LoanglL AL -

TORKUNAGA Takenobu, IWAYAMA M wifumj TANARKA Hozvi

(8]

Departent of Computer Seience
Tokyo Tustitute of Techuolopy

This paper presents o wabucal language aualysis sysiem
Ve LAY hased on BUP-H G which parses with a betiom-
ap and depthefivst stratepy and has ability to Landle left
exiraposition. We have alrsady developed o gramuway for-
aialism A

45, which I8 a superset of DOG, With LG5, left
Avaposition phenouwena is natwvally expressed in grainmar
rules. We have also optimized BUP-XG clauses, Dxpor-
iments showed ¥hui in conmparison to the oxiginal BUP-
KO systens, the analysis sped up 10 times in the interpreter
mode and 4 thnes in the compiled mode. The TR sivwes

fured dictioasry in LangGAY requives less memory, pro-
vides faster dictionary reference and also handles cowpli-
cated idioms with versatility, Consequenily, the utilization

of Luugh AR for praciical purposes has becowme feasible.

1 Tatrorluetion

S far, several grammay julm.zllsm based on logic program-
ming paradigm such as Metnmorphosis Graxwmay {2] and
IBCG [9] have been presented. In Metamorphosis Grarnay,
cach grammar rule is translated into o Horn Clause, and the
Prolog intecpreter parses the input sentence with these Howm
Clanse using a top-down and depih-fast strategy. Unlike in
the past where parsers had o be constracted for syniactic
analysiy, in this wmethod, we do not have to becanse the Pro-
Iog interpreter itself works as one. Metamorphosis Grammar
also provides a vatural language processing method which
interleaves syntactic analysis and semantic analysis. 'Uhis
is a destrable feature frows the point of view of coguitive
sclence.

Tollowing Metamorphusis Grammar, Pereira i al. devel-
oped a grssamar {ormalism called Definite Clawse Gram-
war(DCE) wnd Extvaposition CGrammar(XG) [8]. The
gramyaay veles wiitien in DCG are also translated into a
Prolog program and the Prolog interpreter works a8 » top-
down and depih-fivst parser interleaving sywtax enalysis and
soxiantic analysis. X iy the extended version of DOG co-
pahle of haudling left extraposition.

Wewever, top-down parser have a problem thai vhe pro-
w falls fato the infindie loop when a left recursive yule
s in the grammay vules. This problem can be solved
by either trunsluiing grammay vales with loft vecursive rules
iuto oves without left recursive vules o by usiug = boiiom-
ap parsing stvatepy. Since the donmer solution way give
roing vesults, the latter is preferable.

annsiural v

Matsumolo of Blectyotechnical Luboratory developed
gystexn in wlhich the grsmmar yoles written in DOCG are
translated Taio Horn clouses ealled BUP clauses and Pro-
Sop iuterpeier works a8 a bottox-up wwl depih-fivst parser

A Naiural Language Analysis Systern

KAMIWAK]
Mitachi Research Laborutory
Nitachi Titd,

Tadashi

(uﬁmm' g .
S O
Bictlonary S,
Abes)
me - / S Y
TRIE) BUPXG)
. dranstator
USRS SR N
N structured -&, o
L. Sewtency otioiary J BUP- slatsos |

Prulog ay tmn

¥
Hosult

Pigore 13 Stracture of LangLAB

for these rules [14]. Matsumoto’s system is called the BUP
sysieni, 'T'he BUP sysiew cai handle left vecursive rules
and, treat prammar rales and the dictionary sepavately.

Konno of Tokyo Iustitute of Technology extended the
BUP system to BUP-XG system [5] which can haudle the
left extraposition phenomena eleganily. BUP-XG system
infrodaced the prammar description form called ¥GS (Fx-
traposition Grammar with Stash Category).

T'his paper preseats o aatural language analysis system
LanglLAB based on Konno’s BUP-XG system. Figure i
shows the structure of the LanglLAB system. Users should
prepare grammar rules written in XGS and a dictionary
written in DCG. Both grammay vules and a dictionary are
txanslaied into BUP-XG clanses and TRIE struciured dic-
tionary vespectively by trauslators. Trauslated results are
consulted by the Prolog systexm and the Prolog intexpreter
works as a parser.

