Semantic Abstraction and Anaphora

Mark Johnson

Brown University

Martin Kay

Xerox Palo Alto Research Center and Stanford University

Abstract

This paper describes a way of cxpressing syn-
tactic rules that associalc secmantic formulac
with strings, but in a manner that is indc-
pendent of the syntactic details of these [or-
mulac. In particular we show how the same
rules construct predicate argument [ormulac
in the style of Montague grammar[13], rep-
resentations reminiscent of situation seman-
tics(Barwise and Perry |2]) and of the cvent
logic of Davidson [5], or rcprescentations in-
spired by the discourse represcentations pro-
posed by Kamp [9]. The idea is that seman-
tic representations arc specified indirectly us-
ing semantic construction operdators, which cn-
force an abstraction barricr between the gram-
mar and the scmantic representations them-
sclves. First we present a simple grammar
which is compatible with the three different
scts of constructors for the three formalisms.
We then extend the grammar to provide onc
treatment that accounts for quantifier raising in
the three different semantic formalisms

Introduction

Grammars specifying the relationship between
strings and scmantic representations often have
details of these representations cmbedded in
them. We show how grammar rules can be
writlen in a form which, by abslracting away
from details of the scmantic representation, ac-
quires greater modularity and hence theoretical
perspicuity and practical robustness. In partic-
ular, we belicve that the approach helps clarily

the relationship belween apparently disparate
theorics of semantic representation.!. The basis
of our proposal is that cach grammalical rule
should contain, or be paircd with, an expres-
sion writicn in terms of semantic construction
operators. Dilfcrent operations can be associ-
ated with these operators and, depending on
the sct in force at a given time, the cffect of
interpreting the expression will be to construct
a representation in onc scmantic formalism or
another. The sct of opcrators contains mem-
bers corresponding Lo such notions as compo-
sitton, conjunction, cte. The sctis small and in-
dependent of the semantic formalism. The op-
crations arc associaled with the operators inde-
pendently of the grammar and they delermine
the form of the secmantic representation.

We present three different sets of seman-
tic constructors here, which we have dubbed
the predicate-logic, the sets-of-infons and the
discourse-representation constructors. We be-
gin by introducing the constructors used in this
paper: no claims are made for their gencral
sufficiency. Not all of the constructors are rel-
cvant to all semantic theories and those not
nceded for a particular onc arc given degen-
crale definitions. The simplest kind of con-
struction opcrator is the identity function which
maps cvery inpul ¢ onto just onc output, namely
.

The operators are the following:

1 The kind of scparation between the grammar and the details of

the semantic representation proposed here also appears in the examples
of Pereira and Shicber[12] and in Lexical-TF'unctional Grammar (sce
[6]). Qur use of dilferent sets of semantic constructors with a single
grammar is novel, as far as we are aware.,

17

18

external(S, J1") rclates a scmantic represen-
tation S and an external form EI°, c.g. a
rcpresentation that constitutes the parscr’s
output. The internal and cxternal forms are
distinguished because the (intcrnal) repre-
sentation S will, in general, contain infor-
mation that plays a role in the process of an-
alyzing a sentence (e.g. for anaphora track-
ing) but that is not part of the logical form
(LI of the sentence as a whole.

atom(S, Prop) specifies that the content of
the (internal) semantic representation, S, is
the atomic proposition Prop. This is used
to construct the semantic values for lexical
cntrics, for cxample.

conjoin(S1,52,512) rclates three semantic
representations. It specifies that the content
of 512 is constructed by conjoining 51 and
S52. This operator occurs crucially in the
semantics of indefinite determiners.

new_index (9, 1) specifics that the content of
S'is I, a referential index for a non-anaphoric
NP. The form of a referential index is de-
fincd by the particular semantic theory.

accessible_index (S, I) specifies that the con-
tent of 5 is a referential index [of some
noun phrase that is a potential antecedent of
an anaphor. Constraints on acccssible in-
dices arc defined by the particular semantic
theory.

While the primitives discussed in this paper
have relatively simple definitions, in other
more claborate theories they may involve non-
trivial computation. For cxample, the com-
pose primitive might imposc certain discourse-
consistency requirements arising from a more
restrictive theory of discourse structure than
those described here.

A key insight of the Discourse Repre-
sentation and Situation Semantics accounts,
but originating with Karttunen[10}, is that
anaphoric and quantificational domains coin-
cide. Thus, in (1), it can be co-indexed with a
donkey only if a donkey is interpreted as hav-
ing wide-scope.

(1) Every man kicked a donkey. It
developed blue bumps.

