so it is finally overwritten by 
the marker  assigned to S, which is 1. The output at 
this stage is the following: 

#0 b$tr"2Egt  #1 dl #2 Sp"3an=N #2 

Ham #3 k0nd$ns"4Ator  #1 

After that, PHRASE 3 - the next one attached to S 
- is generated, in an analogous fashion. 

7. Discussion and Conclusion 

The experiences with the described generator have 
shown thai: synthesis of German utterances in a 
concep t - to - speech  system is possible while both 
synthesizing intonation patterns using syntactic 
information and maintaining the efficient process 
structure of the generator designed for the specifics 
of the German language. The assumptions under 
which it was applied are a single-sentence system 
without contextual or pragmatic information. 
Problems rooted in the lack of such information 
have therefore not been solved. The speech 
produced this way shows considerable 
improvement over monotonous versions or versions 
which cannot  make full use of syntactic 
information. Furthermore,  the approach can easily 
be extended to include additional aspects of 
intonation such as emphasis of elements over 

others. 

Despite the success of the system described in this 
paper, some limitations have been discovered. In 
the test domain long sentences with complex and 
multiply nested phrases were quite frequent. Some 
of them included pos t -head  modifiers such as 
"rechts unten" (= "to the lower right"), in additon 
to other modifiers like several adjectives. The 
algorithm by Bierwisch produced boundary 
markers between the beginning and the end of 
"rechts unten" that were only slightly greater than 
the surrounding ones. Synthesis of the utterance, 
however, revealed that the modifier was spoken 
with an unnaturally high pitch and a pause that was 
too short. ]Manually altering the indices to lower 
values, which would mean that "rechts unten" is a 
constituent on sentence level rather than a noun 
modifier, lead to better results. Thus, the 
top-down scheme of the algorithm would have to 
be broken in this case. 

Future work will be required to discover other 
limitations and to adapt the process to overcome 
them. 
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