Covibining Lexdcon-Dirive

and Phra

Wgsnny 1t
Centar tor Maching

Corapuier

Abstract

Lexicon-driven formalisms (e.y. Categorial Gramimay, HIPSG and
G Grannrrar), wiich do not have explicit phrase stuciure rules, arg
suitable for highor level syntax but not for low lovel fangusgo-
spaolfic constructions such as dates (July 15th, 15-JUL-1987, o),
which seoin {o roqulire the power of phirase sinectws rufos. This
papoy protsents an implomentation mefhod to combliie lexdcorn
driven parelig and phiase struciure parsing, with a speclal means
ualled graph-siructured stack.

1. virodustion

Hecent Hinguistic gramimar formalisms can bo classlited Into two
tamilies, phrase-siructuro-based or lexicon-driven. Tho phraso-
structure-based formalisms include Deflnite Clause Gramimar (5],
Lexical Functional Grammar [3], Generalized Phrase Stucture
Gramimar [5, 6} and Functional Uniflcation Gramiar {7). They «aif
are bag on context-free phrase structure rules which are
augimatiod in one way or another. On the other hand, lexicon-
drivent forrnalising include Categorial Graminar [1], Head-driven
Phragse Structure Grammar [8, 10] and GB-Grammar [4, 13]. Al of
these lexicon-diivan formaliems do not have any explicit phrase
structure riles, but information about how o combine consiltueris
into a highier constiuent is encoded o each laxicon or constiiuent
which Is i be combined. It s often argued that laxicon-diven
formalisms can handle some linguistic phenomena such oz froe-
word-order inore elegantly, and also they can capture universality of
multiple languages, as described, for example, by Wetli [14].

It section 2, on the other hand, it is argued that, while fexicon-
driven formalisros might be suitable to cope with linguistically
“inferesting” phenomeona, they lack the power to express
linguistically “unirteresting” phenoniena which are ofien very
specific to a particular language. Unfortunately, in ordor to build a
praciical parser for a “real" foxt, one must hendle very many
“uninferesting” fow level phenomena which cannot bo easily

formalized in the lexicon-driven way. Hence, i we want to build &
practical parser with & theory behind the texicon-driven formalisms,
thon it is ossential to combine fexicon-driven parsing (for highor
lovel syntay) and phrase-structure-based parsing (for low level detall
and other kinguage-specific/exceptional constructions).

liv section 3, we generalize the compuiaiional modeals of all the
foxicon-driven and phrase-struclure-based formalisms as
shift-reduco parsing. Secllon 4 introduces the graph-siructured
stach to handle non-determinisim in shift-reduce parsing. in soctions
5 and 6, wo describe the use of the graph-struciured siack
Lexicon-diven and Phrase-structure-based parsing, raspeoctively,
W then discuss how to combine these two kinds of parsing with the
graph-struciursd stack, in section 7.

wie-Mellon University
Pittshurgh, PAGY

&

14, UGA

2. Arvgumients agalnst Lexicon-Driven Parshing

I practical applications, input sentences have many jangs

ffic phonomens dhat ave not linguistically Ttorosiing”

Congider tha following sentences:

Tak Two tablets of aspirin four fimes & day,
Add & paragraph or two w section 5.4,

Sehodule a moeting with Docior Jainme Caibonell
on July 15t from 3:30 P,

Al of those sonlences comain no interesting syntu phcoe

but have a ot of languago-speciiic low-leval constractions, suc
“four tiries @ day”. I seems that theso @5 no beltor way o Spo
ihis patiem than a phrase structure rulo:

efroquoncy < <integer: <timess <intogor: <iimas-onit-
augimented in one way or another 1o checlk number agirseiiicnt i,
Similar arguments can be made for rulos:

<person-names -~ <titto> <first name: <last-naime:

wdimes < <integers " <intogers ("AM" | "PM")
Thiese construcilons are "uninforesting” because wo ali ki
i fedious W specily those phenomens, and B s just a
sitting down and wiiting yules. Thorefore, for the puarpose o
linguistic siudy, they cain be just ignored. In practical appli
howover, we cannotl ignore thein by any means, b fact, inpui

=

ifons,

sentences are full of those Cuninteresting” phonormens,
unfortunately. More than half of English arid Japanese gramoner
rules for CMU™s machine transtation project, for cxample, e
fanguage-speciiic “uninteresting” low-level rules. It is expected Giat,
i any practical systern, there must be a bunch of ruies like thoso
seinmewhero I the systen; otherwise the system simply does not

work,

Loxicon-diiven tormalisms are all motivatod by linguisiically
‘intoresting” phetivinena, and they are not suited for thoso
language-spacific low level consiructions. It does not maks any
sense fo try 1o wiilte those tules in the lexicon-driven way, over if i
Is mathematically possible. 1t is clear that the power of plirase
structure is necessary for practical applications. I e following
sections, we describe how to combine lexicon-driven parshig and
phrase-structure-based parsing.