The rclationship between these sentences is one
of (semantic) precedence, and we call the op-
crator that relates the corresponding semantic
representations compose:
compose(S51,52,512) specifics that the infor-
mation in the representation S12 is the in-
formation in 51 followed by the informa-
tion in §2. Composc defines an ordering of
semantic operations that particular semantic
theorics may or may not be scnsitive to. (In
this paper, the Montague constructors are not
sensitive to this ordering, while the other two
types of semantic representations arce).
When a donkey is inlerpreted as having nar-
row scope with respect to every man in (1),
the reference marker introduced by a donkey
is located in a context subordinate (o the sen-
tence as a whole, and hence not accessible o
anaphors in the following discourse. To pro-
vide for this, we introduce the following op-
erator;

subordinate(S, SubName, Sub)specifies that
S contains an anaphorically and quantifi-
cationally subordinate representation Swub,
which has the ‘“‘name” SubName. The
SubName would be distinguished {rom
Sub in non-extensional theories of meaning,
where a mcaning is distinguished {rom its
propositional conlent (say), as in the sets-
of-infons representation described below.
We turn now to the grammar without
quantifier-raising. We formulatc both the
grammar and the semantic constructors in purc
Prolog (exploiting the syntactic sugar of Def-
inite Clause Grammar (Pcreira and Shicber
[12], pp. 70-79)) bccause it is expressive
cnough for our purposcs and is widely used
in work of this kind(sce, inter alia Colmeraucr
{3], Abramson and Dahl [1] and [11]).

A Grammar using Semantic
Constructors

The grammar generates simple transitive
clauses and subject-relative clauses that do not

involve long-distance dependencies. 1t is based
on the Montaguc-style grammars presented in
Chapter 4 of Percira and Shieber[12], and
the treatments of agreement, Wh-dependencics,
ele., presented there could also be incorporated
without difficulty.

/x*i:**********kk***xk******)\k*k*k*ﬂ*

* Operators: *
* " for lambda abstracts, *
* ==> for implicaticn. i

*k*i.’k***‘k*‘k*****‘ki***‘k**k***)\'*x****/

= op (950, xfy, 7).
1= op (300, xfx, =:=>).

parse(String, xtSem) -
ext.ernal (IntSem, KxtSem),
s{IntSem,String, []).

/**‘J(k‘k**A’**’)(‘A‘****)*ﬂ‘x*i*kx*AA‘KAxﬂ*)\K

* The grammar *
7(*Aﬂk)\k*)\‘kA*kAﬂx*ﬂ*AA‘AXAA)\'A‘KK/

s{S) —=> np(VP"S), vp(VP).

np (NP) —--> det (N1"NP), nl(N1l).
nl

nl {(X"8) —--> n(X"s1) rc(X"52y,

S
(
(N) —==> n(N).
(X 1),
{conjoin(S1,82,8)}.
(X7S) —=> v(X"VP), np{(VP"5).
(VP)y —=> [that]), vp(VP).
v(X"Y"S) --> [Verb],
{verb (Verb, XY "Pred),
atom(Pred, S) }.
n{xX"$)y --> [Noun],
{noun (Noun, X" Pred),
new index(X,81),
atom(Pred, $2),
compose (51,52,8)).
det ((X"Res) " (X" Scope) "S) ——> [Detl]
{determiner (Det, Res”Scope”™$)}.
np((X"81)"S) --> [Pronoun],
{pronoun (Pronoun),
accessible index(X,82)
compose(S1,S2,8)}.

/*AA‘*A*k********‘k‘k‘k********‘k********

* The lexicon *
‘A’)\"k‘k’k*‘k**'k*'kk****‘k*kkA****AkA'K'AA'A/

pronoun (he) .
pronoun{she)
pronoun{him) .
pronoun (her) .
pronoun (it).

verb({likes, XY likes(X,Y)).

verb{saw, X"Y"sec(X,Y)).

verb (beats, X"Y "beat (X,Y)).
(

verb (owns, X Y own{X,Y).

noun (woman, X woman (X)) .
noun {man, X"man (X)) .
noun {(donkey, X"donkey(X)).

determiner (a, Res”Scope”S):-
conjoin(Res, Scope, §) .

determiner (every,

ResO"Scope”™S) i~

compose (51, S$2, §),
subordinate (Res, ResName, S1),
compose (Res0, Resl, Res),
subordinate (Scope, ScopeName, Resl),
atom(ResName ==> ScopceName, S§2).

Most of the grammar should be familiar, cven
if it is somewhat more pedantically expressed
than is usual. Following Percira and Shicber
(who were in turn inspircd by Montague), VP
and N mcanings arc represented by terms of
the form X~ S, where X represents a referential
index and S represents an S meaning, NP
mcanings are represented by terms of the form
VP~S (or cquivalently, (X°S0)"S), where
VP represents a VP meaning, X a referential
index, and S and SO represent S meanings.

