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ABSTRACT 

A n6~ ~/~ of au~mtic l~u~/cal disa~i~ation of 
big t ~  is d~ri~, us~u~ recent p~f- 
t/u~tical ~s~l~ f~ %/~ th~zyf of cat~rial 
~an~. 

O. Injection 

The Insti~te of ~tc~h I~(~i~ (I/~), ~ z ~  

~ r~tc/u ~ %/ue ~lgian ~ ~ ,  oensists 

of t~ d e ~ .  ~ of %7~ ~ of 

~ a ~ ,  ~ of %/~ ~ ~ s ,  is to ~id a 

~ for l~l~ical reset. R~s d a ~  

is 8, pote~ntially /_~%~, ~t of ~ .  ~ 

is to supply a z~p~tati~ ~, if l~sible, 

~lete ~iew of ~n~0or~ (s~r~e I~70) 

stan~ ~_h. In o ~  to ac~ %~ ~ial, an 

elf icier ~ta~ ~ t ~  ~ ~lication 

~fi-w~ ~ ~i(~. At ~/%is n~t (Febz~ 

1988) ~ I~L ~im~s is ~/~ ~t ~ t a t i ~  

oo~ of t/~ ~_/u l~e; it ~tai~ ~er 45 

milli~n ~e/~, ~ 8~, ~ ~ ~ .  

IN5 l~c~l ~ta~qse is not an ~ ~ i~If: 

it is ~ t  to ~ a ~i for ~ific l~Jects, f~ 

of ~/~ ~ s  of due data~ is ix9 fore f/~ r~ 

~ t  for a ~ gestation of ~cti~le~. R~ 

data~ is ~J~, ~ it is .not ~listic ~ 

on J~/~xj it wilt ~ it Ix~ib]e t~ 

~c/u a ri~ ~ of ~nfonnation. R~fo~, a 

~ tJ~ ~i is %0 ~e all ~/~ we~ ~ t~ 

data~ av~lable for ~ I ~ ,  en t/~ 

I~ by ~ ef ficie~nt ~ ~x~ul 

a~plication ~ft~, en ~/~ o ~  I~ 

onrich~ ~/~ ma~xgrial. Aut~tic mozl~hologic~ 

~uqalysis I~ r~ ~ c~i~ out m~ ~ l~_~l~s 

will ~ ~ ~rporat~ J~ut~D %/~ da~l~. Or~ 

l~el hig~r, we ~ J~nte~ J~% t/~ sizn~c 

not %/~ of an on-lk~ Imrse~" c~l~o fbr ii~ 

process of lemmatization an effective 

¢[i~i~%/en ~ e  is ,~x~ss~ as well. %b 

% ~  on ~ ~ .  ~ was ~ case for i~j 

~l~ic~l ar~ll~ , i~ s~tactic ~ is an 

~l~tion of a c~ial c~l~l~o ~d~ 

~uotion of ~ philo~ ~ i/~ La~ 

ca~i~ parser we use for ~ ~i~ation 

~taotic ~lysls is ~ topic of this pap~l ~ . 

