
Semantic Abstraction and Anaphora

Mark Johnson

Brown University

Martin Kay

Xerox Pale Alto Research Center and Stanford University

Abstract

This paper describes a way of expressing syn-
tactic rules that ~kssociate semantic formulae
with strings, but in a manner thai is inde-
pendent of the syntactic details of these for-

mulac. In particular we show how the same

rules construct predicate argument formulae
in the style of Montague grammar[131, rap_

resentations reminiscent of situation seman-

tics(Barwise and Perry 121) and of the event
logic of Davidson [5], or representations in-
spired by the discourse representations pro-
posed by Kamp [191. The idea is that seman-
tic representations are specilied indirectly us-
ing semantic construction operators, which en-
force an abstraction barrier between the gram-

mar and the semantic representations them-

selves. First we present a simple grammar
which is compatible with the three different

sets of constructors for the three formalisms.
We then extend the grammar to provide one
treatment that accounts for quantilier raising in
the three different semantic formalisms

Introduction

Grammars specifying the relationship between

strings and semantic representations often have
details of these representations embedded in

them. We show how grammar rules can be
wrilten in a form which, by abstracting away

from details of tim semantic representation, ac-

quires greater modularity and hence theoretical

perspicuity and practical robustness. In partic-

ular, we believe that the approach helps clarify

the relationship between apparently disparate
theories of semantic representation. 1. The basis
of our proposal is that each grammatical rule
should contain, or be paired with, an expres-

sion written in terms el' sem~mtic construction
operators. Different operations can be associ-

ated with these operators and, depending on

the set in force at a given time, the effect of
interpreting the expression will be to construct

a representation in one semantic formalism or
another. The set of operators contains me,n-

bets corresponding to such notions as compo-
sitzon, conjttlwtion, etc. The set is small and in-
dependent of the semantic formalism. The op-
erations are associated with the operators inde-

pendently of the grammar and they determine

the form of the semantic representation.

We present three different sets of seman-
tic constructors here, which we have dubbed

the predicate-logic, the sets-of-infons and the
discourse-representatio,z constructors. We be-
gin by introducing the constructors used in this

paper: no claims are made for their general
sufficiency. Not all of the constructors are rel-

evant to all semantic theories and those not
needed for a particular one are given degen-
crate delinitions. The simplest kind of con-

struction operator is the identity function which

maps every input i onto just one output, namely

i.

The operators are the following:

1 The kind of separmion between the g r a n m a r and the details of
the semanlic representation proposed here also aplxmrs in the examples
of Pcreira and Shiebcr[12] and in I.cxicaI-Functional Grammar (see
[6]). Our use of different scls of semantic constructors with a single
g r a m m a r is IR)VCI, aS fa[aS W e are awarg.

1 17

emterr~aI(S, EF) relates a semantic represen-
tation S and an external form EF, e.g. a
representation that constitutes the parscr's
output. The internal and cxtemal forms are
distinguished because the (internal) repre-
sentation o c will, in general, contain infor-

mation that plays a role in the process of an-
alyzing a sentence (e.g. for anaphora track-

ing) but that is not part of the logical form
(EF) of the sentence as a whole.

atom(S, I'rop) specifies that the content of
the (internal) semantic representation, S, is
the atomic proposition l)rop. This is used
to construct the semantic values for lexical

entries, for example.

co~jo~:~z(S1, $2, $12) relates three semantic
representations. It specifies that the content
of 5'12 is constructed by conjoining 5'1 and
5'2. This operator occurs crucially in the
semantics of indefinite determiners.

7~etv_iT~de,~(S, i) specifics that the content of
5" is I , a referential index for a non-anaphoric
NP. The form of a referential index is de-
fined by the particular semantic theory.

accessible_iTzdez(S, I) specifies that the con-
tent of o e is a referential index i of some
noun phrase that is a potential antecedent of
an anaphor. Constraints on accessible in-
dices are defined by the particular semantic
theory.

While the primitives discussed in this paper
have relatively simple definitions, in other
more elaborate theories they may involve non-

trivial computation. For example, the com-
pose primitive might impose certain discourse-
consistency requirements arising from a more
restrictive theory of discourse structure than
those described here.

A key insight of the Discourse Repre-
sentation and Situation Semantics accounts,
but originating with Karttunen[10], is that
anaphoric and quantificational domains coin-

cide. Thus, in (1), it can be co-indexed with a
donkey only if a donkey is interpreted as hav-

ing wide-scope.

(1) Every man kicked a donkey. It
developed blue bumps.

