
Using Constraints in a
Constructive Version of GPSG

Wilhelm WEISWEBER

Technical University of Berlin

Institute for Software and Theoretical Computer Science

Project Group KIT

Sekr. FR 5-12

Franklinstr. 28/29

D-1000 Berlin 10

Email: weisweb@db0tuil 1.bitnet

Abstract
Complex categories are caracteristic of unification grammars as for

example GPSG [Shieber86a]. They are sets of pairs of feature.s and

values. The unification, which can be applied to two or more

categories, is the essential operation.

The papers of [Shieber85], [Barton85] and [Ristad86] deal with the

influence of complex categories on the efficiency of the parsing

algorithm. This is one problem from using complex categories,

another one arises when using a constructive version of GPSG (see

[Busemann/Hanensehild88] in this volume). Namely that the appli-

cation of admissibility conditions, e.g. LP statements and FCRs 1, to

a local tree t is prevented because particular feature values of eat-

egories in t are not yet specified, but they will be instantiated later

somewhere else in the complete tree. Similar problems are described

• in [Karttunen86] for D-PATR.

This work describes the latter problem and will present a solution

working with computation, evaluation and propagation of

constraints within local trees (depth 1). The constraint evaluation

will reject local trees if the constraints of the subtrees of the

daughters are violated.

1 Introduction
First of all some fundamentals of a constructive version of GPSG

which has been developed within the projects K1T-NASEV and its

successor KIT-FAST 2 will be described (for details see [Hanen-

1 LP = Linear Precedence; FCR = Feature Co-oecmenee Restriction

KIT-FAST (FAST = Functor-Argument Structure for Translation; KIT =
Kilnstliche Intelligenz Lind Textvexsteben = Artificial Intelligence and Text
Understanding) as well as ils predecessor KIT-NASEV (NASEV = Neue
Analyse-und Syntheseveffahrm zur masehinellea 0bersetzang = New
Metheds of Analysis and Synthesis fc~ Machine Translation) constitute the
Berlin component of the complementary ~ h project of EUROTRA-D,
which reeeive~ gnmts by the Federal Minister for Research and Technology
under eontra~t 1013211.

738

schild/Busemann88], [Keller87], [Busemann87] and [Weis-

weber87]). The reader's familarity with the fundamental knowledge

of GPSG as presented in [GKPS85] will be assumed.

1.1 The Grammar Format

The ID/LP format of the grammar allows the explicit formulation of

generalizations about the partial order of the daughters of the ID

rules via LP statements. ID rules are tuples of the form ((mother) ---)

(daughters)), for example (S ~ {NP, VP}), where (daughters) is a

multi-set of categories which can be dominated by the category

(mother). Lexical rules are of the form ((mother) ---¢ (wordform)).

LP statements are of the form '(categoryt) < (categorY2)', for

example the LP statement NP < VP requires that the category NP

must precede the category VP in a sequence of daughters of any

local tree licensed by an ID rule of the grammar.

For every grammar a set F = {f~, f2 fn} of syntactic features

exists with I FI = n. The number 'n' of features can vary from

grammar to grammar, but for a particular grammar it is constant.

Each feature fi has its domain D(fi). A complex category C is an n-

tuple with C ~ D(f 1) x D(f2) x ... x D(fn) and the position T of the

tuple represents the value of the feature fi.

Example : F = {N, Vr BAR, PER, PLU, GEN}

position i feature fi domain D(f l)

1 N {+,-}

2 v {+,-}
3 BAR 10,1,2}

4 PER { 1,2,3 }

5 PLU {+,-}

6 CAS { nom,gen,dat, aec }

The category C = [+N,-V,BAR 2,nom] will be represented as

(+,-,2,X,_,nom). C is the category traditionally called a nominative

NP. If a feature Value of,a ea/tegory is not specified, like PER a~d
/ /11 • /

PLU in C, it will be noted as ~ variable 3. ~ e value of ~ feature fl of

3 A variable feature value will be noted as a capital letter (e.g. X, Y, Z) when the
same variable value is needed at another place, otherwise it will be noted as '..

the category C can be expressed with C(fl), e.g. C(CAS) = n o m or

C(PER) = X. It is possible that a feature can have a category as its

value, e.g. SLASH.