i. A note on smbi~ty J_n C~tegorial G~r~ 

F~c/u li~ic ~ i  or framewoz~ ~ ~  is 

oc~r~n~ ~%/u ~ ~lem of ambi~ l~cal 

~ t e v e r  way c¢~ d e a l s  w i t h  i t  a s  f a r  a s  

~ ~ t / o n  is ~ ~ whatever neat 

soluti~ ~ ~ ~ ~t~h, %~ fa~ rem~ixls dqat 

(i) ~ ~ ~ii not dlsappea~, but (2) the 

explo6ions it gives rise to will cause (often 

irreparable) danage %0 (othec~ise) neatly conceived 

~tactic l~s~ or ~alyzers. C~t~orial 

~'~, ~id~ by ~ (~trici~ of ~ L e x i ( x ~ ,  

may seem by  n a t u r e  t o  be  t.he f i r s t  v i c t i m s  o f  t h i s  

I ~ .  S(m~ c~tc~i;orialis~ try to ciz~e~t 

t/~ problems by ~ inherently ~Dtiva~ 

~ ~  en ot/~i~ rigidly defined flexible 

take a cl~ look at ~ of ~ z~icti(~is 

c ~  ~ ~/~tly, i.e. at ~ of t~ 

~ian~ that ~m a l c o a  r~tur~ly, but ,~ 

remain unnoticed at first sight ~ . Interesting 

invariants may act as greedy scissors, p~un~ 

away ~m~ny of the useless branc~s of the search 

tree. Catecjorial grammrs encode all syntactic 

~ t i e n  in the i ~ o  The effect of this 

s~ra~ on ~ ~ence of ~i~t/es can 

gat/~ if one ~id t~e an oz~i~ p~'ase 

694 



stzuc~c~, 9~am~c and tun~ it into a categorial 

(~ ~bat happens is that for every cat~ in the 

PS g~:am~E one  g e t s  a set of categories in the 

Cate~risl grsna~c. C~ %be avarage, the n ~  of 

nsw cate4~ies e@mls the ~ of occurzances of 

old cat~3Dry in %1%8 PS i~/les. A lexical ele~nt 

that is not at all aa~iguous as far as s~ntac%J.c 

cate~oz~ ass±gm~ant is o c ~ ,  in PSG, will 

a~ost c~Tain/~ beoc~ ambiguous in C~. Still, we 

claim %/~at effective, i.eo fast, disa,~iguati~, is 

.p~sible with CGo ~ rationale behind this claim 

:I.~ that effective disamhiguation does not depend as 

much c~ the de~£~e of ambiguity, but first and 

foz~st on tl~ nature of f/%e dissmbiguation 

~l~'Ic~'~do ~lIl~z'e~.~ "6m~big~llty is damaging to ola~Lgical 

~ a  p:c,~Jedures because there are no intrinsic 

Zr~e~%i~s of the system that can deal with it, 

aiUnost ~;ho reverse is ~ of cat~jorial 

v~, full l~r~fit is made of theft defining 

c/%aracteristics. :In order to appreciate these 

s~te~nts, the best thing %o do is look at a 

specifio J~l~tation of this idea. 

2° ~f~e L£:mbek calculus 

]i~ this section we would like to present a 

categorial reduction system which is ~alogous to 

t2~ ~t0]icatic~al fragment of propositional logic° 

We ~d.ll present it as a calculus, and will limit 

o~ese].ve,~; to the formal description, thus ignorJ/~g 

semantic interpz~tation (which is not /nm~liately 

relevant for our ~ at hand). 

Some definitions 

Let BA£:CAT be a finite set of at/muic categories 
and CC~ a finite set of category forndrg 
connec~:ives. Then CAT (the set of all 
categories) is t_he induotive closure of BASCAT 
under (~NN, i.e~ the smallest set such that (i) 
BASCAT is a subset of CAT, and (ii) if X, Y are 
manbez~; of CAT and I is a msmber of CDNN, tt~n 
(xlY) i s  a ~ of CAT. 

So or~ could take BASCAT to be [S, N, A, T, P} 
and C~I~N [/, \, *} (these az~ called right 
division, left division and product, 
respes%ively). Some of the ma~rs of CAT are: 
{N, (NkS), ((N/N)*T), (S/(P\(N/S))) .... ). 

A o~],~ category (xl Y) consiste of thre~ 

:h~m~diat~, suho~%occ~nts: X and Y, which are 

tbla,L~el~ catecdories , and %/1e oo~aeo~cive. When the 

c~3ot~ is '/' or 'V, the complex category is a 

f u n c t o r .  ~Inactor cate4~ories are associated with 

incxx~plete expressions: they will form an 

~.~ssion of c a ~  Y (result) with an 

expressi~a of category X (arg~nt) ~ . In the case 

of right division, %h8 argument has to be found to 

fk~ right of the ~ category, whereas in the 

case of left division, the argument l~as to be found 

%0 ths left 5 o 'f1~e produc t o~ive '*' is %0 be 

interpreted as a c~x~atenation operator, i.e. a 

prock~ category (X'Y) is to be associated with an 

expression which is the ooncatenati~ of an 

expression of category X and an expressi~ of 

categozy Y in that o~der. 

Reduction rules 

A specific categorial grammar is 

characterized I~ the choice of basic c~be/jories and 

oennectives on the one hand, ~%d (m the set of 

reductic~ rules (xl %ks other. The system of 

reduction rules says how categories c~t be ccm~/J~ed 

to form larger o0nstih~ents. The application rule 

which cxlabines a funct~r with domain X "and rark3e Y 

with a suitable a~tm~nt of category X %0 give a Y, 

is only one of the possible reduction rules. 

I,%stead of t~{ing a set of reduction laws as 

pr~tltive axioms, we will investigate the 

categorial re,orion 8yst~n as a calculus, whare 

the reduction laws can be ccnsidered theore~u~ that 

follow from a set of axioms and a set of inference 

rules. Next we will see that the parsip~, of a 

syntagm i s  really the same thing, in ot/~r words, 

attempting a pz%9of for a theorem. 