The relationship between these sentences is one
of (semantic) precedence, and we call the op-
erator that relates the corresponding semantic

representations compose:

corr~pose(S1, $2,5'12) specifies that the infor-
mation in the representation $12 is the in-
formation in $1 followed by the informa-

tion in $2. Compose defines an ordering of
semantic operations that particular semantic
theories may or may not be sensitive to. (In
this paper, the Montague constructors are not
sensitive to this ordering, while the other two
types of semantic representations are).

When a donkey is interpreted as having nar-
row scope with respect to every man in (1),
the reference marker introduced by a donkey
is located in a context subordinate to the sen-
tence as a whole, and hence not accessible to
anaphors in the following discourse. To pro-
vide for this, we introduce the following op-
erator:

sttbordiTzate(S, ,5'ztb ?f an~e, S ztb) specifies that
S contains an anaphorically and quantili-
cationally subordinate representation Sub,
which has the " n a m e " Sz~bName. The
S~LbName would be distinguished from
Sub in non-extensional theories of meaning,
where a meaning is distinguished from its
propositional content (say), as in the sets-
of-infons representation described below.

We turn now to the grammar without
quantifier-raising. We formulate bolh the
grammar and the semantic constructors in pure

Prolog (exploiting the syntactic sugar of Def-
inite Clause Grammar (Pereira and Shieber
[121, pp. 70-79)) because it is expressive
enough for our purposes and is widely used
in work of this kind(sec, inter alia Colmerauer
[31, Abramson and Dahl [l l and [11]).

A Grammar using Semantic
Constructors

The grammar generates simple transitive
clauses and subject-relative clauses that do not

18 2

involve long-distance dependencies, it is based
on the Montague-style grammars presented in
Chapter 4 of Pereira and Shieber[12], and
the treatments of agreement, Wh-dependencies,
etc., presented there could also be incorporated
without difficulty.

* Operators: *

* for lambda abstracts, *

* = > for implJcaLion. *

• op(950, xfy, ^) .

:- op(300, xfx, :::>).

parse(StLr] ng,Ext;Sem) '-

cxt.erna] (IntSem, ExtSem) ,

s (]ntSem, StrJng, []) .

* The grammar *

s(S) --> np(VP^S), vp(VP) .

np(NP) --> det (NI^NP), nl(N]) .

nl(N) --> rl(N) .

n] (X~S) --> n(X^S]), rc{X~S2),

{conjoin (SI,S2,S) } .

vp('(^S) --> v(X^VP), np(VP^S) .

rc (VP) --> [that] , vp (VP) .

v(X"Y^S) --> [Verb],

{verb (Verb, X^Y^Pred) ,

atom(Pred, S) } .

n(X"S) --> [Noun],

{noun (Noun,X^Pred) ,

new index(X, SI) ,

atom(Pred, $2) ,

compose(S].,S2, S) } .

det ((X^Res) ^ (X^Scope) ~S) - > [])et] ,

{determJnor(1)et, Res~Scope^S) } .

np((X^SI)^S) --> [Pronoun],

{pronoun (I?ronoun) ,

accessible index (X, S2) ,

compose (S] , S2, S) }.

* The lexicon *

pronoun(he) .

pronoun(she) .

pronoun (him) .

pronoun (her) .

pronoun(it) .

verb(likes, X^Y-likes (X,Y)) .

verb (saw, X^Y^see(X,Y)) .

verb(beats, X^Y^beat(X,Y)) .

verb(owns, X^Y^own(X,Y) .

noun (woman, X^woman(X)) .

noun (man, X^man (X)) .

noun (donkey, X^donkey(X)) .

determiner (a, Res^Scope^S) :-

conjoin(Res, Scope, S) .

determiner (every,

Res0^Scope~S) :-

compose(S], $2, S) ,

subordinate(Res, ResName, Sl) ,

compose(Res0, Resl, Res) ,

subordinate (Scope, ScopeName, Resl) ,

atom(ResName > ScopeName, $2) .

Most of the grammar should be familiar, even
if it is somewhat more pedantically expressed
than is usual. Following Pereira and Shieber
(who were in turn inspired by Montague), VP
and N incomings are represented by terms of
the form x ^ S, where X represents a referential
index and S represents an S meaning. NP
meanings are represented by terms of the form
v p ^ S (or equivalently, (x ^ s 0) ^ S) , where
vp represents a VP meaning, x a referential
index, and S and S0 represent S meanings.

All manipulation of semantic values is per-
tbrmed by constructor primitives, rather than
by explicit conslruction of terms. For exam-
ple, the N1 production that introduces relative-
clauses invokes c o n j o i n explicitly to conjoin
the semantic values of the N and the relative
clause to yield the semantic value of the N I.
The sharing of the referential index x bctween
the N and the VP is performed in the gram-
mar alone, since it is a syntactic rather than
semantic property of the construction.