In the following some predicates on feature values are used. They

are 'spec', 'atom' and 'cat'. The semantics of them is as follows:

spec(C(f)) ¢~ C(f) is specified either with an atom or a category

atom(C(t)) ¢~ C(f) is specified with an atom

cat(C(f)) ¢:~ C(f) is specified with a category

1.2 Fea tu re lns t an t i a t ion

The Feature Instantiation Principles 4 are not the subject of this

paper. Only one thing needs to be said at this point, that is that the

FIPs are not only regarded as filters for local trees as in [GKPS85],

but in the constructive version of GPSG they propagate values of

features within a local tree from the mother to the daughters and

vice versa, or from one daughter to another if this feature value is

affected by one of the FIPs (i.e. it is a HEAD, FOOT or agreement

feature; a brief outline of the work which is done by the AP is given

in section 2.1). In this case the FIPs are construction principles

which propagate information from one point of a local tree to

possibly many other points which require this information. In cases

where a value is not specified (i.e. it is a variable), the variable is

propagated. The FIPs are also filters for local trees and will reject

local trees which have categories where the values of one of the

features are not consistent.

Before discussing the Feature Co-occurrence Restrictions (FCRs)

two definitions are necessary to be able to define legal categories.

Definition: extension

A category E is the extension of a category C (C ~ E) iff

(i) V f e F: atom(C(f)) ~ atom(E(f)) A C(f) = E(f) 5 and

(ii) V f e F: cat(C(f)) ::¢. cat(E(f)) ^ C(f) ~_ E(f)

Definition: unifiable

Two categories A and B are unifiable (A II B) ¢:~

V f ~ F: ~spec(A(f)) v ~spec(B(f)) v

((atom(A(f)) A atom(B(t))) ~ (Aft) = B(f))) v

((cat(A(f)) A cat(B(f))) ~ (Aft) ld B(f)))

The FCRs in the constructive version of GPSG are not only

predicates on categories, they are also modified to become more

functional by instantiating variable feature values if necessary. FCRs

are implications of the form (n, A D B). 'n' is the number of this

FCR, 'A' is the condition category for the application of this FCR

4 Ia the following they.are called FIPs. 1"he FIPs are the Foot Feature Principle
(FFP), the Agreement,Principle (AP) and the Head Feature Convention (I-IFC).
For detailed discussion of the FIPs see [Busemanng7], [Hauenschild/
Busemann881 and [Weisweber87].

5 ',,', 'v'. '-4, '~ ' and '~ ' are the logical operators 'and', 'or', 'not', 'equivalence'
and 'implicatioff, respectively,

and 'B' is the consequence category. This FCR is applicable to a

category C if C is an extension of A and, if so, C has to be unifiable

with B. If C and B are not unifiable the category C is not legal.

Definition: legal

A category C is legal ¢:~

V (n,A ~ B) E FCR: (A ~ C) v (A _E C A B 13 C)

If the FCRs are applied to the category C and an FCR (n, A D B) is

applicable to C and the consequence category B is unifiable with C

and at least one feature f exists where ~spec(C(f)) and spec(B(f))

(B ~ C), then all those values C(f) are instantiated with B(f)

(C(f) := B(f)). The FCRs have to be applied to a category C until no

feature values of C are instantiated by them any longer, because the

instantiation may cause other FCRs to be applicable.

1.3 The Admissibility of Trees

To generate syntactic structures (trees) during analysis or synthesis,

ID rules are mapped into local trees in which all categories are legal.

This mapping is called a projection.