Sequents 

Before we define the axioms and inference rules of 

the calculus, we need %o define the r~3tion of 

sequant 6 . 

A sequent is a pair (G,D) of finite (possibly 

[~ ..... B.] of categories. For categorial L- 
sequents, we require G to be non-e~ioty and n=l. 
For the sequent (G,D) we write G => D. The 
sequence G is called the antecedent, D the 
suocedent. For simplicity square brackets and 
ccmma's are often left out. 

Axloms and Ja~ference rules 

(I) ~ ~ of L are sequ~ts of t~ fo~n X => 

X. 

(2) Inference rules of L: X, Y and Z are 

categories, B, T, Q, u, V are sequences of 

categories, where P, T and Q are ,%on-eai0ty. 
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[/R] T => Y/X if T,Y => X 
[\R] T => Y~X if Y,T => X 
E/L] U,Y/X,%V => Z ifW =>V 

and U,X,V => Z 
[\I.] U,T,Y~X,V => Z if T => Y 

~d U,X,V => Z 
[*L] U, XeY,V => Z if U,X,Y,V => Z 
[*R] P,Q => X*~f if P => X 8nd Q => Y 

~jether, c~nic~ns and inferenc~ rules define tl~ 

theorems of a categorial calc~ll~-~0 Suppose we have 

a sequent S, to fi~ out w~ther it is a t~)r£~n or 

not we have to apply several, of f/~e infe~e rules 

above till hog]ring but axi(~ ~anain .  A~ ~ e  n~y 

have noticed, all these rules involve the ].~moval 

of a ~nnective Jn some category. Let's p~[caphrase 

~/m [/L] rule by way of ex~01e. It says: to find 

OUt w~ther a sequent with s~e fur~cor category 

Y/X is a theoz~L identify a sequence of 

categories that follow this category, and see 

whether Y => the identified .sequence is a theorem, 

and what preceded the catego~} + X + what followed 

the sequence => old succedent is a theorem. 

In the following ex6m~01e we present a proof with 

the relevant category printed in bold and the 

identified sequence underlined. 

a / b ,  d / ( e / ( f / a ) ) ,  d, e ,  f => b [ / n ]  
d => d [m~.0M] 

a/b, e/(f/a), e, f => b [/L] 
e => e [A~ICM] 

a/b, f/a, f => b [/n] 
f => f [m~] 

a/b, a => b [/n] 
a => a [A~IOM] 
b => b [~[IOM] 

If we could find an effioient augx~natic decision 

procedur~ %k~t would tell us whether a certain 

~/uent is either a theorem or not, then we wo~id 

have an efficient parser ~s well. The idea being, 

that the succedent represents s~ething like a 

sentenoe (the cag~gories of the words that make it 

up) and the antecedent the S (sentence) category. 

In t/%e next section we will discuss an 

implem~ltaticn of the decision procedure. 

3. The Theorem prover, alias parser 

An algorithm to prove a theorem, could go as 

follows. 

Giv~: a sequent ~.LTh n (~tegories: n--I in 

8ntecedent, 1 ~]~ succedent. 

Start at the the first category of the succedent. 

If this is a functor, pick ihe relevant ix~f~ 
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~lle tl~It will elJndr~te %he oc~nsctive. If tl~ 

zn].e tells you to identify a part of the sequent to 

one of ~gya sides of the category, then first take 

this t~ be one category. See wbe~r ~ou can prove 

t ~  r ~ i l . t J n g  sequent(s) (the sequent(s) in ths if- 

~3rt of th~ inferer~e x]/le). If %he identification 

~ not ~_eld a ~],t (i.e. it, ~siv61y 

calling %~*e ~ ,  th~ Px>tt¢~a of c2fi~, ~]~ms 

r~mginlng is not reacl~ed), i~oI take two eateouories 

a~d see if this do~s %/-~ trick° (~%tinue aCiding 

cat6~Z)rJ.es [nltil ~ou have a p~of or iilez~ a~a ~c) 

ca te]orie~ left. Ixt the latter case, notkeh~j i~; 

i(~t yet, because one (x~ald also have "taken the 

,'o~cxx~, or third functcm to start the proof ~¢3_t-ho 

If Jn %he end there a~'e no ~ ftu~ors left %o 

start the ellnflrmtion with, then the tt~)~em 

cm~~t be ~mov~ a~ one 'can even say %hat i% is 

falsJ. 