In chapter 2, we buiefly explain the fundamentals of
the BUYP system and the grammar description form XGS
adopted in LanpLAB. We will also describe BUP-XG ivans-
lator which ivanslates the grawmar written in XGS into
BUY-XG danse and its optimizations. In chapter 3, we
will Youch on the 'TRIE strvuctured dictionary adopted in
TaupLAB. TRIE stractured dictionary requires less mem-
ory and provides faster dictionary veference aund provides
flexible idiom handhng., In chapter 4, we shall present re-
sults of experiments verilying the effect of the optimizaiion
described in chapter 2. Experiments showed that the anal-
ysig sped np (0 times in the lnterpretive mode und 4 times
in the compiled mode. The authors believe that LanghAB
performs well enough 10 be of practical use,

655

s ~=> 1up, vp. (a-1)
np ~-> pron. (a-2)
pron ~-> [youl. (d~3)
vp o -=> [walk]. (d-4)

Fignre 2: Sample grammar written in DCG

np(G) --> {Link(np,G)}, (b-1)
goal(vp),
s(G),
pron(G) =~> np(G). (b-2)
dict(pron) --> [youl. (b-3)
dict (vp) ~-> [walk]. (b-4)

Figure 3: BUDP clauses translated from figure 2

2 XGS and BUP-XG

In this chapter, we shall explain the grammar description
form XGS adopted in LangLAB and the BUP-XG trans-
lator which translates grammar rules written in XGS into
the BUP-XG clauses. Before explaining BUP-XG, we will
briefly explain the mechanism of the BUP system, the pre-
decessor of BUP-XG. Basic parsing mechanism of BUP is
left-corner parsing with top-down prediction.

2.1 BUP system

In BUP system, grammar rules written in DCG (Figure 2)
arc translated into the rules called BUP clauses which are
also of DCG format and some Prolog program (link clanses
and termination clauses : explained later).

Fignre 3 shows results of the translation. These BUP
clauses are then translated into a Prolog program (Iigure 4)
by the DCG translator which is embedded in the Prolog
system. Two more arguments are added to each predicate
which denotes nonterminal symbol in figure 4. These argu-
ments constitutes a difference list which represents the input
string. With the special predicate goal which is necessary
for bottom up parsing, this Prolog program can parse the
input string with a bottom-up and depth-first strategy. Fig-
ure 5 shows the definition of the predicate goal.

Now, we shall give a step by step explanation of the pars-
ing algorithm of the BUP system. We will use the gram-
mar shown in figure 4 and input sentence “youn walk” as an
example. Calling the predicate goal activates the parsing
process:

7- goal(s, [you,walk],[]).

np(6G,X,2) :- link(np,d), (p-1)
goallvp,X,Y),
s(G,Y,2) .
pron(,X,¥) :~ np(G,X,Y). (p-2)
dict (pron, [youlX] ,X). (p-3)
dict(vp, [walk|X],X). (p-4)

Figure 4: Prolog programs translated from figure 3

656

goal(G,Xx,Y) :- (g-1)
(wi_goal(G,X,.)
fail_goal(G,X),!,fail
), !,
wi_goal(G,X,Y).
goal(G,X,Y) :~ (g-2)
dict(C,X,Y),
1ink(C,G),
P =,. [C6,Y,2],
call(P),
assertz(wi_goal(P)).
goal(G,X,¥) :- (g-3)
assertz(fail._ goal(G,X)),!,
fail.

Tigure 5: Definition of the goal clause

This calling checks to see if :

A parse tree the root of which is the category “s”,
can be constructed from the input string denoted
by the difference between the list [you, walk] and
the list [1 ([you, walk] in this example).

The first call of goal invokes the clause (g-1) in the figure 5.
The clause (g~1) checks to see if the same analysis have been
made before, to avoid recomputation using the information
previously asserted as wf_goal and fail_goal.

As the execution of the clause (g~1) fails in this case, the
system chooses the next clause (g~2). In the body of the
clause (g=-2), the system consults the dictionary by calling
“dict(C, [you,walk],Y)”. This predicate call picks (p~3)
in figure 4 and the system matches “pron” with variable C
and “[walk]” with variable Y.