Definition: projection

The projection • ~ ID × LT is a relation from the set ID of ID rules

to the set LT of local trees. A tuple (r,t) is an element of • ((r,t) e

~) where r = (r', C0 --> {Cl Cn}) and

_/?\
iff it meets the condition ~(C i) = ~ with 0 _< i,j ~ n where the total

one-to-one, onto function ~ maps the set {C o C,~} of categories

of the ID rule r' into the set {C~ C, t } of categories of the local

tree t:

0: {Co c . } - ~ { C 6 c~}
The function ¢p meets the following conditions:

¢(C0) = C~ A ¢p(Ct) = q A 1 < i,j < n A

V ~(Ck): 0 < k < n A ¢~(C k) is legal a (C k E_ O(Ck))

When a local tree has been proved to be a projection of an ID rule,

the FIPs are applied to it. Despite the fact that the projection already

includes the application of the FCRs to the categories of a local tree,

they still have to be applied everytime one of the FIPs (FFP, AP,

HFC) has been applied to the local tree, because each of them may

instantiate a feature value of a category of the local tree and

therefore another FCR may be applicable to that category. The l a s t

check for admissibility is the application of the LP statements. The

sequence of the daughters of the local tree must not conflict with

any LP statement of the grammar (it has to be LP-consistent).

Before 'LP-consistency' can be defined, the transitive LP-relation

(LP +) has to be defined.

Definition: transitive LP.relation

1) (Ci < Ca) ¢ LP =~ (121 ~ C2) E LP +

2) (C 1 ~ C2) ¢ LP + A (C~ ~ C~) E LP ÷ A C~ ~_ C2 =*

(C1 t C3) ¢ LP +

7 3 9

With the help of this definition we are able to define LP-

consistenc~'.

Deflnitloni LP.consistency

A local tree t is LP-consistent with respect to a grammar with the

transitive LP-relation ~ iff

V CI,C]: 1 < ij < n ̂ ~ precedes ~

-~3 C[,Cj: C i ~ C[A Cj ~_ q A (Cj ~: C I) e LP +

In other words, when a category C[precedes a category Oj in a local

tree t, they must not conflict with the transitive LP-relation (C], and

must not be extensions of two categories C I and Cj, respectively,

where Cj must precede CI).
Now the definition of the admissibility of trees can be given.

Definition: admissibility of trees

A tree is admissible iff all of its local trees are admissible. A local

tree is admissible iff it is a projection of a lexical rule or iff it

- is the projection of an ID rule and

- satisfies all of the FIPs and

- is LP-consistent.

2 LP-Consistency and Legality
The first chapter of this paper illustrates how to build up the

syntactic structure (a tree) in the constructive version of GPSG, but

it also sketches roughly the way this can generally be done in

, unification grammars. First of all complex categories are assembled

to form a local tree and subsequently the feature values of the

categories are instantiated by different procedures (for example in

GPSG by the FIPs and in the Lexical Functional Grammar (LFG)

described in [Bresnan/Kaplan82] by the evaluation of the f-

descriptions). The admissibility of those local trees is determined by

some predicates (in GPSG by the LP statements and the FCRs and

in LFG by existential constraints with the operator '=c' and the

negative existential constraints with the special value 'none'). These

predicates can only be applied when particular feature values are

specified. But when the admissibility of a local tree is to be proved,

it cannot be guaranteed that all feature values have been locally

instantiated. In some cases it is possible that. a feature value is not

locally instantiated rather that it is instantiated somewhere else in

another local tree belonging to the complete tree and therefore the

admissibility of a local tree is not a local matter anymore.

In this chapter the problems which arise from checking the LP-

consistency and the legality in the constructive version of GPSG are

described in the sections 2.2 and 2.3 respectively. Section 2.4 briefly

outlines the two possible solutions proposed by [Keller87]. But first

of all a sample grammar is given to be used for examples.

2.1 A Sample G r a m m a r

To illustrate the problems arising from checking the LP-consistency

of a sequence of complex daughter categories and from ehecldng the

legality of complex categories of a local tree, a sample grammar is

given here.

740

The set of syntactic features is F = {fl, f2, f3}. A category is a triple

C e D(f I) x D(f2) x D(f3).

