MASSIVE DISAMBIGUATION OF LARGE TEXT CORPORA
WITH FLEXIBLE CATEGORIAL GRAMMAR

Ton van der WOUDEN (CELEX/INL)
Dirk HEYLEN (INL)

INL
Postbus 9515

2300 RA Leiden
The Netherlands

ABSTRACT

A new method of automatic lexical disambiguation of
big texts dis described, using recent proof-
theoretical results from the theory of categorial
grammar.

0. Introduction

The Institute of Dutch Lexicology (INL), sponsored
by the Dutch and the Belgian governments, consists
of two departments. One of the tasks of the
Mam, one of the departments, is to build a
database for lexicological research. This database
is a, potentially infinite, set of texts. The aim
is to supply a representative and, if posgible,
camplete overview of contemporary (since 1970)
standard Dutch. In order to access the material, an
efficient database architecture and application
software were developed. At this moment (February
1988) the INL corpus is the most representative
corpus of the Dutch language; it contains over 45
million tokens, over 800,000 word types.

The INL lexical database is not an aim in itself:
it 1s meant to be a tool for specific projects. One
of the purposes of the database is to form the raw
‘dnput for a new generation of dictionaries. The
database is growing, and it is not realistic to go
on increasing it without making it possible to use
such a rich source of information. Therefore, a
short time goal is to make all the words in the
database available for research purposes, on the
one hand by making efficlent and powerful
application software, on the other hand by
enriching the material. Automatic morphological
analysis has now been carried cut and the results
will soon be incorporated into the database. One
level higher, we are interested in the syntactic

694

analysis of the sentences of the corpus. Ons should
not think of an on-line parser oaly. For the
process of lemmatization an effective
disambiguation procedure is necessary as well. To
this end parsers are beirgy developed that will soon
be tested on the corpus. As was the case for the
morphological analyzer, the syntactlic parser is an
implementation of a categorial calculus. The
construction of and philosophy behind the Lambek
categorial parser we use for the disambiguation and
syntactic analysis is the topic of this paper!.

1. A note on ambiguity in Categorial Grammais

Each linguistic model or framework whatsosver is
confronted with the problem of ambiguous lexical
type assignments, a phencmenon inhsrent to No.
Whatewver way one deals with it as far as
representation is ocomwerned and whatever neat
solutions one comes up with, the fact remains that
(1) the phenvmenon will not disappear, but (2) the
explosions it gives 1ise to will cause (often
irreparable) damage to (otherwise) neatly conceived
syntactic parsers or analyzers. Categorial
gramars, abiding by the centricity of the Lexicon,
may seam by nature to be the first victims of this
phencmencn. Some categorialists? try to. circumvent
the problems by imposing inherently unmotivated
constraints on otherwise rigidly defined flexible
calculi. Another way to go about, however, is to
take a closer look at some of the restrictions the
caleulus imposes iIndirectly, i.e. at some of the
inwvariants that come along naturally, but way
remain umnoticed at flrst sight’. Interesting
invariants may act as greedy scissors, prundng
away many of the useless branches of the search
tree. Categorial grammars encode all syntactic
information in the lexicon. The effect of this
strategy on the presence of ambiguities can be
gathered - if one would take an ordinary phrase

struchuce gramvacr and turn it into a categorial
ane. What happens is that for every category in the
PS gramuir one gets a set of categories in the
Categorial grammar. On the avarage, the number of
new categories equals the nuwber of occurrerces of
the old category in the PS rules. A lexical element
that is xwt at all ambiguous as far as syntactic
category asgigmment i1s concermned, in PSG, will
almost cectainly become anbiguous in OG. Still, we
claim that effective, i.e. fast, disambiguation, is
possible with 05. The rationale behind this claim
is that effective disamblguation does not depend as
much on the degree of ambiguity, but first and
foreiost on the nature of the disambiguation
method. tiwreas anbigulty is damaging to classical
parss procedures because there are o intrinsic
progectics of the system that can deal with it,
atmost the rveverse is true of categorial parsers
when full benefit i1a made of thelr defining
charscterdstics. In order to appreciate these
statements, the bast thing to do is look at a
speclfic implementation of this idea.

Z. The Lembek calculus

In this section we would like to present a
categoriel veduction system which is analogous to
the implicational fragment of propositional logic.
We will present it as a calculus, and will limit
ourselves to the formal description, thus ignoring
gemantic interpretation (which is not inmediately
relevant for our purpose at hand).