The semantic component of the production
that introduces lexical nouns has two parts. SO
represents the atomic predicate P c e d associ-
ated with the Icxical meaning of the noun. $2
represents the fact that x is a (possibly new)
referential index. The component S of the se-
mantic value associated with the noun contains
all of the information in SO and S2.

The production introducing (lexical) pro-
nouns requires that the referential index x of
the pronoun be accessible in S0, and speci-
fies that the S component is the composition
of S0 and the S0 component of the VP mean-
ing. (Recall that the semantic representations
of pronouns, like all NP's, are terms of the

3 19

form VP^S, so the SO is a component of the
meaning of the VP or V phrase that this pro-

noun is an argument of).

Undoubtedly the most complex component
of the grammar is the lexical entry for every.
Because the structure of the lexical entries for
all anaphoric scope-inducing quantifiers will be
similar to the entry for every, wE explain it in
some detail.

The quantification induced by the deter-
miner every is described in terms of the de-
ternaincr's restriction, which defines the enti-

ties that the quantification ranges over, and its
scope, the component of the expression quart-
tiffed over. (2) indicates the components of the
utterance corresponding to the restriction and
the scope of the quantifier every in the absence
of quantilier-raising.

(2) Every man that saw a donkey kicked it.

Restrictor Scope

The grammars presented here identify the re-

stricter and the scope of a determiner in the
syntax; e.g. quantifier-raising arises from the
grammar permitting multiple a.ssignmcnts of
components of the utterance to the restrictions
and scopes of the determiners of that utterance.

The semantic value associated with lex-
ical entry for a determiner in the gram-

mars presented here is a term of the form
Res~Scol)e~Sentence, where lees is the seman-
tic value associated with the restrictor and
Scope is the semantic value associated with
the scope. A grammar directly constructing
predicate-logic style semantic representations
would assign the lexical entry in (3) to the de-
terminer every, where '==>' is interpreted as

tire implication operator in semantic represen-
tations (see Pcreira and Shieber [1211).

(3) determiner(every,
R es ̂ Scope 7R es=: >Scope)).

Tiffs 1cxical entry does not suffice for our pur-

poses, since it provides no information about

the relative anaphoric scope relationships be-
tween the restrictor, the scope, and that portion

of the utterance external to the quantificational
expression as a whole.

Anaphors in opaque quantificational expres-
sions can refer to entities superordinate to
the quantificational expression, but in general
anaphors outside of an opaque quantificational
expression cannot refer to entities introduced in
either the restriction or scope of the quantili-
cational expression 2. Anaphors in the scope of

an opaque quantificational expression can refer
to entities introduced in the restriction of that

expression (e.g. as in (3) above), but anaphors
in the restriction cannot refer to entities intro-

duced in the scope.

The compose and subordinate predi-

cates in the lexical entry for every in the gram-
mar presented above express subordination re-
lationships that describe the behavior of opaque
determiners. The semantic representation S is
the composition of S1 and $2, where S2 is

the semantic atom ResName = - > S c o p e -
Name. Re s is subordinate to S1, and is itself

the composition of ResO and Resl, where
R e s 0 is the semantic representation of the re-
stricter. S c o p e is subordinate to R e s l , and
is the semantic representation of the scope.
The diagram on the following page sketches
the relationship between the various semantic
entities mentioned in the lexical entry for ev-
ery. Subordination relationships are depicted

by vertical lines (the name of the subordinate
space is written alongside the line), and compo-
sition relationships are indicated by V-shaped
diagonals.

T h e Pred ica te -Log ic C o n s t r u c t o r s

These constructors build a predicate-logic
type of semantic reprcscntation in a fairly
transparent fashion. Pronouns are treated as

free variables, there are no constraints on
their distribution, and anaphoric binding is not

9" There are exceptions to this: for example, anaphors can refer
to proper names inlJoduced in the restrictor or scoix~ of opaque de-
tetvniners. Within the f ramework described below, this curl be trealed
by adding a new semantic construction operator a d d t o p l e v e l ,
which adds a referential irxtex to the mos t superordinatc level

20 4

Scope

ScopeName

Res0 Resl

Res

ResName ==> ScopeName

$1 $2

S

treated. Thus the definitions of the constructors
new index, accessible index, com-

pose and subordinate have degenerate

definitions.

A property is identical with the term repro-
senting it:
a t o m (P r o p , P r o p) .

The conjunction of P and Q is represented by
the term P &Q.

c o n j o i n (p, P,PSQ) .

There are no constraints on new indices.

n e w i n d e x (,) .

Th(-re are no constraints on accessible indices.
accessible index (,) .

Sequencing is unimportant.

c o m p o s e (P , P , P) .

A Subordinate space can be introduced freely.
s u b o r d i n a t e (, S u b , S u b) .

Inlemal and external forms are identical.

e x t e r n a l (P , P) .