All manipulation of semantic values is per-
formed by constructor primitives, rather than
by cxplicit construction of terms. For exam-
ple, the N1 production that introduces relative-
clauses invokes conjoin explicitly to conjoin
the semantic valucs of the N and the relative
clause to yield the semantic valuc of the N1,
The sharing of the referential index X between
the N and thc VP is perlformed in the gram-
mar alone, since it is a synlactic rather than
scmantic property of the construction.

The semantic component of the production
that introduces lexical nouns has two parts. SO
represents the atomic predicate Pred associ-
ated with the lexical meaning of the noun. S2
represents the fact that X is a (possibly new)
referential index. The component S of the se-
mantic value associated with the noun contains
all of the information in SO and S2.

The production introducing (lexical) pro-
nouns requires that the referential index X of
the pronoun bc accessible in S0, and speci-
fics that the S component is thc composition
of SO and the SO componcent of the VP mean-
ing. (Recall that the scmantic rcpresentations
of pronouns, likc all NP’s, arc terms of the

19

20

form VP "3, so the SO is a component of the
meaning of the VP or V phrasc that this pro-
noun is an argument of).

Undoubtedly the most complex componcent
of the grammar is the lexical entry for every.
Because the structure of the lexical entries for
all anaphoric scope-inducing quantifiers will be
similar to the cntry for every, we cxplain it in
some detail.

The quantification induced by the deter-
miner every is described in terms of the de-
termincer’s restriction, which defines the enti-
ties that the quantification ranges over, and its
scope, the component of the expression quan-
tificd over. (2) indicates the components of the
utterance corresponding to the restriction and
the scope of the quantifier every in the absence
of quantifier-raising.

(2) Every man that saw a donkey kicked it.

e~ S
Restrictor Scope

The grammars presented here identify the re-
strictor and the scope of a delerminer in the
syntax; c¢.g. quantificr-raising arises from the
grammar permitting multiple assignments of
components of the utterance o the restrictions
and scopes of the determiners of that utterance.

The semantic value associated with lex-
ical cntry for a determiner in the gram-
mars presented here is a term of the form
Res Scope Sentence, where Res is the seman-
tic valuec associated with the restrictor and
Scope 18 the semantic value associated with
the scope. A grammar dircctly constructing
predicate-logic style semantic representations
would assign the lexical entry in (3) to the de-
lerminer every, where ‘==>’ 1s interpreted as
the implication operator in scmantic represcn-
tations (sce Percira and Shicher [12]).

(3) determiner(every,
Res Scope™(Res==>Scope)).

This lexical entry docs not suffice for our pur-
poscs, since it provides no information about

the relative anaphoric scope relationships be-
tween the restrictor, the scope, and that portion
of the utterance cxtcrnal to the quantificational
expression as a whole.

Anaphors in opaque quantificational ¢xpres-
sions can refer to cntities superordinate to
the quantificational cxpression, but in general
anaphors outside of an opaquc quantificational
cxpression cannot refer to cntities introduced in
cither the restriction or scope of the quantifi-
cational cxpression?. Anaphors in the scope of
an opaque quantificational expression can refer
to cntitics introduced in the restriction of that
expression (c.g. as in (3) above), but anaphors
in the restriction cannot refer 1o cntities intro-
duced in the scope.

The compose and subordinate predi-
cates in the lexical entry for every in the gram-
mar presented above cxpress subordination re-
lationships that describe the behavior of opaque
determiners. The scmantic representation S is
the composition of S1 and 52, where S2 is
the semantic atom ResName ==> Scope-
Name. Res is subordinale to S1, and is itsclf
the composition of Res0 and Resl, where
Res0 is the semantic representation of the re-
strictor. Scope is subordinate to Resl, and
is the scmantic representation of the scope.
The diagram on the following page skelches
the relationship between the various semantic
entitics mentioned in the lexical entry for ev-
ery. Subordination relationships arc depicted
by vertical lincs (the name of the subordinate
space is written alongside the line), and compo-
sition rclationships arc indicated by V-shaped
diagonals.