In the second line of (g-2), the system calls the predicate
link to see if the category which is obtained by the previous
dictionary consultation (“pron” in this example) can be left-
corner of the current goal (“s” in this example). The link
clauses are calculated by the BUP translator. Suppose this
test succeeds, the system calls the predicate “pron” :

P =.. [prom,s,[walk],[1],
call(p).

Calling “pron(s, [walk]l,[1)” invokes (p~2). Then, the
system executes its body that is, “np(s, [walk], [1)".

Calling “np (s, [walk], [1)” invokes the clause (p-1). Af-
ter calling the predicate link to check a reachability from
“np” to “s”, the system invokes “goal (vp, [walkl,[1)”. At
this point, the system has analyzed the string “you” as “np”
and is predicting that the trailing string “walk” should be
bundled up to the category “vp”.

In the same manner, a bottom-up analysis with a top-
down prediction proceeds until the execution of goal with
the termination clauses succeeds. See [14] for the detail of
the termination clauses.

Results once succeeded ox failed in an analysis are asserted
as wf_goal in the end of (g~2) and fail_goal in the clause
(g~3) respectively. This information is used in (g-1) as
described.

B =P op, vp. (x=1)

np <=3 prou. (x-2)
wp —~> det, noun, s_rel../np. (x-3)
vp > ¥Eh, up. (x~4)
g_rel <> rel_pron, s. (x~5)

Figure 6: Sample grammar written in XGS

2.2 BUP-XG system

The embeddad sentence which appeaxs in relative clauses in
English can be viewed as a structure in which a noun phrase
is missing from declarative sentence. A gap is formed as a
result of moving the antecedent from within the declarative
sentence to the left of the relative clause, Linguists call such
phenomena “Left extraposition”. By considering the gap left
by the moved constituents as a “trace”, and incorporating a
wmechanism that looks for such a “trace” automatically, the
number of grammar rules can be decreased and the grammar
rules becom: easier to read. Moreover incorporating such
mechanism contributes to making analysis speed faster.

Top-down parsers like ATNG [13], [12] and XG [8] incor-
porate such a mechanism. The top-down paxrser can predict
what categoty the trailing input string may be bundled up
to. Efficient trace searching is possible as the system as-
sumaes the cxistence of traces only when a particular cate-
gory is predicted as a goal.

A pure boitom-up parser is not capable of such predictions
and inefficieacy results because of the necessity to assume
the existence of a trace between every two words. However,
since the BUP system incorporates top-down prediction in
the bottom-up parsing strategy described in 2.1, it is pos-
sible to implement the mechanism to look for the traces
efficiently. Konno developed a BUP-XG system which in-
corporated such a mechanism {5].

The XGS adopted in LangLAB provides grammar writers
the Tacility with which left extraposition can be naturally
expressed in grammar rules. Figure 6 shows a small Iinglish
grammar wlich is written in XGS.

The notation “. . /” (called “slagh”) in the rule (x~3) is in-
troduced in XGS. This rule means that there exists the syn-
tactic category “np” which dominates the “trace” under the
syntactic category “s.rel” (“s_rel” means relative sentence).
This idea is influenced by the “slash category” in GPSG [3].
We call the category aftexr “../” © slash category”. Rule
(x~3) also shows that the category “np” consists of the cat-
egories “det”, “noun” and “s.vel” and that the trace left
behind by ihe left extraposition of the noun phrase consist-
ing of “det” and “noun” is dominated by “s_rel”. During an
analysis, when the system finds the trace under “s.rel”, as
shown iu figure 7, its associates the trace in the embedded
sentence with the moved phrase (“the man”).

HGS also provides a notation to represent “Ross’s Com-
plex NP constraint” [10]. Yollowing is an example of this
notation. “Chis notation is called “open (<)’ and “close
(>)? following Peveira [8].

a--»b, ¢, <d>.

This rule wavaus that category “a” counsists of categories “b”,
“” and “d”. Open-close notation defines the scope of extra-

np

np s_rel

RN T

det noun rel_pton]
N
np vp
AN

the man who [irace] loves her

Figure 7: Matching between slash category and its trace

position. This example says that the movement from under
“b” or “c” to the outside of “a” is permissible, but the move-
ment from under “d” to the outside of “a” is not. Sentences
violating “Ross’s Complex Np constraint” are rcjected by
modifying (x-3) to become (x-37)

np ==> det, noun, <s_rel../np>. (x-3°)

With (x-3?), the trace which is dominated by slash category
“np” under “s.rel” can only correspond to the noun phrase
which consists of “det” and “noun”.