Same definitions

Let BASCAT be a finlte set of atomic categories
and CCNN a finite set of category forming
conectives, Then CAT (the set of all
categories) is the inductive closure of BASCAT
under (ONN, i.e. the smallest set such that (i)
BASCAT is a subset of CAT, and (ii) if X, Y are
members: of CAT and | is a member of CONN, then
(X]Y) is a mamber of CAT.

So ons could take BASCAT to be {S, N, A, T, P}
and OONN {/, \, *} (these are calied right
division, left division and product,
vespectively). Same of the mambers of CAT are:
{N, (N\8), ((N/N)*T), (S/(P\(N/S))),...D}.

A ocomplax category (X|Y) consists of three
Iumediate subconponents: X and ¥, which arve
‘thenselves categories, and the comnective. When the
cannective 1s '/ or '\', the complex category is a
functor. Functor categories are assoclated with
incomiplete expressions: +they will form an
expression of category ¥ (result) with an
expressicn of category X (argument)?. In the case
off right division, the argument has to ba found to

the right of the functor category, whereas in the
case of left division, the argument has to be found
to the left’. 'fhe product connective '*' ig to be
intexrpreted as a concatenation operator, i.e. a
product category (X*Y) is to be assoclated with an
expression which i1is the oowatenation of an
expression of category X amd an expression of
category Y in that order.

Reduction rules

A specific categorial grammar is
characterized by the cholce of basic categories and
conectives on the ane hand, axl on the set of
reduction xules on the other. The system of
reduction rules says how categories can be conbined
to form larger constituents. The application rule
which cambines a functor with domain X and range Y
with a suitable argument of category X to give a ¥,
is anly one of the possible reduction rules.
Instead of taking a set of reduction laws as
primitive axioms, we will investigate the
categorial reduction system as a calculus, where
the reduction laws can be considered theorems that
follow from a set of axioms and a set of inference
rules. Next we will see that the parsing of a

syntagm 1s really the same thing, in other words,
attaempting a proof for a theorem.

Sequeants

Before we define the axioms and infevence rules of
the calculug, we need to define the notion of
sequent? ,

A sequent is a pair (G,D) of finite (possibly
empty) sequences G = [A,...A]], D =
[B;,...,B,] of categories. For categorial L~
sequents, we require G to be non-ampty and n=1.
For the sequent (G,D) we write G => D. The
sequence G is called the antecedent, D the
succedent. For simplicity square brackets and
camma's arve often left out.

Axioms and inference rules

(1) The axioms of L are sequents of the form X =>
X.

(2) Inference rules of L: X, Y ax Z are
categories, B, 7T, Q, U, V are sequences of
categories, where P, T and Q are non-empty.

[/R] T =>¥/X if T,Y =
\R] T => Y\X if ¥,T =
(/L] U,Y/X,T,V =>2%if T => ¥
and U,X,V => Z
[\L] U,T,Y\X,V=>21f 7' =>¥

and U,X,V => Z
[*L] U,X*Y,V => Z if U X, Y,V => 2
[*R] P,Q0 =>X*Y if P = and Q => ¥

Together, axicms and inference rules define the
theorems of a categorial calculus. Suppose we have
a sequent S, to find out whether it is a theorem or
not we have to apply several of the infereace rules
ahove till nothing but axioms remain. As ons may
have noticed, all these rules involve the removal
of a comective in some category. Let's pacaphrase
the [/L] rule by way of exawple. It says: to f£ind
out whether a sequent with same functor category
Y/X is a theorem, identify a sequerxe of
categories that follow this category, and see
whether ¥ => the identified sequence is a theorem,
and what preceded the categury + X + what followed
the sequence => old succedent is a theorem.

In the following example we present a proof with
the relevant category printed in bold and the
identified sequence underlined.

a/b, d/(e/(£/a)), 4, e, £ => b [/L]
d=>d © [ARTOM]
a/b, e/(f/a), e, £ =>D [/L]}
e=>6 : [AXTOM]
a/b, t/a, £=>Db [/L]
£ =>f [AXIOM]
a/b, a=>b 929
a=>a [AxTOM]
b=>b [AXIOM]

(OFD

If we could find an efficient automatic decision
procedure that would tell us whether a certain
sequent is either a theorem or not, then we would
have an efficient parser as well. The idea being,
that the succedent represents something like a
sentence (the categories of the words that make it
up) and the antecedent the S (sentence) category.
In the next section we will discuss an
implementation of the declision procedure.