3. Shifi-Heduce Parsiing

Lot us consider both lexicon-difven and phrase-struciure-Hase
parsing to be shifi-reduce parsing. I shifi-reduce parsing, there is &
stack, and all words In the input sentenco are pushed (shilfed) unito
the stack from left {o fight. In doiny so, the first n consdiuenis (oi
words) from the top of the stack are occasionally combingd
{reduced), by popping the i constiivonis iom the stack, comptilng
hew constituent from tho constituonis, and pushing o now
constiivent onto tho stack. A shift-reduce parser needs o bo

[eXiwi

controlled to determine when and how constituents should be
reduced, and when a word should be shifted.

In phrase-structure-based parsing, it is controlied by a set of
language-specific rules, typically a context-free phrase structure
grammar, augmented in one way or another.

In lexicon-driven parsing, it is controlled by information encoded
in each conslituent to be reduced, and (if ar'wy) a set of language
universal rules which reside inside the parser permanently, but with
no language-specific outside rules. In the Categorial Grammar
formalism, this information is encoded as complex categories with
functor and argument features. Two elements can be reduced if
and only if the category of one element is the same as the argument
feature of the other element, and the category of the new element
will be the functor of the latter element. In GB Parsing, categories
are encoded In accordance with the X-bar theory, and some
language-universal rules (often called principies) are fired to decide
whether a particular pair of elements can be reduced.

In both phrase-structure-based and lexicon-driven parsing, there
are cases where it cannot be uniquely determined whether the next
action should be reduce or shift, or cases where more than one
reduce acfion is possible at the same time. This means that the
parser must handle some non-determinism, and nalve techniques
such as simple back tracking or breath first search would require

exponential time. The parsing time, however, can be reduced to
polynomial with a graph-structured stack, which is described in the
following section.

4. The Graph-Structured Stack

The graph-structured stack was introduced in the Generalized LR
Parsing algorithm [11, 12], to handle non-determinism in LR parsing
in polynomial time. In this section, three key notions, splitting,
combining and local ambiguity packing, are described.

4.1. Splitting
When a stack neads to be reduced (or popped) in more than one
way, the top of the stack is split as in the following example.

Suppose that the stack is in the following state. The left most
element, A, is the bottom of the stack, and the right most element,
E, is the top of the stack. In a graph-structured stack, there can be
more than one top, whereas there can be at most one bottom.

A w-~ B =-= C === D ==~ E

Suppose that the stack needs to be reduced in the following three
different ways.
F <~-DE

G <~~ D K
H<-=-CDZH&R

Then after the three reduce actions, the stack looks like:

/=¥
/

/
A = B mum C meee G

4.2, Combining

When an element needs to be shifted (pushed) onto two or more
tops of the stack, it is done only once by combining the tops of the
stack. For example, if "I" Is to be shifted to F, G and H in the above
example, then the stack will look like:

fom B e
/ \
/ \
A wow B oee @ wmwm G oemee T
A /
\ /
\ o H -~/

4.3. Local Amblguity Packing
If two or more branches of the stack turned out to be identical,
then thoy represent local ambiguity; the identical state of stack has
been obtained in two or more different ways. They are merged and
treated as a single branch. Suppose we have two rules:
J <~ F I
J<- 61X
After applying these two rules to the example above, the stack will
look like:
A == B wm=w € e== J
\
\
\-- H --~ I
The branch of the stack, "A-B-C-J", has been obtained In two ways,
but they are merged and only one Is shown in the stack.