The grammar described above

predicate-logic constructors yield

such as the following:

2 - p ([a , m a n , o w n s , a , d o n k e y] , S) .

S =: man (X) &donkey (Y) Sown (X, Y)

and the

analyses

2- p([every,man,that,owns,a,donkey,

beats,it],S) .

S =: (man(X)&donkey(Y)&own(X,Y))

==>beat (X,Z)

Roughly this latter form might be interpreted
as: if X is a m~m and Y is a donkey and X

owns Y, then there is a Z such that X beats Z.

The Sets-of-In fens Constructors

The constructors for the sets-of-infons and
the discourse-representation both constrain
anaphora by requiring that the referential in-

dices provided by the a c c e s s i b l e i n d e x
constructor be indices that were introduced

by new i n d e x in some earlier representation
(where precedence is defined by the c o m p o s e

constmclor). This entails that tile internal form

of these semantic representations encode infor-

mation about preceding representations. Both
constructors thread this information using the

difference-list technique described in [8].

The primitive element of tile sets-of-infons
representation is inspired by the infons of Situ-
ation Semantics [21. We represent an infon as
a term of the form S i t : P, which means that
p is true in the situation S i t . For example,

Kim's sleeping in situation sO is represented
by s 0 : s l e e p (k i m) . For simplicity arbitrar-

ily named constants (like the gensyms of Lisp)

are used as the names of situations in this rep-

resentation: this has the disadvantage that the

definitions o1 the external and subordinate con-

strutters are not declaratively specified. 3

The internal form of a sets of i@)ns rep-
resentation has three components. We repre-
sent them in Prolog with a term of the form
@ (s i t s , I n f o n s t n , I n f o n s O u t) . The
first is a stack whose top element is the situa-

tion currently being defined, and whose other
elements are the situations superordinate to this

one (as defined by the s u b o r d i n a t e con-
structor). The second component is the set

of all infons introduced in representations pre-
ceding this one. The infons in this list as-

sociated with the current or a superordinate
situation provide the information needed for

the accessible index constructor. The
third component of the representation is the set

3 All lhat is required is that there is an infinite stock of situation
names, so e.g. integers could have Ixren used as situation names at tile
expense of a slight complication of lhe represenlation's data structures.

5 21

of inRms introduced in preceding representa-

tions with the addition any infons added to the

representation by the semantic representation

constructor. In describing the term @ (S i t s ,

I n f o n I n , I n f o n s O u t) , we use the names

T n f o n s I n and I n f o n s O u t to stress the fact

that they constitute a difference list.
• - op (900, xfx, :) .

atom(]), @([SitI_],Is, [(Sit:P)IIs])).

compose(@ (Ss, I0s,Ils) ,

@ (Ss, Ils, I2s) ,

@ (Ss, I0s, I2s)) .

conjoin(II, I2, I12) "-

compose(Ii, I2, I12) .

subordinate (@ ([Sit ISits] , 10s,Ils) ,

Sit, @ (Sits, I0s, Ils)) :-

gensym (Sit) .

new index (Index, S) • -

atom(i(Index),S) .

accessible index (Index,@ (Ss, Is, Is)) :-

member (Sit : i (Index) ,Is),

member (Sit,Ss) .

external(@([Sit], [], Is), Sit:Is) :-

gensym(Sit) .

The atom constructor introduces a new

atomic proposition p as an infon S i t : P ,
where S i t is the situation currently being

constructed. Notice that I n f o n s O u t is the

same as I n f o n s I n but for the addition of
(Sit:P).

The compose constructor threads the dif-

ference list of infons through both of the rep-

resentations, so the composed representation

contains all of the infons added to the sets of

infons composed. The c o n j o i n constructor

is equivalent to the c o m p o s e constructor.

The s u b o r d i n a t e constructor introduces

a new subordinate representation by pushing a

new situation name Sit on to the list of (now

superordinate) situations. The difference list

of infons is threaded through the subordinate

representation so that any infons added to it

will appear in the superordinate representation

as well.

The new i n d e x constructor adds an atom

of the form i (I n d e x) to the representation

S: no constraints are placed on I n d e x .

The a c c e s s i b l e i n d e x 4 constructor is

,1 rl'he predicate m e m b e r used here, and elsewhere in this paper,
Ires its standard logical definition: viz: m e m b e r (X, [X I]) •
m e m b e r (X , { , L]) : - m e m b e r (X , L) .]f this definkion is

satisfied for a referential index I n d e x if
I n d e x was introduced by new i n d e x to

I

a preceding non-subordinate representation,

i.e. if the context contains an infon

S i t : i (I n d e x) , where S i t is the current or

a superordinate situation name.