In addition, XGS also provides a double arrow notation
(==>) and the notation to describe X lists (explained later)
explicitly. With these notation, “coordinate structure” can
be represented in a natural way (see [5]).

2.3 BUP-XG translator

Just like the BUP system, the grammar rules written in
KGS are translated into BUP-XG clauses, link clauses and
termination clauses by the BUP-XG translator. The BUP-
XG translator in the Langl.AB system has been improved so
as to generate BUP-XG clauses more optimized than that
in the original BUP-XG system. Furthermore, it is also
equipped with a new function which inserts puarse tree in-
formation automatically. The translator takes about three
geconds to translate a gramiar of about 200 rules. The
{ollowing subsection explains these improvements.

2.3.1 Representation of link clauses

As the number of grammar rules increases, more link clauses
are generated by the translator. For example, from about
200 grammar rules of English which we have developed,
the BUP-XG translator generates about 700 link clauses,
Shortening the search time of link clauses would contribute
to an efficient analysis.

Link clauses are called in the body of BUP-XG clauses
and in the predicate goal. Since both the arguments of link
are atoms in the both cases, a link

link(a,b).

which denotes the reachablity from the category “a” to “b”
can be change to the form

a(p) :~ !,

This form of representation reduces the search space of the
reachablity test. The BUP-XG translator in LangL.AB gen-
erates link information of this form.

657

2.8.2 Yodexes for difference list

As described in subsection 2.1 input string ave vepresented
by a difference list and intermediate analysis results are as-
sevted with the predicate wif goal and fuil goal. Since the
fusi two arguments of the wi_goal constitutes » differonce
list of the input string, the longer the input string becowmes,
the more mewmory wi goal consumes. By indexing differ-
ence lisis, the amount of memory required is veduced, and
faster reference to intermediate results is possible.

Tor example, when the system gets the input siving “you
walk”, the predicates text arve asserted as follows ¢

text (s0, [1).
text(sl, [walk]).
text(s2, [yon, walkl).

The dictionary reference program gets a difference list by
calling text with indexes (s1,52,...) as the key, before con-
sulting the dictionary.

2.%.2 Representation of intermediate results

Generally, a long input string gives rise to more wf_goals
and fail_goals which results in longer search time for inter-
mediate analysis results. W goals and fail_goals have as
their arguments, the index {o the difference list denoting the
pariial input string, and its analysis. As described in 2.1,
goal first consults wf goals and fail_goals with the indexes
of input string as the key. In Langl.AB system, the predi-
cate names of iniermediaie analysis vesult are the indexes to
the difference list instead of “wi goal” or “fail_goal”. This
modification reduces the search space of the intermediate
analysis results and speeds up the analysis process.

2.3.4 Insertion of parse tree information

Users sometimes require the results of syntactic analysis to
be expressed as parse trees, and in both the BUP system and
the original BUP--XG system, users are required to ingert au
argument in each category to accommodate parse tree infor-
mation. However, it is not a difficnli task to make the trans-
lator insert this information automatically. Tn the BUP-XG
transtator of LanglAB, this information is inserted auto-
matically unless instructed otherwise. This function is simi-
lar 1o the one in the McCord’s MLG{Modular Logic Graim-
mar) [7]. However, nnlike MLG, all the nonterminal symbols
can be a node of parse trees.

%.3.5 Example of translation

Tigure 8 shows the BUP-XG clauses translated from the
gravomar in figure 6. The variables beginning with “X” in
the figure 8 are introduced to handle left‘ex’nmposition. This
variable is called X list (extraposition list) which were intro-
dueed in XG [8]. Tnformation pertaining to slash categories
is pushed into the X list and is then transferred from cate-
goxy to category during the analysis process. The predicate
poal_x is an extended version of the predicate goal in the
BUP system, which pops up the slash category from the X
list when the frace is found. Note that variables for parse
tree information, the names of which begin with “T”, are
antomatically inserted and that the representation of link
information (in braces) is also modified.