The Predicate-Logic Constructors

These constructors build a predicate-logic
typec of scmantic representation in a fairly
transparent fashion. Pronouns arc treated as
frce variables, therc arc no constraints on
their distribution, and anaphoric binding is not

2 There are exceptions to this: for example, anaphors can refer

to proper names inroduced in the restrictor or scope of opaque de-
terminers. Within the framework described below, this can be treated
by adding a new semantic construction operator add_top_level,
which adds a referential index to the most superordinate level

Scope

ScopeName

Res0 Resl

~

Res

ResName ==> ScopeName
S1 S2

~_

S

treated. Thus the definitions of the constructors
new index, accessible index, com-—
pose and subordinate havc degenerale
delinitions.
A propertly is identical with the term repre-
senting it:
atom(Prop, Prop).
The conjunction of P and Q is represenied by
the term P&OQ.
conjoin(P,P,P&Q) .
There are no constraints on new indices.
new index(,).
There arc no constraints on accessible indices,
accessible index(,).
Scquencing is unimportant.
compose (P,P,P) .
A Subordinate space can be introduced (reely.
subordinate (_, Sub, Sub) .
Internal and external forms arc identical.
external (P, P).

The grammar described above and the
predicate-logic constructors yield analyscs
such as the following:

?- p(la,man, owns, a,donkey],S) .
S = man(X)&donkey(Y)&own (X, Y)

?- p{(levery,man, that, owns, a,donkey,
beats,it],S) .
S = (man (X) &donkey (Y) &own (X, Y))
==>beat (X, 2)

Roughly this latter form might be interpreted
as: if X is a man and Y is a donkey and X
owns Y, then there is a Z such that X beats Z.

The Sets-of-Infons Constructors

The constructors for the sets-of-infons and
the discourse-representation both constrain
anaphora by requiring that the referential in-
dices provided by the accessible index
constructor be indices that were introduced
by new index in some carlicr representation
(wherce precedence is defined by the compose
constructor). This entails that the internal form
of these semantic representations encode infor-
mation about preceding representations. Both
constructors thread this information using the
diffcrence-list technique described in [8].

The primitive clement of the sets-of-infons
representation is inspired by the infons of Situ-
ation Scmantics [2]. We represent an infon as
a term of the form Sit: P, which mcans that
P is truc in the situation Sit. For cxample,
Kim’s slecping in situation s0 is represented
by sO:sleep (kim}). For simplicity arbitrar-
ily named constants (like the gensyms of Lisp)
arc used as the names of situations in this rep-
resentation: this has the disadvantage thal the
definitions of the external and subordinate con-
structors are not declaratively specificd.?

The internal form of a sets of infons rep-
rescntation has three components. We repre-
sent them in Prolog with a term of the form
@(Sits, InfonsIn, InfonsOut). The
first 18 a stack whose top element is the situa-
tion currently being defined, and whose other
clements arc the situations superordinate to this
onc (as delined by the subordinate con-
structor). The sccond component is the sct
of all infons introduced in representations pre-
ceding this onc. The infons in this list as-
sociated with the current or a superordinate
situation provide the information nceded for
the accessible index constructor. The
third component of the representation is the sct

3 All that is required is that there is an infinite stock of situation

names, so ¢.g. integers could have been used as situation names at the
expense of a slight complication of the representation’s data structures.

21

22

of infons introduced in preceding representa-
tions with the addition any infons added to the
representation by the semantic representation
constructor. In describing the term @ (Sits,
InfonIn, InfonsOut), we use the namcs
InfonsIn and InfonsOut to stress the fact
that they constitute a difference list.
:— op(900, xfx, :).
atom (P, @([Sit| 1,Is, [(Sit:P)|TIsl)).
compose (@ (Ss, I0s,Ils),
@(Ss,Ils,I2s),
@(Ss,I0s,I2s)).
I12) :-
compose (I1, I2, Il2).
subordinate (@ ([Sit|Sits],I0s,Ils),
Sit, @(Sits,I0s,Ils)):-
gensym{Sit) .
new~index(Index,S) T -
atom (i (Index),S).
accessible index(Index,Q(Ss,Is,Is)):-
member {(Sit:1i (Index),Is),
memnber (Sit, Ss) .
external (R ([Sit], [].,
gensym(Sit) .

conjoin(Il, I2,

Is), Sit:Is):-

The atom constructor introduces a new
alomic proposition P as an infon Sit:Pp,
where Sit is the situation currently being
constructed. Notice that ITnfonsOut is the
same as InfonsIn but for the addition of
(Sit:p).

The compose constructor threads the dif-
ference list of infons through both of the rep-
resentations, so the composed representation
contains all of the infons added to the sets of
infons composed. The conjoin constructor
is equivalent to the compose constructor.

The subordinate constructor introduces
a new subordinate representation by pushing a
ncw situation name Sit on to the list of (now
superordinate) situations. The difference list
of infons is threaded through the subordinate
representation so that any infons added to it
will appear in the superordinate representation
as well,

The new index constructor adds an atom
of the form i (Index) to the representation
S: no constraints are placed on I'ndex.