The external (Internal, Exter-

nal) predicate initializes I n t e r n a l to have

no superordinate situations and no preceding
context, and returns the list of infons associated

with this Internal representation as its external

form.

When these constnmtors are used with the

grammar defined above, the following analyses

are obtained:

2- p ([a, man, owns, a, donkey] , S) .

S = sO: [S0:own(X,Y),s0:i(Y),

sO :donkey(Y),S0:i(X) , sO :man(X)]

This can be paraphrased as: Situation S0 con-

tains individuals X and Y; in .sO X is a man,
Y is a donkey and X owns Y.

2- p([every, man, owns,a,donkey],S) .

S = s0: [S0:sl==>s2,S2:own(X,Y) ,

s2:i(Y) ,s2:donkey(Y),

sl:i(X) ,Sl:man(X)]

This can be paraphrased as: Situation .sO con-

tains the fact that all situations of type s l are

also situations of type s2. A situation is of type

s l if it contains individuals X and Y, and X

is a man and Y is a donkey. A situation is of

type s2 if X owns Y.

?- p([every, man, that, owns,a,donkey,

beats, it] ,S) .

S = s0: [s0:sl==>s2, s2 :beat (X,Y) ,

sl :own (X, Y) ,sl:i (Y) , sl:donkey(Y),

sl:i(X),sl:man(X)]

This can be paraphrased as: Situation s0

contains the fact that all situations of type ,sl

are also situations of type s2. A situation is of

type s l if it contains individuals X and Y, X

used with the g rammars and constructors given in this paper, the SLD
select.ion rule of Prolog may lead to hen-termination. It is in general
necessary to delay the evaluation of the m e m b e r predicate uotil its
second argument is instantiated, which can tx: done using the f r e e z e
primitive of Prolog I[.

22 6

is a m a n , Y is a d o n k e y and X owns Y.

s i t ua t i on is o f t y p e a2 i f X bea t s y . 5

The Discourse-Representation
Constructors

A

The representations built by these construc-

tors are inspired by the "box representations"
of Kamp's (1981) Discourse Representation

Theory [9]. A discourse representation " b o x "

is represented by the list of items that con-

stitute its contents. A representation is a
difference-pair of the lists of the representa-
tions of the currently open boxes (i.e. the cur-

rent box and all superordinate boxes), as in
Johnson and Klein [81. In Prolog, we use the

binary ' - ' operator to separate the two mem-
bers os the pair.

atom(P, [BIBs]-[[PIB] lBs]).

cornpose(B0s-Bls, BIs-B2s, B0s-B2s) .

conjoin(Pl, P2, P) "-

compose(Pl, P2, P) .

subordinate([[] B0s]-[BIBIs],

B, B0s-Bls) .

new index(Index C) "-

atom(i(Index) ,C) .

accessible index(Index, Bs Bs) "-

member (B,Bs) , member (i (Index) ,B) .

external([[]]-IS], S) .

T h e atom c o n s t r u c t o r i n t r o d u c e s a now

a t o m i c p r o p o s i t i o n p,by a d d i n g it to the cur -

rent box, i.e. the first element of the list of

ot)en boxes.

The compose constructor threads the dif-
ference list representing the open boxes through

both compose representations of the items be-
ing composed in the same way that the com-
pose constructor of the sets-of-infons repre-
senlations does. The c o n j o i n constructor is

equivalent to the c o m p o s e constructor.

The s u b o r d i n a t e constructor introduces
an empty subordinate box onto the list of' cur-

5 The g rammar and file sels of infons constructors also gene.ralc
an additional reading in which tile man that owns the donkey beats
himself; i.e. it is taken as anaphorically dependent on e v e r y mare

Simple extensions to tim g rammar (e.g. requiring tile index of a
pronoun to differ from the index of all c -commanding NPs) or Ihe
semantics (e.g. requiring the gender of tile pronoun to agree with its
antecedent 's gender) would ride out this spurious analysis.

rently open boxes. The " n a m e " B of the sub-
ordinate box is the list of atoms it contains.

The new i n d e x constructor adds an atom
of the form 2 (I n d e x) to the semantic repre-

sentation: no constraints are placed on I n d e x
(as in the sets-of-infons representation).

The a c c e s s i b l e i n d e x constructor is
satisfied by a referential index I n d e x if

I n d e x is introduced by new i n d e x in a

preceding non-subordinate representation, i.e.

if one of the superordinate boxes contains
i (I n d e x) .

The external (Internal, External)

predicate initializes Internal tO have ex-

actly one open box (empty), and returns the
contents of that box as its external form.

With these constructors, the parser yields
the following semantic values for the test sen-
tences .

2- p([a,man,owns,a,donkey], S) .