ap(Goal, [T17, Iufo K0, {1, XR) «=>

{ 8(Goal) ¥,

goal_xCvp, T2 ,%1,%2),

s(Goal, [Is,71,721], Tato, X0, %2 ,%R) .
pron(Goal, [T1],Info, X0, X1 KR} >

{ np(Goal) I},

up(Goal, | [np,T11],Into, X0, X1,1R) .
det (Goal, [T1] , Tufo , X0, X1, XR) «->

{ nplGoal) J,

goal_x(noun, {12] ,X1,X2),

goalwx(s;rel,[T3];x(np,[np(t)},XQ),X3>9

ap(Goal, [[ap,T1,12,731],Info,X0,X3,X1).
vt (Goal, [T1],Info, X0, X1,XR) -->

{ vp(Goal) 3, '

poal _x(up, [T2]1,%1,52),

vp(Goal, [Lvp,T1,T2]1] ,Info,X0,X%,XR) .
rel_proonfGoal, [T1],Tufo ,X0,X1,%R) =->

{ s_rel(Goal) },

goal x (s, [T2],X1,%2),

s rel(Goal, [[s_rel,T1,121], Info,X0,%X2,Xit) .

Figure 8: BUP-XG clauses translated from figure 6

viinto(gat)) —> [getl.

v(vef (get, [[viled]])) ~-> [gotl.
v(ref (get, [{vilenl])) --> [gotten].
vinfo(get up)) --> [get, upl.
v{info(get_on)) --» [get, onl.

Pigure 9: Sample dictionary including idicns

3 TRIE structured dictionary

This chapter explains the TRIE structured dictionary, an-
other extension to the BUP-XG system and the BUP sys-
temn. The TRIE styuctured dictionary requires less memory,
provides faster dictionary reference and flexible idiom hago
dling.

3.1 TRIE stroucture

The name “T'RIE” is taken from “reTRIEval” [1] and it
means # kind of tree structure. A dictionary written in
DCG is translated into 2 TRIE structured dictionary by the
TRIE dictionary translator. The TRIE structure is a tapple
which has three clements, that is “woxd”, “information for
word(s)” and “its child TRIE structure”.

¥or example, the dictionary written in DCG shown ia fig-
are 9 would be translated to the TRIF structured diciionary
shown in fignre 10.

To look up a TRIE stroctured dictionary, the dictionary
reference program searches through the tree matching the
inpnt string with the fiest element of the TRIE stracture
and, information for the stying of input is vetrieved only
after the lasi word of the input string is matched. Actually,
the translator bundles up the dictionary entries which has
the same first word into a clanse (see how the entries “get”,
“get on” and “get np” are trauslated in figure 10). By wsing
this strucioxe for the dictionary, the systein can avoid the

irialges,
[Tv, iatolgnesiii,

[{ou,
Liv, {iatolpes _ony} 1T,
11,
Frp
Llv, liute{gei, wp) 111,
i ioa.
alpon,
bv, (et Dlviled] DI,
£,
dic |.d(Um e
[y st et [vi den] D]
s,

Tiguee 100 PRI strncbure Seanslated from figue 9

and ad

RHA LY LU SAVE muiory,

Lafigure 9, ihe arguament of the
i catyy, Uhe s
of ke catey

o ()7 meens the leiormaion

13

I
pnaaent “i
J!m arpueat of the entry

o Crei” wh

gt aad

pointer 1o
vei” (I ihis
case, a pointer to the enicy “pet”). 1Hetionary enivies the
utformation of which only differs from each other partially,
o, the roui forim wad the conjugated fovm of an fregular

“potton” I ow s h denotey

3

the caty o by the fixst argument of

verb, can e written v this manner.

The sceond avgoment of the structuwe e s ihe dit

fevential intormation beiween this entry (“goi” o “.»;u‘ni‘,cn”)
andd the entiy pomtui o by the flis tugum-m of “eai”. Ta

and itg value

v yeans “verb form”

i s pie, feature ¢

“od” and “en” means “past” awd “pasi pardl

% do not fiave o wrile

tively, With such o desexiption, us
addisional diom eniides which include the conjuyated form

of rregulay verbs. Ta the case of repalar verbs, since con-

Jupated forms are processad by the ui,oq:}mlugiwi snalysis

prograve baili e the diciionsry retevence progiaan, idiom
eairies whizh fuclude the conjugated form are not necessur

users do wot have to wiite the idiowm

oy e e,
“Kicked the bucket”, if the eniry “kick the bucket”
ten.