Features: f, D(f,) = {a,b,c,d,e}

f2 D(f2) = {+'"* }

f3 D(f3) = { 1,2,3}

ID = { ((a,X,l) --~ {Co,Y,1), (c,Z,2)}), (I)

((b,X,_) ~ {(d,Y,3), (e,*,1)}) } (2)

Lexical rules: { ((e,_,_) --~ e), ((d~_,_) --~ d),

((c,-,_) --~ cm), ((e,+J --~ cp) }

LP = { (_,*,_) < (_,+,_), LP + = { (--,*,-) ~ (-,+~),. (1)

(_,-,_3 < (_:,_) } (_,-,_) ~ C,*,-3, (2)

C,-,_) ~ C,+,_) } (3)

FCR = { (1, Co,-,_.) D (_,_,l)), (2, (d,+,_) D (_,_,2)) }

Suppose that the feature f2 is an agreement feature and that a local

tree t which is a projection of this ID rule has been constructed, then

the Agreement Principle (AP) forces X = Y = Z and therefore the

AP has to consider three cases 6:

1) If at least two values are instantiated with different values then

the AP has to reject t (thepredicative view of the F1Ps which is

still preserved in the constructive version of GPSG).

2) If at least one value is instantiated then the other variable values

are instantiated with that value by the AP (propagation of

instantiated feature values).

3) If all values are not specified, i.e. they are variables, then the AP

will identify all values with one variable (propagation of variable

feature values).

Whenever an admissible local tree t is a projection of ID rule (1), the

values of the feature f2 (X, Y, Z) have to be identical and we can

apply case (3) to the local tree t.

2.2 ID/LP Specific Problems

In this section only LP-consistency is considered and the legality of

categories is ignored. In some cases there are categories of local

trees which have feature values not yet specified when the LP-

consistency has to be checked, and this possibly means that one or

more (transitive) LP statements cannot be applied to the given

sequence of daughters.

There axe two strategies for processing natural language with ID/LP

grammars ODLPG):

1) The indirect method, where an IDLPG is translated into an equiv-

alent context-free grammar (CFG) (see [Kilbury84]).

2) The direct method, where the ID rules and LP statements are used

directly during processing (see [Shieber84], [Kilbury84], [Dtrre/
Momma85], [Busemann87] and [Weisweber87]).

No matter which method is used some problems arise. Firstly the

6 For the sake of simplicity the AP of the constructive version of GPSG is not
described in detail here (see footnote 4),

problems in using the indirect method are described. Suppose ID

rule (2) is to be translated into equivalent context-free rules. In order

to do that, all permutations of the daughters have to be computed

and the LP-consisteney of the resulting sequences has to be proved.

Tiros the possible candidates for context-free rules are the following:

(2a) ((b,X,_) ---> (e,*,l)(d,X,3)) and (2b) ((b,X,_) ---) (d,X,3)(e,*,l))

To prove the LP-consisteucy of (2a), (C 1 ~ Ca) must not be an

element of LP +, where C1 ~ (d,X,3) and C a E (e,*,l). If such an

element exists, the sequence of daughters in (2a) is not LP-

consistent and has to be rejected. The only candidate from LP + is

(2), but it cannot be applied because (_,~,_) ~ (d,X,3), and so (2a) is

a valid context-free rule. But when X is instantiated with '-' later on

during processing, the local tree tl which is licensed by (2a) has to

be rejected because it violates the transitive LP statement (2).

tl: /(b,-,_)....>..
(e,]el) (d=3)

The same problem arises when the direct method is used. Suppose

the string 'e d cm' is to be analysed, After the terminal symbol 'e' has

been read, it .is reduced to (e,~,_). This category can be dominated in

ID rule (2) b~canse (e,_,_) and (e,*,l) are unifiable. Then 'd' is read

and reduced to (d,_,_) which can also be dominated in ID role (2)

and it is unifiable with (d,X,3). Now tile daughters of ID rule (2) are

complete and before they can be reduced to the mother category

(b,X,1), the l,P-consistency of the sequence '(e,*,l)(d,X~) ' as above

has to be proved. For the above mentioned reason ",his sequence is

LP-consistent and is reduced to (b,X,1). This category can be

dominated in ID rule (1) and up to this point the following partial

tree t2 can be constructed.

t'2: / (b , X , ~ (a'X' 1) (c--~c,X,2) (d ,ld,3)
Every local tree in the partial tree t 2 is LP-consistent. Now the

telxninal symbol 'era' is read and reduced to (c,-,_). This category is

unifiable with (c,X,2) in t 2 and the local tree licensed by a lexical

rule can be added to t a. Wlmn the two categories are unified 7 the

variable X is instantiated with '-' everywhere in t 2. The result is that

the sequence of daughters '(e,*,l)(d,-,3)' is not LP-eonsistent

anymore, beeanse now it violates the transitive LP statement (2). If

instead the next input symbol after the string 'e d' is 'cp', no

problems with the LP-consistency arise.