S = [own(X,Y) ,donkey(Y) ,i(Y ,

man(X) , i(X)]

This r e p r e s e n t a t i o n is t r e e ju s t m case there

are two individuals X a id }i, X is a man and

Y is a donkey, and X owns }I.

?- p([every,man,owns,a,donkey],S) .

S = [[man (X) , i(X)] ==> [own (X, Y) ,

donkey(Y) ,i(Y)]]

This r e p r e s e n t a t i o n is t rue j u s t in ca se for al l

individuals X such that X is a man there is an
individual Y such that Y is a donkey and X
owns Y.

2 - p ([e v e r y , man, t h a t , owns , a , d o n k e y ,

b e a t s , i t] , S) .

S = [[own (X, Y) , d o n k e y (Y) , i (Y) , man (X) ,

i (X)] ==> [b e a t (X, Y)]]

This representation is true just in case for all
individuals X and Y such that X is a man and
Y a donkey and X owns Y, it is also true that
X beats Y.

E x t e n d i n g t h e G r a m m a r to h a n d l e

Quantifier-Raising

In this section we sketch a syntactic ac-
count of quantifier-raising inspired by the im-

plementation of Cooper-storage (Cooper [41)

7 23

presented in Pereira and Shieber [12], to which

we refer the reader for details. Each syntactic

constituent is associated with a list of quanti-
tiers that are " in storage" (this corresponds in
an LF-movement account of quantifier-scope to
being raised out of this constituent). Quantiti-

cational determiners add items to the quantifier
store, and at S nodes, quantifiers are removed

from the store and applied to the semantic

representation. The quantitier-store of nodes

at which quantifiers are neither added nor re-

moved is the shuffle of the quantifier-stores of
its children. 6. The grammar presented below

is simply the grammar presented above with

the addition of quantifier-storage. The lexical

entries for this grammar are the same as the
above, and so are not listed here.
q(String, Analysis) "-

external(S, Analysis),

s(S, [], String, []) .

s(S,Qs) --> np(VP'SI,Qnp), vp(VP,Qvp),

(shuffle(Qnp,Qvp,Qls) ,

apply_some (Qls, Sl, Qs, S) }.

np(NP,Qnp) --> det(Nl'NP,Qdet),

nl (NI,Qnl),

{append(Qdet,Qnl,Qnp) } .

nl(N,Qn) --> n(N,Qn) .

nl (X^S,Qnl) --> n(X'Sl,Qn) ,

rc(X^Sl,Qrc),

(conjoin (Sl, $2, S) ,

shuffle(Qn, Qrc,Qnl) } .

vp(X'S,Qvp) --> v(X*VP,Qv) ,

np (vP ̂ S, Qnp) ,

{shuffle(Qv,Qnp,Qvp) } .

rc(X^Sl,Qrc) --> [that], vp(X^Si,Qvp),

{apply_some(Qvp, Si,Qrc,S2) } .

np((X^Sl) ^S, []) --> [Pronoun],

{pronoun (Pronoun) ,

accessible index(X, Sl),

compose(Sl, Sl,S) } .

v(X'Y^S, []) --> [Verb],

[verb (Verb,X^Y^Pred) ,

atom(Pred, S) }.

n(X^S, []) --> [Noun],

{ noun (Noun, X^Pred) ,

6 Treating the quantifier-store as a syntactic feature can express
many properties of LF-movement accounts, such as quantificational
islandhood, etc., without the explicit construction of additional repre-
sentations

compose(Sl, Sl,S) ,

atom (Pred, SI) ,

new index(X,Sl) } .

det ((X^Res) ^ (X'Scope) "Scope,

[Quant]) --> [Det] ,

{determiner (Det, Res^Quant) } .

The proposition shuffle (LI, LI, L3)

is true just in case L3 is a list that can be seen
as having been constructed in a sequence of

steps in each of which the next available item

is taken from either L1 or L2 and added to the

end. So long as items remain on both L1 and

L2, it is immaterial which of them supplies the
next member of L3. What is important is that

the members of L1 and L2 should all be on L3,
and in their original order. This relationship is

assured by the following Prolog clauses:

shuffle(t], [], []) .

shuffle([QIQls],Q2s, [QIQ3s]) "-

shuffle(Qls,Qls,Q3s) .

shuffle(Qls, [QIQ2s], [QIQ3s]) "-

shuffle(Qls,Qls,Q3s) .

The first clause asserts that the proposition

is true of three empty lists, and serves to ter-

minate the recursion implicit in the other two.
The second clause says that, if Q2s and Q3s
am suffixes of a pair of lists to be shuftled, and

that shuffling them gives Q l s , then the item
that precedes Q1 s in the final result carl come
from the first list, that is, it can be the item

preceding O l s . The third clause says that, al-

ternatively, the item preceding Q l s can come
from the second list.