stractuved dice

3.2 Ydiowm haoedioep with TY
tionary

wary cen tuctude Prolog pro-
aby and syntactic categories
atilre

The TRV structured dicti
prams 1o check sowe consie
in ite “wond” position (fivet element of twpple). This &

es it possible to handie the idioms including son-froven

i

wents atnch av “not oaly 0 bud also -7 Tu the BUP
systom awd the BUP--X
% bwo-element word, that is a pmxs,x ievminal pari
teviinal part. The former parg i in-
v oaad the lattel past iy

stem regards such

~ey

LG gyster, the gy
wiowms a8

and & following wo
cloded iu she diction
phe graniiar reles. To TengLAD, the TRIE 5
iosary 18 able to handle all s h idioms as the dicii

{uciuded in

inred Gle-
axy

The idiom entvies which incly dc nou-lrozen elements such

s shown “aot only ~ bui also ¥ can be writion as

head is the information of

adj (L1, 108 =% Dnot,onlyl,adj(_,)
Put ,allsed jadj(, 0.

upp, (1) <> lwot,only] aplpi,),
(ot alsod ap(Wp2,),

An(lpl Wp2, Np) b,

]

Y

: Sasaple dictionary with nonterminal synmibols and
in the wale hody

.

ﬁu,() praris

dictaluot, 1,1
Povity . 01, L
Cladj, 1,07, L
Vot , [T, 1
[also, 0,1
iL dj seesed s
Plad, LI TR, CHI000300,
i ,,Zl L0

1 p,l\lpia‘.] N
PCjoinCpi , Np2,ip)),
[lap, v, LETEY, CERXTID1300000y .

Ne .

Figore 12 "URIW stractucs tvanslated from figaee 11

And figure 12 is the resuli of the translation.

In the ease of DOG, ay the idior entry such as figuve 11 is
wsnally handled as o grammar vule, the number of grammai
rules fncrcases and efliciency of analysis process yesults, 16
is prefevable to handle grammay vales and dictionary cuniries
gepavately.

Asg siown in figure 12, the translator converts the Prolog
programs in the dictionary entry “{join(ipl,Np2,¥p)}”
o the form “(join(Npl Mp2,Wp»)”. The dictionary rei-
erence program calls the program enclosed by parenthesis
whex it encouniers such o form. In the same way, the syu-
taciic category in the dictionary entries such as “ap (ip1,)"
wre converted into the list the fiest element of which is a
category uasine and the vesi of which are arguments of the
catepory (Lap,Wpi,). The dictionary reference program
alls the predicaie goal (goal (up, [¥pi, 1,%,Y)) for such
o fori,

The TRIE structured dictionary enables the LanglAB
system o handle idioms with versatility [4].

4 Performance Copsiderationy

We condncled experiments to verify the eflect of opiimiza-
tion of BUP-X elauses. We meagaved the time tor syniac-
tic analysis of {en sample seniences. The experiment envi-
ronrnent 33 a8 Jollows:

& Machine : Sund/260 Workstation
¢ Prolog @ Quintus-Prolog Release 1.6
163 rules u XGS

o CQrammar

T the experiwent, we measwred the time required 1o ob-
pain all purse tree before and after the optimization foy cach

699

_ Table 1: Analysis time using interpretive code

(Noﬁ " Number | Number Analysis Time [msec) Ratio
of Words { of Trees | (1) BUP-XG | (2) LangLAB | (1)/(2)

1 TN 80,415 8,552 | 9.40

2 4 12 18,868 2,700 6.99

3 3 7 46,700 4,983 9.37

4 1 10 30,900 3,600 8.58

5 3 11 39,634 4,050 9.79

6 4 18 95,933 9,550 | 10.05

7 9 21 323,167 26,183 | 12.34

8 2 19 87,550 9,349 9.36

9 4 17 180,300 15,816 | 11.40
10. 1 25 116,284 12,083 9.62
T T T average | 9.69

‘Table 2: Analysis time using compiled code

No. | Number | Number Analysis Time [msec] Ratio
of Words | of Trees | (1) BUP-XG | (2) LangLAB | (1)/(2)