3. The Theorem prover, alias parser

An algorithm to prove a theovem ocould go as
follows.

Given: a sequent with n categories: n-1 in
antecedent, 1 in succedent.

Start at the the first category of the succedent.
If this is a functor, pick the relevant inference

696

ruie that will eliminate the comective. If the
vule tells you to identify a part of the sequent to
oane of the sides of the category, then flrst take
this to be one category. See whether you can prove
the resulting sequent(s) (the sequent(s) in the if-
part of the inference ruls). If the ldentification
doss not yield a result (i.e. 1n wecursively
calling the procedure, ths bottom of anly arxiomg
remaining is not veached), then lake two categories
and see if thls does the trick. Contimue addirgy
categories until you have a proof or there are no
categories left. In the latter case, nothing is
lowst yet, because one oould also have taken the
secand, or third functor to start the proof with.
If in the end there ave rw more functors left to
start the eliminatica with, then the iheorem
canyt be proven anl one can even say that it is
false’ .

Clearly, this procedurs might take some time to
decide on the validity of a seguent. One might
hope that theorems are proven rapidly, but when
the sequents are false, a lot of work has 1o be
dore. Fortunately enough, there 1s a simple way to
prune away some branches of the search tree that
are guaranteed to lead to failure. 'there is a
necessary formal ooxlition that holds of valid

- theorems which is easy to detect. If a sequent does

not have this formal characteristic, it cannot be a
theorem. BEven if the inputted sequent does have the
required characteristic, in the process of proving,
there will be a lot of subproofs that need not be
carvied out because they will fail immediately.
This formal characteristic or invariant is known as
van Benthem's Count, or Count for short. It counts
the number of positive (range) and negative
(domain) occurrences of a basic category ¥ in an
arbitrary category, basic or complex. It may be
dafined as follows.

ocount(X,X) = 1, if X 1s a member of BASCAT

count(X,Y) = 0, if X,Y members of BASCAT,
XO>Y

count(X,Y/Z) = count(X,2) - count(X,Y¥)

count (X, Y\2) = count(X,Z) - count(X,¥)

count(X,¥*2) = count(X,¥) + cont(X,z)

Generallzed to sequences of categories, the X-

count of a sequence, X belng a category, is the
sum of the X-counts of the elements in the

SOQUENCO .

count(X, [¥) ,...,¥ 1) = count(X,¥%) + ...
+ oount(X, Y,)

It was proven by Van Banthom (1986) that the Conat:
funntion 18 an Inverlant over derdvations® . ‘fhig
means that no seguent is a theorem if the cound
valuos of the auntecedent differ from the count
virluss of tho succedent for any basic cabogory. The
following Sigure shows how the count valves for tha
catagory (PP/(NP\S)) can be canpubed for each of
the basic categorles 8, NP, N, AP and PP.
[8 N N AP pp

| o p/eNs)) T4 1 0 0 -1

Cop [0 0 0 0 17
N g(N”\(;) P11 -1 0 0 0]
i T
s | 11 o0 0 o0 6

Yo sre tha usefulness of this Invarleot take &

moun phvase like de groed van het basc ('the

growth of the haic'). Bpart from de, all wocds in
thia NP aro ambigoous. 'lhe Cartesian product of the

anbiguities gives 12 different conbinatory
possibllities:

(N/IP), N, (NB/PP), (N/NP), NP
(N/1HP), N, (Ne/PP), (N/NP), (N/NEP)
(N/HP), N, (NP/PP), (N/NP), N

(N/HP), N, (NP/(N\N)), (N/NP) N
(N/HP), N, (NB/(N\N)), (N/NP), (N/RE)
(R/HP) N, (NB/(NAN)), (N/NP) , N
(N/HP), (NP\S), (NP/PP), (N/NP) NP
(N/HP), (NP\S), (Ne/PP), (N/NP), (N/NP)
(N/HP), (NP\S), (NB/PP), (N/NP), N
(N/HP), (NP\S), (NP/(N\N)), (N/NP) NP
(N/NP), (NP\S), (NB/(N\N)), (N/NP), (N/NP)
(N/NP), (NP\S), (NP/(N\N)), (N/NP), N

To figure out whether this phrase 1s a roun
phrase, ong wald bave w toey to budld a (NP)
parse txesn for each of these twelve possible
conbinatlcos of category assligoments. Using the
Count iﬁvariant, however, oo Jnows baforehand
that ons and only one of these combinations (glven
in bold facs) could possibly ke parsed as a noun
phrase, so that parsing itself becarss suparfluous
in this case. The followlng figure shows tha count

valuss for the correct assignment.