2°3 FCR Specific Problems

Similar problems like those with the LP..consistency appear when

the FCRs are applied to the categories of a local tree. Suppose that

In the constructive version of GPSG, unification is used for tree formation. In
the version of [GKPS85] the root category R of a subtree has to be identical
with a &mghter category C of a local tree (i.e. R __. C and C ~ R).

the partial tree t 2 has already teen constructed. All of its categories

are legal.

Suppose that the next input symbol after the string 'e d' is 'cp'. This

terminal symbol is reduced to (c,+,_) which can be unified with

(c,X,2) in t. 2 and the variable X is instantiated with '+'. Thus all

variables X in t~ have to be replaced by '+' and the category (d,X,3)

becomes (d,+,3). Now FCR 2 is applicable because (d,+,3) is an

extension of the condition category (d,+,_) ((d,+,_) c (d,+,3)), but it

is not unifiable with the consequence category (_,_,2) (-~((d,+,3) [J

(. . . . 2))) and thus it is not legal and has to be rejected.

2.4 Two Possible Solutions

According to [Keller87], the problems described in the sections 2.2

and 2.3 can be solved in two ways. One way would be to check the

LP-consistency of all local trees and the legality of all categories

after the entire tree for the input string has been constructed. The

other way would be to restrict the grammar format and/or the FIPs.

The disadvantage of the former solution is its inefficency. The

checks have to be done in addition after the processing of the input

string is terminated because some trees have not already been

rejected, although it would have been possible to do so.

The disadvantage of the latter solution is made obvious by two

examples. The format of the categories, for example, can be

restricted by assuring that the mother category in a local tree is fully

specified, i.e. a feature must not have a variable as its value. This

would involve a loss of the grammar's descriptive power. Another

way would be to restrict the FIPs by assuring that they don't

propagate variable feature values, which would involve GPSG

losing some of its generality.

3 Constraints
In both cases (LP-consistency and legality) the problems are caused

by categories of local trees which are not extensions of tile

categories in the LP statements o1" of the condition categories in the

FCRs, but which have been unifiable with them. This is the case

when a feature of a category of the local tree has a variable as its

value and the same feature value is specified in the corresponding

category of the LP statements or the FCRs.

This fact means that the LP statements or the FCRs are not locally

applicable in some cases, and so the admissibility of the local trees

can only be assured with certain constraints which can be fulfilled

later on, when the variable is instantiated during processing.

3.1 Computing Constraints from LP

To compute the constraints resulting from the LP statements, the

above mentioned cases have to be first identified. Suppose that the

sequence 'A B' of categories is to be checked for LP-consisteney and

an LP statement B":< A' exists where B [J B' and B' [~ B and A' ~_ A.

This LP statement is not applicable to 'A B' because B' ~ B, though

B' H B. This means that at least one feature f exists, where

spec(B'(f))and --,spec(B(f)). Thus the sequence 'A B' is LP-

741

consistent under the constraint that B (f i) , B'(fi) for all features fi

with the above mentioned condition, and since all values B(fl) for

those features fl are variables (~spec(B(fi))) , they must not be

instantiated with the values B'(fi) which are already specified. When

the values B(fi) are instantiated by the FIPs or by the FCRs in the

local tree, there is no problem in determining the admissibility. But

when the variable feature values B(fi) are propagated to the mother

by the FIPs, they can possibly be instantiated in another local tree

and those variable values B(fi) have to be constrained.