Clearly, t~.s procedure might take some time %0 

deoide on %he validity of a seq~lent. One might 

hope that %heor~,~ are proven rapidly, but w ~ l  

the sequents are false, a lot of ~ork has to be 

£k~. Fortunately enough, there is a si,101e way to 

prune away some branches of the search tree that 

are guarar, teed "to lead to faillDre. There is a 

necessazy formal condition that holds of valid 

ii~eore~ms which is easy to detect~ If a sequent does 

not have this formal characteristic, it cmmot be a 

theo.r~ral Even if %he inputted sequent does have "the 

z~/ired characteristic, in %he pz~ce~s of proving, 

there will be a lot of subproofs %bat need not be 

carried out because they will fail inmnediately. 

This formal characteri.%~tic or Jnveriant is known as 

val Benthem's Go,it, or Count for shor~ .  It counts 

%/]e ~ of positive (range) and negative 

(domain) of a basic categoz¥ X in an 

arbitrary category, basic or complex. It may be 

defined as follows. 

count(X,X) = i, if X is a n~mber of BASCAT 
oount(X,Y) = O, if X,Y m~n~0ers of BASCAT, 

X<>Y 
oount(X,Y/Z) =: count(X,Z) - ommt(X,Y) 
oount(X,YkZ) = count(X,Z) - oount(X,Y) 
count(X,Y*Z) = count(X,Y) + count(X,Z) 

C~a,~ralized fm sequ~ of categoxle~, t~ X -- 

o~at of a sequence, X being a category, is the 

sum of %he X.-oounts of %he elements in the 

seqllence. 

c o u n t ( X ,  [Yl . . . . .  ¥ . ]  ) = ~ x ~ n t ( X , Y 1  ) + " ' °  
+ s o ~ t ( X , Y .  ) 



] ; t  w~.' gco~c{n bF Van ~t~u (1986) t i ~ t t  "d~_~ ( ]oo~t 

fa<~)tion Js ~i Jnvs~lanl: os, e~ deriwltJ.o~z<7~o Tn:i;..~ 

li~aD~ ~ [ :  ~ f~Et l l~ l t  :IS a +~F~Z~II if "{]I~ (X<~n{; 

va].uos o f  %/ira alltex~-Jr~nt diffez" f z ~  "/-h<a [x~l~i; 

v a l u ~  of ,Jm succ+_~k~t ft~' ~ basic {m%ogo'~:y.~ '~ha 

(~ate4~,o:ty (PP/(NP\8)) ca~i ~ (xclt~xt~d for O~k'h of 

[ S NV N AP PP ] 

..... ]-:,7 :<:; . . . .  . , ]  
. . . . . . . . . .  7~ ................... : - ±  . . . . . . . . . . . . . . . . . .  : ..... 
I ...,,~ [ [ o  o o o : , . i  

/ :7•<~: ' \s)  i ~i-~ o o 0.1 

. . . .  7175 .......... ] ~ o  1 o o ,_i:t 

............ tt o . o o l  

'It) ,~s~ "lb~ ~fu]x~s of %his invmTiax~t t ake  a 

9~:(~vth of the h6K['c' )o Aps~t f~n de-, all ~):[~l~J i n  

l i d s  NP a,]# mi~biguo~<]o ' l i~ C~-~rhe~ian [zcc~lct  o f  91he 

m,biguities gives 12 difforent cx~nbi rlato~y 

[~Atis:[bilit:<e~: 

(N/NP) ,N, (NP/PP), (N/NP), NP 
( N / I ~  ),  N, ( NP/PP ), ( N/NP ) ,  ( N/NP ) 
( N/l-t~ ),  N, ( ~elPP ) ,  ( ~ / ~  ),  N 
(N/t~') ,N, (NPI(~N)), (N/NP),NP 
(N/Ia) ,N,  (NP/(NkN)), (N/NP), (N/NP) 
(~ /~e)  ,~ ,  (~P/ (~k~ ) ) ,  ( ~ / ~ )  ,~ 
( N / i ~ ) ,  ( NP\S ), (NP/PP), ( N/NP ), NP 
(N/I~),  (NP\S), (Ni'/I'P), (N/NP), ( N/NP ) 
(N/Ta), (NP\S), ( NP/PP ), (N/NP), N 
(N/NP), (NP\S),  (NP/(N\N)) ,  (N/NP),NP 
(N/NP), (NP\S), (NP/(N~N)), (N/NP) ~ (N/NP) 
(N / } a ) ,  (NP\S),  (NP/(N~N)), (N/NP),N 