1 14 9| 20,485 4,134 | 4.96
2 4 12 2,467 1,299 { 1.90
3 3 7 4,783 2,284 | 2.09
4 1 10 2,884 1,566 | 1.84
5 3 11 4,383 1,917 | - 2.29
6 4 18 18,768 4,500 | 4.17
7 9 21| 127,400 14,000 | 9.10
8 2 19 13,450 4,450 | 3.02
9 4 171 59,468 8,216 | 7.24
10 1 25 23,650 5,801 | 4.08
T N average | 4.07

sample sentence. ‘This analysis does not include morpho-
logical analysis. Table 1 is the vesult of the experiment in
the interpretive mode and table 2 is the one in the compiled
mode. The fourth and the fifth column of the table is the
time to analyze the sentence in the original BUP-XG system
and in the LangLAB system respectively. Time is shown in
millisecond.

Results showed that in comparison to the original BUP-
X system, the analysis sped up 10 times in the interpretive
mode and 4 times in the compiled mode. The optimization
is less effective in the compiled mode than in the interpretive
mode. However, this optimization is practical because de-
bugging is usually done in the interpretive mode. We believe
that LangLAB has the capacity for practical use.

There is a related work SAX [6] by Matsumoto. SAX is
also a parsing system based on logic programming, but its
parsing strategy is bottom-up and breadth-first. Okunishi
of ICOT reports that LangLAB is 6 ~ 10 times faster than
SAX in the interpretive mode. However, in the compiled
mode, SAX is 6 ~ 16 times faster than LangLAB [11]. SAX
has still yet to be modified to handle idioms. If this modi-
fication is introduced, debugging can be done on LangLAB
in the interpretive mode and the debugged grammar can be
executed on SAX in the compiled mode.

5 Coneclusion

We have made the following modification to the original
BUP-XG :

660

s Optimized and enhanced translated code
e Adopted TRIE structured dictionary

With these modifications, the analysis sped up in compari-
son to the original BUP-XG system and flexible idiom han-
dling became possible. We believe that LangLAB has be-
come a more powerful and practical tool for natural lan-
guage processing. We plan to develop a natural language
processing system which includes semantic analysis, based
on LangLAB.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D, Ullman. Data
Structures and Algorithms. Addison-Wesley, 1983.

[2] A. Colmerauer Metamorphosis grammar. In Natural
Language Communication with Computers, pages 133~
190, Springer-Verlag, 1978.

[3] G. Gazdar and A. F. Pullum. Generalized Phrase
Structure Grammar:A Theoretical Synopsis. Indiana
University Linguistics Club, 1982.

[4] M. Gross. Lexicon-grammar: the representation of
compound words. In COLING ’86, pages 1-6, 1986.

[5] S. Konno and H. Tanaka. Processing left—extraposition
in bottom up parsing system. Computer Software,
3(2):115-125, 1986. (in Japanese).

[6] Y. Matsumoto and R. Sugimura. A parsing system
based on logic programming. In IJCATI ’87, pages 671~
674, 1987.

[7} M. McCord. Natural language processing in prolog. In
Adrian Walker, editor, Knowledge Systems and Prolog,
chapter 5, pages 291-402, Addison-Wesley, 1987.

[8] F. Pexeira. Extraposition grammar. American Journal
of Computational Linguistics, 7(4):243-256, 1981.

[9] F. Pereira and D. Warren. Definite clause grammar for
language analysis— a survey of the formalism and a com-
parison with augmented transition networks. Artificial

Intelligence, 13(3):231-278, 1980.

-

[10] J.R. Ross. Constraints on variables in syntax. In On
Noam Chomsky: Critical Essays, Anchor Books, 1974,

[11] T. Okunishi, et.al. Comparison of logic programming
based natural language parsing systems. In 2nd Inter-
national Workshop on Natural Language Understanding
and Logic Programming, pages 90-102, 1987.

[12] T. Winograd. Language as a Cognitive Process. Vol-
ume 1:Syntax, Addison-Wesley, 1983.

[13] W.A. Woods. Experimental parsing system for transi
tion network grammar. In Natural Language Process-
ing, Algorithmic Press, 1971.

[14] Y. Matsumoto, et.al. Bup:a bottom-up parser embed-
ded in Prolog. New Generation Computing, 1(2):145-
158, 1983.