5. Lexicon-Driven Parsing with a Graph-Siructured

Stack

There is an obvious way to implement a lexicon-driven parser
with the graph-structured stack. Basically, the parser parses a
sentence strictly from left to right, shifting a word onto the stack one
by one. The tops of the stack are Inspected to see if there are any
ways to reduce the stack (remember, there are no outside phrase
structure rules In lexicon-driven parsing). The stack gets reduced
non-destructively, wherever possible. A non-destructive reduce
action simply adds a new branch to the stack, without removing the
old branch of the stack that has been reduced. The following
example shows the stack before and after the reductions of C and D
into E, and B and E into F.

A === B === € === D
[i r
/
/ [E
/ /
/ /
A =~~~ B === C =~~~ D

Repeat until no further reduce action Is possible (note that one
reduce action can trigger another reduce action). When no further
reduce actlon Is possible, the next word is shifted. When a word is
shifted, all tops of the stack are inspected whether they can be
shifted the word onto. Even when a word has been shifted onto
more than one top of the stack, there is at most one elemant on the
top of the stack, due to stack combining described in the previous

section. Thus, if a word G Is shifted onto F, E and D, then the stack

will look iike:
J e et Fo-=\
/ \
/ [E e G
/ / /
/ / /
A som B e §oemm Do/

When an how top elements can be reduced is determined by
information encoded in each element itself, and the method varies
from one formalism to another, as described in section 2.

6. Phrase-Structure-Based Parsing with a

Graph-Structured Stack

Tomita [11, 12] introduced a generalized LR parsing algorithm,
which is an LR parsing algorithm generalized to handle arbitrary
‘context-free grammars with the graph-structured stack. The
standard (not generalized) LR parsing algorithm is one of the most
efficient parsing algorithms. It is totally deterministic, no
backtracking or search is involved, and it runs in linear time. This
standard LR parsing algorithm, howsver, can deal with only a small
subset of context-free grammars called LR grammars, which is often
sufficient for programming languages but clearly not for natural
languages. I, for example, a grammar is ambiguous, then its LR
table would have multiple entries, and hence deterministic parsing
would be no longer possible. By introducing the graph-structured
stack, however, multiple entries can be handled efficiently in
polynomial time.

Figures 6-1 and 6-2 show an example of a non-LR grammar and
its LR table. QGrammar symbols starting with ™" represent pre-
terminals. Entries "sh 1" in the action table (the left part of the table)
indicate that the action "shift one word from input buffer onto the
stack, and go to state n". Entries "re n" indicate that the action
“reduce constituents on the stack using rule n". The entry "acc”
stands for the action "accept”, and blank spaces represent "error”.
The goto table (the right part of the table) decides to what state the
parser should go after a reduce action. The LR parsing algorithm
pushes state numbers (as well as constituents) onto the stack; the
state number on the top of the stack indicates the current state. The
exact definition and operation of the LR parser can be found in Aho
and Ullman [2}.

We can see that there are two multiple entries in the action table,
on the rows of state 11 and 12 at the column labeled "*prep".
Roughly speaking, this is the situation where the parser encounters
a preposition of a PP right after a NP. If this PP does not modify the
NP, then the parser can go ahead to reduce the NP to a higher
nonterminal such as PP or VP, using rule 6 or 7, respectively (reé
and re7 in the muitiple entries). If, on the other hand, the PP does
modify the NP, then the parser must wait (sh6) until the PP Is
completed so [t can bulld a higher NP using rule 5.

With a graph-structured stack, we can handle these non-
deterministic phenomena nicely. Figure 6-3 shows the graph-
structured stack right after shifting the word "with" in the sentence "I

(1) 8§ -->
(2) 8§ -->
(3) NP —->
(4) NP —=>
(5) NP -->
(6) PP —->
(7) v ——>

NP VP

s pp

*n

*det *n
NP PP
*prep NP
*y NP

Figure 6-1: An Example Amblguous Grammar

State *det *n *y *prep $ NP PP VP S
0 sh3 shd 2 1
i sh6 acc 5
2 sh7 shé 9 8
3 sh10
4 re3 re3 re3
5 re2 re2
6 sh3 shd 11
7 ah3 shd 12
8 rel rel
9 reb res reb

10 red red red
11 reb re6,shé reb 9
12 re7,9h6 re? 9
Figure 6-2: LR Parsing Table with Multiple Entries
(derived from the gramwmar in fig 6-1)
/ - R —-— 1emm \
/ \
/ - 8o 1 \ \
/ \ \
/ /== NE - 12 \ \
/ / \ \
0~=—NP~~2-=ywm=TecoNP~= 12— —~p= GNP = ll = —pmse GNP = -1l = epmn—§
\ \ / \ / /
A\ G L \ / \ NP -/ /
\ Y
N NP -~ 6 /

Figure 6-3: A Graph-Structured Stack

saw & man on the bed in the apartimant with a telescops.” Mare
discussions on the goneralized LR parsing algoriiinn can be foud

In-Toraita [11, 12].