The grammar also makes use of the predicate

apply_some (Quant s, OldSemant ic-

Value, UnappliedQuant s, NewSe-

manticValue)

which is true if applying zero or more quanti-
tiers fi'om the beginning of the list Quants to a
given OldSemanticValue yields NewSemantic-
Value and leaves a suffix of that list of quanti-
tiers, namely UnappliedQuants still unapplied.

It can be defined with the following pair of

clauses, the first of which terminates the se-

quence of applications and the second of which

applies the next quantifier in sequence.

24 8

apply_some(Qs,P,Qs,P) .

apply_some([P^QpIQs],P,QIs,PI) :-

apply some(Qs,Qp,Qls, Pl) .

']'he new grammar can be used with the
three different semantic constructors presented
above. Using the Predicate-Logic constructors,
it yields results like the following:
2 - q ([a , m a n , o w n s , a , d o n k e y] , S) .

S : d o n k e y (Y) &man (X) S o w n (X, Y) ;

S =: m a n (X) & d o n k e y (Y) S o w n (X , Y)

This example has two (semantically-equiva-

lenl) representations corresponding to the two

scope possibilities for the two existentially
quantified NPs.

2- q ([every, man, owns, a, donkey] , S) .

S :: donkey(Y) & man (X) ==>own (X, Y) ;

S =: man (X) ==> (donkey (Y) &own (X, Y))

In this example the two non-equivalent rep-

resentations correspond to the two different
scope possibilities for the quantified NPs.

These readings paraphrase as: There is a don-
key Y and for each man X, X owns Y and

For each man X there is a donkey I / and X
o w n s V " .

2- q ([every, man, that, owns,

a,donkey,beats,it],S) .

S =: donkey (Y) & (man (X) &own (X, Y))

:=>beat (X,Z) ;

S =: (man(X) &donkey(Y) &own(X,Y))

:=>beat (X, Z) ;

In this example the two non-equivalent

representations correspond to the two differ-
enl scope possibilities for the quanti/ied NPs.

These readings paraphrase as: There is a don-
key Y and for each man X such that X owns

Y it is the case that X beats Y, and "For each

man X and donkey Y such that X owns Y, it

is the case that X beats Y.

Using the sets-of-infons constructors, we get
the following results:

2 - q ([e v e r y , m a n , o w n s , a , d o n k e y] , S) .

S :-: s O : [s 0 : s l = = > s 2 , s 2 : o w n (X , Y) ,

s l : i (X), s l :man (X), S0 : 2 (Y),
sO :donkey(Y)] ;

S = sO: [s0 : s l==>s2 , s2 :own(X,Y) ,

s 2 : i (Y) , s 2 : d o n k e y (Y) , s l : i (X) ,
sl:man(X)]

The scope possibilities are indicated here by
the situation in which the noun phrases are

interpreted. The first reading displayed cor-

responds to the quantilier-raised interpretation,
which paraphrases as: Situation s0 contains the
individual Y, the fact that Y is a donkey, and
the fact that for all ways of making s l tale, s2
is also true, where s l contains the individual

X and the fact that X is a man, and s2 con-
rains the fact that X owns Y. Since Y is in s(),

under this reading it is a potential matecedent

for ~maphors in for following sentences.

The second reading differs from the first
in that the NP a donkey is interpreted in the

subordinate situation s l instead el" S0. As well
as causing a donkey to be quantilicationally

subordinate to every man, this also makes a
donkey unavailable as a potential antecedent

for anaphors in following sentences.

We can therefore account for the fact that
under normal intonation a donkey is interpreted

as having wide scope over every man in the
following discourse fiagmcnt (3).

(3) Every man saw a donkey. It had a

bushy tail

We now consider one of the famous "don-
key" sentences:

? - q ([e v e r y , m a n , t h a t , o w n s , a , d o n k e y ,

b e a t s , i t] , S) .

S - s O : [s O : s l = = > s 2 , s 2 : b e a t (X , Y) ,

sl:own(X,Y),sl:i(X),sl:man(X)

sO:i(Y) ,sO:donkey(Y)] ;

S = sO: [sO:sl==>s2,s2:beat(X,Y),

sl:own(X,Y) , sl:i(Y) , sl:donkey Y) ,

sl:i (X) ,sl:man(X)]

The first reading displayed again corresponds
to the quantifier-raiscd interpretation, which

paraphrases as: Situation s0 contains an indi-
vidual Y, and the facts that Y is a donkey and
that every way of making S1 true also makes

$2 tree, where S1 contains the individual X

and the facts that X is a man and X owns Y,
and $2 contains the fact that X beats Y.

9 25

Finally, the discourse-representation con-
structors yield the following:
2- q([every,man,owns,a,donkey],S) .