The accessible index* constructor is

4 The predicate member used here, and elsewhere in this paper,

member (X, [X | _1).
i~ member (X, L).

has its standard logical definition: viz:

member (X, { , L}) If this definition is

satisfied for a referential index Index if
Index was introduced by new index to
a preceding non-subordinate rcpresentation,
ie. if the context contains an infon
Sit:i (Index), wherc Sit is the current or
a superordinatc situation name.

The external (Internal, Exter-—
nal) predicate initializes Internal to have
no superordinate situations and no preceding
context, and returns the list of infons associated
with this Internal representation as its cxtcrnal
form,

When these constructors are used with the
grammar dcfined above, the following analyses
are obtained:

?- p(la,man, owns, a, donkey], S) .
S = s0:[SO0:own(X,Y),s0:1(Y),
sO0:donkey (Y}, S$0:1(X),s0:man (X)]

This can be paraphrasced as: Situation S0 con-
tains individuals X and ¥; in s0 X is a man,
Y is a donkcy and X owns Y.

?- p{levery,man, owns, a,donkey],8) .

S = s0:[80:81l==>82,82:0wn(X,Y),
s2:1(Y),s2:donkey(Y),
sl:1(X),S1l:man (X))

This can be paraphrased as: Situation s0 con-
tains the fact that all situations of type sl are
also situations of type s2. A situation is of type
s1 if it contains individuals X and Y, and X
is a man and Y is a donkcy. A situation is of
type s2 if X owns Y.

?7- p{levery,man, that, owns, a,donkey,
beats, it], S) .

S = s80:[s0:8l==>s82,s82:beat (X,Y),
sl:own(X,Y),sl:1(Y),sl:donkey(Y),
sl:1(X),sl:man(X)]

This can be paraphrased as: Situation s0
contains the fact that all situations of type sl
are also situations of type s2. A situation is of
type s! if it contains individuals X and Y, X

used with the grammars and constructors given in this paper, the $1.D
selection rule of Prolog may lead to non-termination. It is in general
necessary to delay the evaluation of the member predicate until its
second argument is instantiated, which can be done using the freeze
primitive of Prolog II.

is a man, Y is a donkey and X owns Y. A
situation is of type s2 if X beats Y.}

The Discourse-Representation
Constructors

The representations built by these construc-
tors are inspired by the ‘‘box representations’”
of Kamp’s (1981) Discourse Representation
Theory [9]. A discourse representation “‘box”’
is rcpresented by the list of items that con-
stitute its contents. A representalion 1S a
diffcrence-pair of the lists of the representa-
tions of the currently open boxes (i.e. the cur-
rent box and all supcrordinate boxcs), as in
Johnson and Klein [8]. In Prolog, we use the
binary '~ opcrator to scparalc the two mem-
bers os the pair.

(BIBs]~-[[PIB]IBs]).
compose (B0s-Bls, Bls-B2s, BO0s-B2s).
conjoin(P1, P2, P) :-

atom (P,

compose (P1, P2, P).
subordinate ([[]{BOs)-[B|Bls],
B, BOs-Bls).
new index(Index, C) :-
atom (i (Index),C).
accessible index(Index, Bs-Bs) :-
member (B, Bs), member (i (Index),B).

external ([[]]-{S], S).

The atom constructor introduces a new
atomic proposition P.by adding it to the cur-
rent box, i.¢. the first clement of the list of
open boxes.

The compose constructor threads the dif-
ference list representing the open boxces through
both compose representations of the items be-
ing composed in the same way that the com-
pose constructor of the scts-of-infons repre-
sentations docs. The conjoin constructor is
cquivalent to the compose constructor.

The subordinate constructor introduces
an empty subordinate box onto the list of cur-

5 The grammar and the sets of infons constructors also gencrate

an additional reading in which the man that owns the donkey beats
himself; i.e. it is taken as anaphorically dependent on every man.
Simple cxtensions 1o the grammar (¢.g. requiring the index of a
pronoun to differ from the index of all c-commanding NPs) or the
semantics {c.g. requiring the gender of the pronoun to agree with its
antecedent’s gender) would rule out this spurious analysis.

rently open boxes. The “*name” B of the sub-
ordinate box is the list of atoms it contains.

The new index constructor adds an atom
of the form i {(Index) to the semantic repre-
scntation: no constraints are placed on Index
(as 1in the scts-of-infons representation).

The accessible index constructor is
satisfied by a refcrential index Index if
Index is inlroduced by new index in a
preceding non-subordinate representation, i.c.
il onc of the supcrordinate boxes contains
1(Index).

The external (Internal, External)
predicate initializes Internal to have ex-
actly onc open box (ecmpty), and returns the
conlents of that box as its cxternal form.