Cwme [0 1L -1 0 07
3 [O 0 1 O 01l
(NP/(N\N)) [0 -1 00 01
(N/NP) [0 1 -1 0O 0]
i [0 o 1 0 01

+ fo 32 o o o]

_ NE [o L 0o 06 0]

Ths reader con verlfy for himself that none of the
other combinations satifles the count invariant.

4. '1he duplementation

Tt is obvious that the procedure just presented is
a perfect means to lay hands on the ratios of the
frecuencies of lexically ambiguous words, given a
corpus and a lexicon with cabtegorilsl infoummation.
S0, 1n order to decive these figures for the words
in the CELEX database, sentences of the INL corpus
a6 dnputted in- a cascade of disavbiguating
mwodules. The implementation of this Lambek-
Gentzen disambiguator 1s stralghtforward as it
matchings and 1list-
manipulations. The role of the disambiguator in
the process of disambiguating the I corpus can be
read off from the following figure.

iovolves anly simple

QORPUS : set of sentences
=> sentence selection

SENTENCE (1) ¢ list of words
=> category assignment / lexical lockup

| SENTENCE (2) @ list of words +
categories

=> generate combinations

COMBINATIONS @ list of categories
=> test combinations

(1) Count

(2) Parse / prove

RESULT ¢ grammatical lists
of categories

Given a corpus sentence, the syntactic
categories of all the words it contains are looked
up in a parsing lexicon derived from the lexical
database. When all conbinations of categories have
been computed, each is tested by the Count module
o reduce the number of possible combinations of
initial category assigmuents. In the most
successful case, this reduction produces only one
possible combination, implying that all lexical
material in this sentence is disambiguated. In most
othoer cases, ’ only a small percentage of the
original mmber of possible conbinations of
lexdcal assigmments is left over; these are handed
over to the Gentzen Proof Machine which will find
out which of the remalning assigmments fail to
cobine to a grammatical sentence.

697

Notes

1. Much of the work described here is based
vesearch by Michael Moortgat. See e.g. his (1987a,
1987b, 1988).

2. e.g. Wittenburg (1987), Steedman (1987).

3. Instead of theorems deducible from the calculus
they are often facts that can be proven of the
calculus as such, outside +the calculus
(metatheorems in other words).

4. This combination is called application.

5. Notice that we will use the (argument
connective result) notation, no matter what the
directionality of the functor.

6. We will present the sequent calculus, which
Lambek - adapted from Gentzen's work on logic. See
Lambek (1958).

7. Because of space limitations we will not
attenpt to show the validity of this procedure.

8. Proof omitted for space's sake.

Bibliography
J. van Bentham (1986)

J. Lambek (1958)

M. Moortgat

(1987a)

(1987b)

(1988)

M. Steedman (1987)

K.Wittenburg (1987)

Categorial Grammar. Ch. 7
of Essays da Loglcal
Semantics. Reldel,
Dordrecht.

The mathematics of
sentence structure. In:
Am. Math. Moathly 65, 154-
169. Reprinted in
Buszkowskl e.a. (eds.):
Categorial
Benjamin's, Amsterdam (to
appear) .

Lambek Theovem Proving,
INL-WP 87-04. In Van
Benthem & Klein ({eds.):
Categories, Polymoxphica
and Unification.
Generalized Categorilal

Crammai .

Grammar. To appear in F.G.
Drogte (ed.): Malunstiresms
in Linguistics.
Benjamin's, Amsterdam.

Categarial Xuvestigations
(dissertation, to appesar).
Conbinators and *Grammars.
In Oehrle, Bach & Wheeler
(eds.):
Grammaxs and Natural

Categorial

Language Structures.
Reidel, Doxdrecht.

Predictive Combinators: A
Method for Efficient
Processing of Combinatory
Categorial Grammars. In
Proceedings ACL 25.