Computing the set of constrqints LP c

When the LP-consistency of a sequence of daughters in a local tree t

is checked for every pair of daughters Q, q , where 1 < i < j < n, the

set LPc(i, j) of LP constraints is computed as follows:

1) ~ (Cj ~ Ci) E LP+: Cj ~ ~jj A C i ~ C[~ t is not LP-consistent

2) V (Cj ~: C i) ~ LP+: (CjLJ q A Cj ~ q) v (C~L] o, ̂ c~ ~ Cl)
t is LP-consistent with the LP constraints:

LPc(i,j) = { (Oj(f),Cj(f))l spec(Cj(f)) and ~spec(Oj(f)) } u

{(Q(0,Ci(f))l spec(Ci(f)) and ~spec(~(f))}

3) --~=I (Cj ~: C) ELF+: (Cj L] C} ̂ C~ IJ q)
t is LP-consistent with LPc(i,j) = { }

LPc(i,j) is a set of tuples (Vt,Vp) of feature values. V t is the variable

feature ~,alue of a category o f a local tree. Vp is the specified feature

value of the LP statement which will become applicable to the

corresponding daughters of the subtree if the values V t of all tuples

in LPc(id) are specified and equal to their corresponding values Vp.

In this case the subtree has to be rejected.

The set of all LP constraints LPc(0) for the'local tree in which C~ is

the mother category is
¢1

LPc(0) = {LPc(i,j)[1 < i < j < n} u ;L.) 4 eval_lp(LPc(i))

where eval_lp(LPc(i)) is the evaluation of the LP constraints of the

subtree in which the daughter ~ is the root category. The set of LP

constraints o f a projection of a lexical rule is LPc(0) = {}, since

lexical rules have only one daughter (a wordform).

The evaluation 'eval_lp'

The evaluation 'eval lp' is either defined or undefined (.1.). If it is

undefined, the corresponding local tree is rejected, because one of

the subtrees of the daughters of that local tree is not LP-consistent.

1) eval_lp(LPc(i)) = .L ¢:~

3 C ¢ LPc(i): (V (Vt,V2) E C: spec(V 1) A spec(V 2) ^ V 1 = V2)

2) eval_lp(LPc(i)) = LPc(i) -

{C ~ LPc(i)l 3(V1,V 2) ~ C: spec(V 0 A spec(V2) A V 1 ~ V2}

3) eval lp(LPc(i)) = {CI (C = C' - M) ^ C" ~ LPc(i) ^ C ¢ { } }

where M = {(Vl,V2) [spec(V 1) ^ spec(V 2) A V 1 = V2}

The first case (1) means that if one set C of tuples exists in the set

LPc(i) of one daughter of the local tree, where all values of all tuples

are specified and equal, then an LP statement will be applicable

somewhere in the subtree of this daughter, and it will reject the

subtree because some sister categories in the subtree are not LP-

consistent anymore.

742

The second case (2) removes all sets S of tuples from LPc(i) of one

daughter which include one tuple with two different specified

values. This means that the LP statement which has caused the

computation of S will not be applicable anymore.

The third case (3) removes all tuples with two equally specified

values from all sets of tuples in LPc(i) of one daughter, because they

need not be evaluated for a second time.

3.2 Computing Constraints from FCRs

To compute constraints resulting from FCRs, the categories have to

be identified which are not an extension of a condition category of

an FCR, but unifiable with it. Suppose that the FCRs are to be

applied to the category C, and that an FCR (n, A ~ B) exists

where A [3 C and A ~ C. The FCR 'n' is not applicable to C. This

may change if a feature value is instantiated. It is the same situation

as in section 3.1, but here the computing of constraints is somewhat

different, because the application of an FCR to a category may cause

that another FCR will become applicable to that category. FCR

constaaints only have to be computed when ~(B L] C), or B l_J C and

B ~ C (the case ~(B H C) means that if the FCR will be applicable

to C, it will reject C, and the second case means that if the FCR will

become applicable to C, it will instantiate one or more features in C,

but the category always remains legal with respect to this FCR). The

case ~(B II C) is the crucial one, because the legality of the category

C can only be assured with the constraint that the set of possibly

applicable FCRs, with the above mentioned conditions on the

consequence category, still have to be checked for applicability.