S = [[i (X) , man (X)] :=> [own (X, Y)] , i (Y) ,

donkey(Y)] S = [[i(X),man(X)]

==> [own (X, Y) , i (Y) , donkey (Y)]]

These representations are direct notational
variants of the two set-of-infons representa-
tions of this sentence given above. The truth
conditions of the first reading correspond to the
wide-scope interpretation of a donkey, and can
be paraphrased as: There is a donkey Y, and
for every man X, X owns !/.

?- q([every, man,that,owns,a,donkey,

beats, it] ,S) .

S = [[own (X, Y) , i (X) ,man(X)]

=:>[beat (X,Y)] ,i(Y) ,donkey(Y)] ;

S = [[own(X,Y),i(Y),donkey(Y),i(X),

man (X)] ==> [beat (X, Y)]]

Again, these representations are direct nota-
tional variants of the two sets-of-infons repre-
sentations of this sentence given above. The
truth conditions of the first reading correspond
to the wide-scope interpretation of a donkey,

and can be paraphrased as: There is a donkey
Y , and for every man X such that X owns Y,
X beats I/.

The same correlation between quantifica-
tional scope and anaphoric scope holds with
these constructors, as expected.

Conclusion

We have worked out a scheme lot comput-
ing the logical lorms of sentences incremen-
tally in the course of parsing them which we
believe achieves an unprecedented level of ab-
straction of the semantic from the syntactic
parts of the grammar. The very incrementality
of the scheme might be used to argue against it.
Given the prevalence of scope ambiguities, the
interests of computational efficiency may be
best served by a scheme that delays all seman-
tic computation until the parsing is complete
so as not to work unnecessarily on phrases that
turn out not to be capable of incorporation in a
complete analysis of the sentence. Hobbs and

Sheiber [7] adopt such a scheme apparently on
the grounds of greater perspicuity. In any case,
the modifications that need to be made to our
scheme are entirely trivial, requiring only the
introduction of a modest amount of symbolic
computation. Basically, the idea is to use oper-
ations which, instead of returning pieces of the
final logical form incrementally and nondeter-
ministically, return expression that will exhibit
this nondeterministic behavior when evaluated
later. The later evaluation will, of course, be as
specified be the detinitions we have given. In
short, we believe that the abstractions we have
created effectively isolate the syntactk" rules
both from the corresponding semantic formal-
ism and from the architecture of the system by
which both of them will be interpreted.

Bibliography

[1] Abramson, H., and Dahl, V. Logic Gram-
mars. Springer Verlag, New York, 1989.

1211 Barwise, J., and Perry, J. Situations and At-
titudes. Bradford Books/MIT Press, Cam-
bridge, Massachusetts, 1983.

[3] Colmerauer, A. An interesting subset of
natural language. In Logic Programming,
K. L. Clark and S.-A. Tarnlund, Eds.
Academic Press, New York, 1982.

[4] Cooper, R. Quantification and Syntactic
Theory, vol. 21 of Synthese Language
Library. D. Reidd, Dordrecht, 1983.

[5] Davidson, D. The logical form of ac-
tion sentences. In The Logic of Decision
and Action, N. Rescher, Ed. University of
Pittsburgh Press, Pittsburgh. Pennsylvania,

1967.

[16] Fenstad, J. E., et al. Situations, Language
and Logic. Reidel, Dordrecht, 1987.

[7] Hobbs, J. R., and Shieber, S. M. An al-
gorithm for generating quantifier scopings.
Computational Linguistics 13, 1-2, 47-63.

[8] Johnson, M., and Klein, E. Discourse,
anaphora and parsing. In Coling 88 (Bonn,
West Germany, 1986).

26 i0

[9] Kamp, H. A theory of truth and semantic
representation. In Formal Methods in the
Study of Language, J. A. G. Groenendijk,
T. M. V. Janssen, and M. B. J. Stokhof,
Eds., vol. 136. Mathematical Centre Tracts,
Amsterdam, 1981, pp. 277-322.

[10]Karttunen, L. Discourse referents. In Syn-
tax and Semantics, 7, J. McCawley, Ed.
Academic Press, New York, 1976, pp. 363-
385.

[ll]McCord, M. C. Focalizers, the scoping
problem, and semantic interpretation rules

in logic grammars. In Logic Programming
and Its At)plications. Ablex, New Jersey,
1986.

[12]Pereira, F. C. N., and Shieber, S. M. Prolog
and Natural Language Analysis, vol. 10
of C.S.L.I. Lecture Notes Series. Chicago
University Press, Chicago, 1987.

[13]Thomason, R. Formal Philosophy. Se-
lected Papers of Richard Montague. Yale
University Press, New Haven, Connecti-
cut, 1974.

ii 27