7. Combining Phrase-Structure-Based and
Lexicon-Driven Parsing
In tho previous sections, we have described the use of tho graph-
structured stack for lexicon-driven and phrase-struciure-bassd
parsing. It is now rather obvious that we can combing loxicon
driven and phrase-structure-basaed parsing; there are two ways.

We cun enhance the generaiized LR parsing algovitbwi by
allowing loxicons to (optionally) have lexicon-driven rulos. That is,
the stack is periodically inspectod to see if any pari of the stack can
be reduce by a loxicon-driven rule inside lexicons. This way is
proferable if a system has many phrase structure rules, with a fow
lexicon-diivent rules o handie certain linguistic phenomena more
easily.

Alternatively, we can enhance lexicon-driven parsing described in
section 5 by allowing the parser to reduce tops of the stack uaing
outside phvase siructure rules as well. That is, the stack s
periodically inspected to see if any part of the stack can be reducsd
using one of the phrase-structure rules. This way is preferable if 2
system is heavily lexicon-driven, with a few phrase structure rulss (o
handle low level and/or exceptional phenomena.

8. Sumimary

This paper first argued that it is necessary 1o enhance lexicun-
driven parsing with phrase structure rules in practical applications.
We then suggested a shift-reduce implementation of lexicon-diiven
parsing with a graph-structured stack, which is readily combinable
with a shiftreduce implementation of phrase-structure-based
parsing with a graph-structured stack (i.e., the generalized LR
algorithiv).

670

i

|

1]

]

i8]

]

K9]

[it}

{22

(s

{i4]

Poferences

Ades, AL E. and Steoedman, &, J.
On the Order of Words,
Linguistivs and Philosophy 4{4):517-558, 1982,

Ao, A, V. and Ullman, J. D.
Frinciples of Compiler Design.
Addison Weglay, 1977,

Bressran, J. and Kaplan, FL

Loyicad-Functional Grammmar: A Formal Systen for
Grranimatical Reproyentation.

The Meritad Heprasentation of Gratmatical Relaifons,

MIT Press, Cambiidge, Massachugselis, 1902, paigws pp.
173-281.

Chomsky, N.
Lactures on Governimant and Binding.
Fods Publications, 1981,

Qaxiar, Q.
Phvase Structure Grammears and Natural Langusge.
Froveedings of WCAIBS v.1, August, 1983,

Dowty, D. R, Karitunen, L. and Zwicky, A. M. {editor).
Generalized Phrase Stiuciure Grammar,
Harvard Unlvorsity Press, Cambridge, Mass., 1985,

Kay, M.

Parsing in Functional Unitication Grammay.

Natural Language Parsing: Psychological, Cormpuiational
and Theoralical Perspectives.

Cambridge University Pross, Cambridge, England, 1985,
pages 251-278, Chapter 7.

Perelra, . and Warren, D.
Definite Clause Grammar for Language Analysls.
Artificial Irielligence 13:pp.231-278, May, 1980.

*ollard, C.

Gonerallzed Phrase Structure Grrasmmars, Head Gramiias,
and Natural Languages.

PhD thesis, Stanford University, 1584,

Pollewd, €.
Lecturs Notes on Head-drven Phrase-structure Grammar.
1985,

Tomlta, M.
Efficlont Parsing for Natural Language.
Kluwer Academic Publishers, Boston, MA, 1985,

Toimita, M.

An cificient Augmentad-Contoxt-Free Parsing Algorithriy.

Gomputational Linguistics 13(1-2):31-46, Januay-Juns,
1987,

Wehll, E.

A Giovarnmeni-Binding Farser for French,

Working Papor 48, Institut pour les Etudes Semantlques ot
Gogriliives, Universite do Genevs, 1984.

Waelvl, E.
Parsing with a GB-gramimar.
1987.