Computing the set of constraints FCR c

For all categories C[where 0 < i < n in a local tree t the set APP(i) of

all numbers of FCRs which may still be applicable to Q is computed

as follows:

1) 3 (k,A D B) ~ FCR: A E Q A -~(B [3 C D =~ C I not legal

2~V (k)A ~ B) ~ FCR: A L J q ^ A ~ q A

(-~(B L] q) v ((B LJ CD ^ (B ~ q))) ~ q legal and k ~ AFP(i)

3) V (k,A ~ B) ~ FCR: ~(A LJ q) v (A _E C) ^ B II q)

q is legal and APP(i) = { }

The set of all FCR constraints FCRc(0) for the local tree in which C8

is the mother category is
11

FCRc(0) = { (C8) APP(0)) } u .L) eval fcr(FCRc(i))

where eval fcr(FCRc(1)) is the evaluation of the FCR constraints

from the subtree in which the daughter q is the root category.

FCRc(0) is a set of tuples (Ci, APP(i)). Ci is a copy of a category of

the subtree in which C 8 is the root category and APP(i) includes the

numbers of all FCRs which may still be applied to C i if particular

feature values of this category are going to be instantiated. The only

new set APP in a local tree is computed from the mother) because

the evaluation of the FCR constraints on the subtre~s of the

daughters includes the application of the applicable FCRs to the

daughter categories (because they are the root categories of the

subtrees). Thus the remaining tuples of the daughters and their

subtrees will be computed by the evaluation. The set of FCR

constraints on a projection of a lexical rule is FCRc(0) = {(C~,

APP(O))}.

The evaluatim~ 'evaljcr'

The evaluation 'eval for' is either defined or undefined (.L). If it is

undefined, the con'esponding local tree is rejected, because one or

more categories of the subtrees of the daughters of that local tree are

not legal.

1) eval fcr(FCRc(i)) = .L ¢=:, 3 (C,APP) ~ FCRc(i): k e APP ^

(k,A ~ B) e FCR ^ A c C ^ -,(B [J C)

2) eval fcr(FCRc(i)) = {(C,M) I (M = APP - S) ^

(C,APP) e FCRc(i) ^ M e { } } where

S = {k[(k,A ~ B) e FCR ^ (-~(AH C) v(A c_ C ^ B [J C))}

The first case (1) means that if the set FCRc(i) of a subtree of one

daughter C[includes one tuple (C,APP) in which the category C is

not legal with respect to the FCR (k,A ~ B) where 'k' is in the set

APP of numbers of FCRs, then the subtree has to be rejected,

because the category C in this subtree is no longer legal.

The second case (2) removes all the numbers 'k' o f FCRs from the

set APP of all tuples in FCRc(i), where the FCR (k,A D B) is no

longer applicable to the category C or where it has been successfully

applied to the corresponding category.

3.3 Evaluat ion and Propagat ion

After a local nee t has been proved to be a projection of an ID rule,

all F1Ps are applied to t, the FCRs to its mother, and the set APP(0)

of the numbers of all FCRs which possibly will be applicable to the

mother, is computed. After that the FCR constraints on the subtrees

of the daughters are evaluated, which means that all applicable

FCRs are applied to the daughters and to all other categories of their

stthtrecs. The remaining FCR constraints from the evaluation, and

the FCR con:;traint (C~, APP(0)) on the mother, will then be

combined to form the new FCR constraint set FCRc(0) on the

gubtree in which C~ is the root category. The new FCR constraint set

is propagated to the mother.

Next the LP-.consistency of the daughters has to be checked, and

during this check the new LP constraints on the daughters are

computed. These constraints are combined with the LP constraints

resulting fl'om the evaluation of the LP constraints on the subtrees of

the daughters, to form the entire set of LP constraints LPc(0) on the

subtree in which C/~ is the root category which is then also

propagated to the mother.

4 Conclusion
With this method of constraint computation, evaluation and

propagation," a new definition of the admissibility of trees is

necessary.