With these constructors, the parser yields
the following scmantic valucs for the test sen-
lences.

?- p({a,man, owns, a, donkey], S).
S = [own(X,Y),donkey(Y),1i(Y),
man (X)), 1 (X)]

This rcprescntation is true just in case there
arc lwo individuals X and Y, X is a man and
Y is a donkey, and X owns Y.

?- p(levery,man,owns,a,donkey],S).
S = [[man(X),1(X)]l==>[own (X, Y),
donkey(Y),1(Y) 1]

This representation is true just in case for all
individuals X such that X is a man there is an
individual Y such that Y is a donkey and X
owns Y,

?- p(levery,man, that, owns, a,donkey,
beats, it], 8).
S = [[own(X,Y),donkey (Y),1(Y),man(X),
1 (X) 1==>[beat (X,Y)]]

This representation is true just in case for all
individuals X and Y such that X is a man and
Y a donkey and X owns Y, it is also truc that
X beats Y.

Extending the Grammar to handle
Quantifier-Raising

In this section we sketch a syntactic ac-
count of quantificr-raising inspired by the im-
plementation of Cooper-storage (Cooper [4])

23

24

presented in Pereira and Shieber [12], to which
we refer the reader for details. Each syntactic
constituent is associated with a list of quanti-
fiers that are *‘in storage’ (this corresponds in
an LF-movement account of quantifier-scope to
being raised out of this constituent). Quantifi-
cational determiners add items to the quantificr
store, and at S nodes, quantifiers are removed
from the storc and applied to the semantic
representation. The quantifier-store of nodes
at which quantifiers arc neither added nor re-
moved is the shuffle of the quantifier-stores of
its children.®. The grammar presented below
is simply the grammar presented above with
the addition of quantifier-storage. The lexical
entries for this grammar arc the same as the
above, and so are not listed here.
q{String, Analysis) :-
external (S,
s(s, [1,
s(S,Qs8) --> np(VP"81,QCnp),
{shuffle(Qnp, Qvp,Qls),
apply some(Qls,S1,0s,8) }.

Analysis),
String, []).
vp (VP, Qvp),

np (NP, Qnp) --> det (N1°NP,Qdet),
nl (N1,Qnl}),
{append (Qdet, Qnl,Qnp) }.
nl(N,Qn) —--> n(N,Qn).

nl(X~S,0nl) --> n(X"S1,0n),
rc(X~82,Qrc),
{conjoin(S1,82,S},
shuffle (Qn, Qrc,Onl) }.
-=> v(X"VP, Qv),
np (VE"S,Qnp),
{shuffle (Qv,Qnp, Qvp)}.
re(X"S2,Qrc) ~-> [that], vp(X~S1l,Qvp)},
{apply some (Qup, S1,Qrc,82) }.
np ((X°S1) "8, [1) -—>

{pronoun(Pronoun),

vp (X~S, Qup)

[Pronoun],

accessible index(X,S2),
compose (S1,82,8) }.
v({(X°Y"S,[]) --> [Verb],
{verb (Verb, X"Y"Pred),
atom(Pred, S) }.
n{X*s, []) ——>

{noun (Noun, X"Pred),

[Noun],

6

Treating the quantifier-store as a syntactic feature can express
many propertics of LF-movement accounts, such as quantificational
islandhood, etc., without the explicit construction of additional repre-
sentations

compose (S1,82,8),
atom(Pred, S1),
new_index(X,82)}.
det ((X"Res) " (X"Scope) “Scope,
{Quant]) --> [Det],

{determiner (Det, Res”"Quant)}.

The proposition shuffle (L1, L2, L3)
is true just in case 1.3 is a list that can be seen
as having been constructed in a sequence of
steps in each of which the next available item
is taken from cither L1 or L2 and added to the
end. So long as items remain on both L1 and
1.2, it is immaterial which of them supplies the
next member of 1,3. What is important is that
the members of 1.1 and 1.2 should all be on L3,
and in their original order. This relationship is
assurcd by the following Prolog clauses:

shuffle([], [1, [1).

shuffle ([Q|Q1ls],Q2s, [Q|Q3s]) :-
shuffle (Qls,Q2s, Q3s).

shuffle(Qls, [Q|Q2s], {Q|Q3s]) :-
shuffle (Qls,Q02s,Q3s) .

The first clausc asserts that the proposition
is truc of three empty lists, and scrves to ter-
minate the recursion implicit in the other two.
The second clause says that, if Q2s and Q3s
arc suffixes of a pair of lists to be shuffled, and
that shuffling them gives Q1s, then the item
that precedes Q1s in the final result can come
from the first list, that is, it can be the item
preceding Q1s. The third clause says that, al-
ternatively, the item preceding Q1ls can come
from the sccond list.