%k] figure o~'t whethem' i~zis J~au~e is a i~un 

phr ~ase, one ~mld have %x} ~ to hJild a (NP) 

pa~e ~'e~l for each of these -twelve Ix)ssible 

cx~,bJnati(~s of ca~<)ry assi~T~Itso UsJn~J t 'ho 

GOt~]t inwwiant~ l~wever, one 1 ~  beforelknnd 

%hat ons ~ only c~ of these o~nblnations (given 

iY_l hold faos) oL~Id [x]6~ib].y b~ 1~3].~ as a ~ l  

phrase, ~.t "Chat pazsJ]~J, itself b~l~s super£1u~ 

in this ca~ ~i~ fbllowing fic~l~ shows "tha Cx:~It 

values fo~ t/~a cx]r~eot ~ssiq~,t~it. 

N/~, [ 0 I -Z 0 0 ] 
N [0 0 l 0 0] 
(NP/(NkN)) [ 0 -i 0 ' 0 0 ] 
( N / ~ )  [ 0 1 -1 0 0 ;I 
~f [0 0 i 0 O] 

+ [ 0  ! 0 0 O] 

N~. [ o  ~ o 0 o] 

'.|.'ho ~:e~r can vem'ify for hia~elf that *\lie of %1~ 

other: rxm~Dinations satifies the count invariant. 

it is (k~J.~ that the pmx~edure ,just presented is 

a ~rfe~t n~m~ to lay hands on "the ratios of the 

f~:3qu~ieJios of lexica].ly ambiglKx~ ~rds, given a 

~x)~l~us ~In(] a lexicon with c~tegorial iufonnation. 

L',o, J~ c)xfi6z. #so dex'ive thes~ figiL~ss for the words 

h *  %l~ t~EK database, sentences of the INL corpus 

a~ Ir~utg~d ~n a c~ada of diesmbiguath~ 

i,~x~leso The implementation of this Lambek- 

@~x-tzen di~bi[~ator is straightfozward as it 

/ ~volv~.~ only s.il~ple ~atchlngs £~%d list- 

,~anIl~lati~r~s. The m01e of the dis~iguator /]~ 

t h e  V~c~s of ~J s ~ i g u a t i n g  t h e  L corpus can t ~  

off frcl, the f'ollow]ng figUmSo 

CORPUS : set of s e n ~  

=> sente31ce select/on 

SENTF/$3~. (i) : list of words 

=> cat egozg asslgrment / lexical lookup 

SENTENCE (2) : list of wozTls + 
cab~ories 

=> ge~rate c~zbinat/ons 

COMBIhi~TIONS : list of categories 

::> test comblnatltms 

(i) C/3~nt 

(Z) Parse / pro~e 

RE~Uf,T : grammatical lists 
of categories 

Given a coz]pus sentencx9, %he s!nstactic 

categories of all the words it contains are looked 

tip .in a parsing lexicon derived from the 16Dcical 

database. When al]. combinations of caSegories have 

been computed, each is tested by the Oount module 

%0 ~guce %lie number of possible co~Jnatic~s of 

initial category &ssignments. In the most 

su~ful case, this reductifxz produces ~ily c~9 

possible oc~inatlon, Jmplylng %hat all lexical 

material in this sexztence is disambigua%ed. In most 

otl~gr cases, tllly a saall ~tago of the 

om'iginal n~Mae~ of possible ocm~inations of 

le~ical assignments is left over; these aro handed 

over to the Gentzen Proof Machine which wlil find 

out which of %1~ ~emain/ng assignments fail to 

oc~b~lne t o  a 9z'am, Tstical sentence. 
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Notes 

I. Much of the work described here is based on 
research by Michael M0ortgat. See e.g. his (1987a, 
1987b, 1988). 

2. e.g. Wittenburg (1987), Steedman (1987). 

3. I ns tead  of theorems deducible frcm the calculus 
they are often facts that can be proven of the 
calculus as such, outside the calculus 
(n~tatheorems in other words). 

4. This c~%ation is called applicaticn. 

5. Notice that we will use the (argu~nt 
connective result) r~>taticn, no n ~ "  wt~t ~e 
directionality of the functor. 

6. We wili present the sequent calculus, which 
Lambek adapted from Gentzen's work on logic. See 
Lambek (1958). 

7. Because of space limitatic~s ~ will not 
attempt to show the validity of this procedure. 

8. Proof omitted for space's sake. 
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