Definition: admissibility of trees

A tree is adndssible iff all of its local trees are admissible and the

evaluations 'eval fcr' and 'eval lp' of constraints of theroot category

are defined and both are the empty set {}. A local tree t is

admissible iff it is a projection of a lexical rule or iff it

- is a projection of an ID rule with the FCR constraint (C~, APP(0))

on the mother C/~ and

- satisfies all of the FlPs and

- is LP-consistent with the LP constraints LPc(i,j) on all daughters C[

and ~ which ,are propagated to the mother where 1 _< i < j < n and

- the evaluation 'eval_fcr(FCRc(i))' of every daughter C[i sdef ined

where 1 ~ i < n and their results are propagated to the mother and

- the evaluation 'eval_lp(LPc(i))' of every daughter C i is defined

where 1 ~ i ~ n and their results are propagated to the mother.

The consequence for the root category R of an entire tree of one

input string of a natural language will be the fact that all features fi

of R, where ~spec(R(fi)), and where fl is needed for the evaluation

of the constraints o f the tree, have to be instantiated according to

their domain D(fi) because such a tree represents a class of

ambiguous solutions. After that the constraints on every tree of this

class are evaluated and only the trees where FCRc(0) and LPc(0) are

defined and their evaluation is { } are admissible.

References

[Barton85] : G.E. Barton Jr.; "The Computational Difficulty of ID/LP Parsing";
23rd Ann. Meet. of the ACL at University of Chicago; Chicago 1985

[Bresnau/Kaplan82] : J. Bresnun, R.M. Kaplan; "Lexical Functional Grmnmar: A
Formal System of Grammatical Representation"; in: MIT Press Series on
Cognitive Theory and Mental Repr. pp.173-28 I; Cambridge 1982

[Busemann87] : S. Busemann; "Generierung mit GPSG"; in: K. Morik(ed.)
Proceedings of the llth German Workshop on Artifical Intelligence
pp.355-364; Springer-Verlag; Geseke 1987

[Busemann/Hauensehild88] : S. Busemann, C. Hauenschild; "A Constructive
View of GPSG or How To Make It Work"; 12th International
Conference on Computational Linguistics, Budapest 1988

[DSrre/Momma851 : J. D~rre, S. Momma; "Modifikationen des Earley-
Algorithmus und ihre Verwendung flit ID/LP-Grammatiken"; Manuscript
of the Department for Linguistics/ Romanistics at the University of
Stuttgart 1985

[GKPS85] : G. Gazdar, E. Klein, G. Pullum, I. Sag; "Generalized Phrase Structure
Grammar"; Oxford; Blackwell 1985

[Hanenschild/Buse,nann88] : C. Hanenschild, S. Busemann; "A Constructive
Version of GPSG for Maschine Translation" in Steiner, Schmidt,
Zelinsky-Wibbelt (eds.) "From Syntax to Semantics-Insights from
Maschina Translation", Frances Pinter

[Karttunen84] : L. Karttunen; "D-PATR: A Development Environment for
Unification-Based Grammars"; llth International Conference on
Computational Linguistics, Bonn 1986

[Keller87] : W. Keller; "An Overview of the Project NASEV Parser"; Manuscript,
University of Sussex 1987

[Kilbury84] : J. Kilbury; "Earley-basierte Algorithmen filr direktes Parsen mit
ID/LP-Grammatiken"; KIT-Report 16; T(.I Berlin 1984

[Ristad86] : E.S. Ristad; "Computational Complexity of Current GPSG Theory";
24th Ann. Meet. of the ACL at Columbia University; New York 1986

[Shieber84] : S.M. Shieber; "Direct Parsing of ID/LP Grammars"; Linguistics and
Philosophy 7 1984 pp.135-154

[Shieber86al : S.M. Shieber; "An Introduction to Unification-based Approaches to
Grammar"; CSLI Lecture Notes Number 4, Ventura Hall, Stanford
University, Stanford 1986

lShieber86b] : S.M. Shieber; "A Simple Reconstruction of GPSG"; Proceedings of
the llth International Conference on Computational Linguistics; Bonn
1986 pp.211-215

• [Weisweber87] : W. Weisweber; "Ein Dominanz-Chart-Parser fiir genemlisierte
Phrasenstrukturgrammatiken"; KiT-Report 45, TU Berlin

743