The grammar also makes use of the predicate
apply some (Quants, OldSemantic-
Value, UnappliedQuants, NewSe-
manticvalue)

which is true if applying zero or more quanti-
ficrs from the beginning of the list Quants to a
given OldSemanticValue yiclds NewSemantic-
Value and leaves a suffix of that list of quanti-
fiers, namely UnappliedQuants still unapplicd.
It can be defined with the following pair of
clauses, the first of which terminates the se-
quence of applications and the second of which
applies the next quantifier in sequence.

apply scme(Qs,P,Qs,P).
apply some ([P Qp|Qs],P,Qls,Pl):~

apply some(Qs, Qp,Qls,P1).

The new grammar can be used with the
three different semantic constructors presented
above. Using the Predicate-Logic constructors,
it yields results like the following:

?- gq([la,man, owns, a,donkey},S) .
S = donkey(Y)&man (X)&own (X, Y);
S = man(X) &donkey (Y)&own (X, Y)

This cxample has two (scmantically-cquiva-
lent) representations corresponding to the two
scope possibilitics for the two cxistentially
quantificd NPs,

?- g([every,man,owns, a,donkey],S).

S = donkey(Y) & man(X)==>own (X, Y);

S = man(X)==>(donkey (Y) &own (X, Y))

In this example the two non-cquivalent rep-
resentations correspond to the two different
scope possibilitics for the quantificd NPs,
These rcadings paraphrase as: There is a don-
key Y and for cach man X, .X owns Y and
For cach man X there is a donkey Y and X
owns Y,
?- q{[every,man, that, owns,
a,donkey, beats,1t],S) .
S = donkey (Y) & (man (X) &own (X, Y))
==>beat (X, Z2);
S = (man(X) &donkey (Y)&own (X, Y))
==>beat (X, 7} ;

In this cxample the two non-cquivalent
representations correspond to the two differ-
ent scope possibilitics for the quantified NPs.
These readings paraphrase as: There is a don-
key Y and for cach man X such that X owns
Y it is the case that X beats Y, and ““For cach
man X and donkey Y such that X owns Y, it
is the case that X becats Y.

Using the scts-of-infons constructors, we get
the following results:

?- q([every,man, owns, a,donkey],S).

S = 80:[s80:s8l==>s82,s2:0wWwn(X,Y),
sl:1(X),sl:man(X),S0:1(Y),
s0:donkey(Y)],

S = s0:[s0:sl==>382,s82:0wn(X,Y),
s2:1(Y),s2:donkey(Y),sl:1(X),
sl:man(X)]

The scope possibilitics arc indicated here by
the situation in which the noun phrases are
interpreted. The first reading displayed cor-
responds to the quantificr-raised interpretation,
which paraphrases as: Situation s conlains the
individual Y, the fact that ¥ is a donkey, and
the fact that for all ways of making s1 truc, s2
is also truc, where sl contains the individual
X and the fact that X is a man, and s2 con-
tains the fact that X owns Y. Since Y is in s0),
under this rcading it is a potential antccedent
for anaphors in for following scntences.

The sccond reading differs (rom the first
in that the NP a donkey is interpreted in the
subordinate situation sl instead of 50. As well
as causing a donkey 1o be quantificationally
subordinate to every man, this also makes a
donkey unavailable as a potential antecedent
for anaphors in following scnlences.

We can thercfore account for the lact that
under normal intonation a donkey is interpreted
as having wide scope over every man in the
following discoursc fragment (3).

(3) Every man saw a donkey. It had a
bushy 1ail

We now consider onc of the famous “don-
key™ scntences:

?- q([every,man,that,owns,a,donkey,

beats, it], S).

S = s0:[s0:sl==>s82,s82:beat(X,Y),
sl:own(X,Y),sl:1i(X),sl:man(X),
s0:1(Y),s0:donkey(Y)];

S = s0:[s0:s81==>s82,s2:beat (X,Y),
sl:own(X,Y),sl:1(Y),sl:donkey(Y),
sl:1(X),sl:man (X)]

The first rcading displayed again corresponds
to the quantifier-raised interpretation, which
paraphrascs as: Situation s0 contains an indi-
vidual Y, and the facts that Y is a donkey and
that every way of making 51 truc also makes
52 true, where §'1 contains the individual X
and the facts that X is a man and X owns Y,
and 52 contains the fact that X beats Y.

25

26

Finally, the discourse-representation con-
structors yicld the following:

?— g{l[every,man, owns, a,donkey],S) .

S = [[1(X),man(X)]==>[own(X,Y)],1(Y),
donkey (Y)] S = [[i(X),man(X)]
==>[own(X,Y),1(Y),donkey(Y)1]

These represcentations arc direct notational
variants of the two set-of-infons representa-
tions of this sentence given above. The truth
conditions of the first recading correspond to the
wide-scope interpretation of a donkey, and can
be paraphrased as: There is a donkey Y, and

for cvery man X, X owns Y.

?- g{[every,man,that, owns, a,donkey,
beats,it],S).

S = [[Jown(X,Y),1(X),man (X)]
==>[beat (X,Y)],1(Y),donkey(Y)];
S = [[own(X,Y),i(Y),donkey(Y),1(X),

man (X)]==>[beat (X,Y) 1]

Again, these representations arc dircct nota-
tional variants of the two sects-of-infons repre-
sentations of this sentence given above. The
truth conditions of the f{irst reading correspond
to the wide-scope interpretation of a donkey,
and can be paraphrased as: There is a donkey
Y, and for every man X such that X owns Y,
X beats Y,

The same corrclation between quantifica-
tional scope and anaphoric scope holds with
these constructors, as cxpected.

Conclusion

We have worked out a scheme for comput-
ing the logical forms of sentences incremen-
tally in the coursc of parsing them which we
believe achicves an unprecedented level of ab-
straction of the semantic from the syntactic
parts of the grammar. The very incrementality
of the scheme might be used to argue against it.
Given the prevalence of scope ambiguilies, the
interests of computational cfficiency may be
best served by a scheme that delays all seman-
tic computation until the parsing is complete
so as not to work unnccessarily on phrascs that
turn out not to be capable of incorporation in a
complete analysis of the sentence. Hobbs and

10

Sheiber [7] adopt such a scheme apparently on
the grounds of greater perspicuity. In any case,
the modifications that need to be made to our
scheme are entirely trivial, requiring only the
introduction of a modest amount of symbolic
computation. Basically, the idea is to use oper-
ations which, instcad of rcturning picces of the
final logical form incrementally and nondeter-
ministically, rcturn expression that will exhibit
this nondeterministic behavior when cvaluated
later. The later evaluation will, of course, be as
specified be the definitions we have given. In
short, we believe that the abstractions we have
created effectively isolate the syntactic rules
both from the corresponding scmantic formal-
ism and from the architecture of the system by
which both of them will be interpreted.

Bibliography

[1] Abramson, H., and Dahl, V. Logic Gram-
mars. Springer Verlag, New York, 1989.
[2] Barwisc, J., and Perry, J. Situations and At-
titudes. Bradlord Books/MIT Press, Cam-
bridge, Massachusctts, 1983.
Colmeraucr, A. An interesting subset of
natural language. In Logic Programming,
K. L. Clark and S.-A. Tarnlund, Eds.
Academic Press, New York, 1982.
Cooper, R. Quantification and Syntactic
Theory, vol. 21 of Synthcse Language
Library. D. Rcidel, Dordrecht, 1983.
Davidson, D. The logical form of ac-
tion sentences. In The Logic of Decision
and Action, N. Rescher, Ed. University of
Pittsburgh Press, Pittsburgh. Pennsylvania,
1967.
Fenstad, J. E.,, ct al. Situations, Language
and Logic. Reidel, Dordrecht, 1987.
Hobbs, J. R, and Shicber, S. M. An al-
gorithm for generating quantificr scopings.
Computational Linguistics 13, 1-2, 47-63.

131

[4]

(5]

Johnson, M., and Klein, E. Discourse,
anaphora and parsing. In Coling 88 (Bonn,
West Germany, 1986).

[9] Kamp, H. A theory of truth and semantic
representation. In Formal Mcthods in the
Study of Language, J. A. G. Groenendijk,
T. M. V. Janssen, and M. B. J. Stokhof,
Eds., vol. 136. Mathematical Centre Tracts,
Amsterdam, 1981, pp. 277-322.

[10]Karttunen, L. Discoursc referents. In Syn-
tax and Semantics, 7, J. McCawley, Ed.
Academic Press, New York, 1976, pp. 363—
385.

[11]McCord, M. C. Focalizers, the scoping
provlem, and scmantic intcrpretation rules

11

in logic grammars. In Logic Programming
and Its Applications. Ablex, New Jerscy,
1986.

[12]Pcreira, F. C. N, and Shicber, S. M. Prolog
and Natural Language Analysis, vol. 10
of C.S.L.I. Lecture Notes Scrics. Chicago
University Press, Chicago, 1987.

[13]Thomason, R. Formal Philosophy. Se-
lected Papers of Richard Montague. Yale
University Press, New Haven, Connecli-
cut, 1974,

27

